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Flow shear stabilization of rotating plasmas due to the Coriolis effect
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A radially decreasing toroidal rotation frequency can have a stabilizing effect on nonaxisymmetric
magnetohydrodynamic (MHD) instabilities. We show that this is a consequence of the Coriolis effect that
induces a restoring pressure gradient force when plasma is perturbed radially. In a rotating cylindrical plasma,
this Coriolis-pressure effect is canceled by the centrifugal effect responsible for the magnetorotational instability.
In a magnetically confined toroidal plasma, a large aspect ratio expansion shows that only half of the effect is
canceled. This analytical result is confirmed by numerical computations. When the plasma rotates faster toroidally
in the core than near the edge, the effect can contribute to the formation of transport barriers by stabilizing MHD
instabilities.
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I. INTRODUCTION

Plasma flow in present-day tokamaks is primarily ben-
eficial. Arguably most important is the suppressing effect
flow shear has on turbulence, by tearing apart the turbulent
eddies. The associated reduction in thermal transport greatly
benefits the goal of commercially producing energy from
nuclear fusion in a tokamak. Flow shear also plays a crucial
role in explaining angular momentum losses and accretion
rates in astrophysical plasmas through the axisymmetric
magnetorotational instability (MRI) [1,2].

This paper concerns an effect of flow shear caused by
the influence of the Coriolis effect in rotating plasmas. It
arises through a spatial variation in the Doppler shifted mode
frequency. This has been overlooked in the first two analyses
of localized MHD modes [3,4]. In integrated form the effect
first appeared in an analysis of the internal kink mode [5]
where it was grouped with inertial terms and was denoted as
“flutter.” The effect also surfaced in more recent analyses [6,7].
In Ref. [7] a stability criterion is derived for modes localized
in the r direction, normal to the circular magnetic surfaces of
a large aspect ratio tokamak plasma. For not too high rotation
this result reads [7]
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with � the angular rotation frequency and B0 the vacuum
magnetic field at the major radius R = R0. A prime denotes
a radial r derivative. The pressure p and density ρ should be
averaged over a magnetic surface, or read ρ0 and p0 as defined
in Eqs. (26) and (27) below. The safety factor q is the number
of toroidal turns per poloidal turn of a magnetic field line. The
static part of Eq. (1) has a long history, dating back to the
cylindrical result of Ref. [8], the arbitrary aspect ratio result of
Ref. [9], and the large aspect ratio results of Refs. [10,11].
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the second term represents the centrifugal analog of the
Rayleigh-Taylor instability of a heavy fluid on top of a lighter
one. The final term of Eq. (2) is responsible for the MRI, but
it is canceled by the two times larger first term that is the
subject of this work. This Coriolis-pressure term ensures that
a radially decreasing angular rotation frequency is stabilizing
when the destabilizing Kelvin-Helmholtz term proportional to
�′2 is not too large. This is the case when∣∣∣∣ r�′

�

∣∣∣∣ <
8q2

1 + 2q2
, (3)

which in a tokamak ranges from 2.67 in the core where q = 1
to 4 near the edge where q � 1. First, we will investigate
the effect of the Coriolis force on nonaxisymmetric modes
in a cylindrical geometry, to find that its influence is exactly
canceled by the MRI effect. Next, we perform a large aspect
ratio expansion to show that in toroidal geometry only half
of the effect is canceled by the MRI. Finally, we confirm
this result with linear simulations showing that the effect can
stabilize interchange instabilities in the low magnetic shear
core region of a tokamak plasma.

II. PRELIMINARIES

We consider a rotating ideal MHD equilibrium in which
the pressure force and centrifugal force are balanced by the
Lorentz force and/or gravitational force

∇p = ρ�2R + (∇ × B) × B − ρ∇�. (4)

We assume axisymmetry and a rotation velocity u = R�êφ in
the azimuthal êφ = R∇φ direction of an (R,z,φ) coordinate
system with êz = ∇z the axis of symmetry. We investigate
perturbations ξ ∝ e−i(nφ+ωt) relative to the rotating plasma,
described by the Frieman-Rotenberg equation [5,12] (see
Appendix A)

−ρω2
Dξ + 2iρωD�êz × ξ = Fs − R∇ · (ρ�2ξ ), (5)

where ωD ≡ ω + n� is the Doppler shifted frequency and Fs

is the static ideal MHD force operator [13]

Fs = −∇δp + (∇ × B) × δB + (∇ × δB) × B − δρ∇�.
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The perturbed pressure, density, and magnetic field are given
by δp = −γp∇ · ξ − ξ · ∇p, δρ = −∇ · (ρξ ), and δB = ∇ ×
(ξ × B), respectively.

In Eq. (5) we clearly recognize the second term as the
Coriolis force, the fictitious force experienced by a plasma
element moving with a velocity iωDξ relative to the rotating
background plasma.

III. CYLINDRICAL ANALYSIS

A. Simplified analysis

We first analyze a simple hydrodynamic cylindrical config-
uration in which the equilibrium quantities vary only with R.
We include a gravitational field and no equilibrium magnetic
field. The radial component of the force balance equation (4)
then reads

p′ = ρ(R�2 − �′), (6)

where a prime now denotes an R derivative. To simplify the
analysis, we take the incompressible limit ∇ · ξ → 0, γ → ∞
keeping γp∇ · ξ finite. We consider only nonaxisymmetric
modes so that n �= 0. The φ component of Eq. (5) then gives

δp = −ρω2
D

in
Rξφ − 2ρωD�

n
RξR. (7)

Incompressibility ∇ · ξ = 0 gives ξφ ≡ ξ · êφ = (RξR)′/in.
Inserting into the radial component of Eq. (5) we obtain

[PR(RξR)′]′ − QξR = 0, (8)

where P = ρω2
D/n2 and

Q = ρω2
D + R

(
2ρωD�

n
− ρ�2

)′
+ ρ ′�′. (9)

For ωD ≈ 0, which is appropriate for marginally stable radially
highly localized modes, this reduces to

Q ≈ ρ ′(�′ − R�2) = −p′ρ ′/ρ. (10)

This is the term responsible for the Rayleigh-Taylor instability,
with the centrifugal acceleration added to the gravitational
acceleration. We note the interesting cancellation of the MRI
term ρ�2′

due to the radial variation in the Doppler shifted
frequency ω′

D = n�′. This cancellation can only occur for
nonaxisymmetric modes with n �= 0. How exactly does the
canceling term arise?

Equation (7) shows that an incompressible radial perturba-
tion ξR is deflected in the êφ direction by the Coriolis force or,
especially when ωD ≈ 0, gives rise to a pressure perturbation.
Away from ωD = 0 the Coriolis force increases, giving rise
to a radially varying perturbed pressure. The resulting force,
from Eq. (7),

−δp′ ≈ 2ρ�

n
ω′

DRξR = ρ�2′
RξR, (11)

is restoring for a radially decreasing angular rotation fre-
quency. This stabilizing effect exactly cancels the destabilizing
effect of the MRI.

B. Arbitrary vertical wavelength

In the preceding section we assumed no variation of
the mode with the axial coordinate z. Here we take ξ ∼
e−i(nφ+kzz+ωt) and for generality include an axial velocity
component uz. Solving for ξz, ξφ , and δp from projections
of Eq. (5) in the êz and êφ directions and the incompressibility
condition gives

ξφ = −i
n(RξR)′ + 2�ωD

ω2
D

k2
zR

2ξR

k̄2R2
, (12)

δp = ρω2
D(RξR)′ − 2nρωD�ξR

k̄2R
, (13)

where k̄2 = n2/R2 + k2
z and ωD = ω + n� + kzuz. The ver-

tical perturbation ξz = −ikzδp/ρω2
D is not needed here.

Inserting Eqs. (12) and (13) into the radial component of Eq. (5)
gives again Eq. (8) with now

P = ρω2
D

R2k̄2
(14)

and

Q = ρω2
D + R

(
2nρωD�

R2k̄2
− ρ�2

)′
+ ρ ′�′ + ρh

k2
z

k̄2
. (15)

The only difference between Eqs. (15) and (9) is the final term,
where

h = − (2ωD�)2

ω2
D

. (16)

Equation (15) can be rewritten as

Q = ρω2
D + 2nωDR

(
ρ�

R2k̄2

)′
+ ρ ′(�′ − R�2) − ρκ2 k2

z

k̄2
,

(17)

where κ2 = R�2′ + 4�2 is the squared epicyclic frequency,
associated with inertial circles. The pressure-Coriolis term
proportional to ω′

D now only partially cancels the centrifugal
term ρ�2′

, resulting in the prefactor k2
z /k̄

2. The cancellation
is therefore only complete for kz = 0.

C. Including a magnetic field

When imposing a vertical magnetic field, differential
rotation will generate an azimuthal field as well. We therefore
consider a general magnetic field B = Bz(R)êz + Bφ(R)êφ .
With ∇ × B × B = − 1

2∇B2 + B · ∇B the radial component
of the force balance equation (4) becomes(

p + B2

2

)′
= ρR

(
�2 − ω2

Aφ − �′

R

)
, (18)

where ωAφ = Bφ/(R
√

ρ). Here −ω2
Aφ derives from the mag-

netic field line bending term B · ∇B in the same way that �2

derives from the inertial term −u · ∇u.
The structure of the mode equation (8) does not change

upon the introduction of a magnetic field. Equations (12), (13)
and the expressions for P = ρω2

D/R2k̄2 and Q of Eq. (15) are

016411-2



FLOW SHEAR STABILIZATION OF ROTATING PLASMAS . . . PHYSICAL REVIEW E 86, 016411 (2012)

unchanged, except for the replacements

ω2
D → ω2

D − ω2
A, (19)

ωD� → ωD� + ωAωAφ, (20)

�2 → �2 − ω2
Aφ, (21)

where the Alfvén frequency reads

ω2
A = n2B2

φ/R2 + k2
zB

2
z

ρ
. (22)

The resulting mode equation was first derived in Ref. [40] un-
der the Boussinesq approximation. See for example Ref. [28]
for a derivation. How the resulting P and Q relate to stability
is elaborated in Appendix B in which various stability criteria
are derived.

We note that the replacements of Eqs. (19)–(21) should be
made before the simplifications of Eq. (17) are made. This is
because with these replacements Eq. (16) reads

h = −4
(ωD� + ωAωAφ)2

ω2
D − ω2

A

=
{

−4�2 (B = 0),

4ω2
Aφ (B �= 0,ωD → 0).

(23)

The loss of the stabilizing Coriolis term −4�2 upon the
introduction of even a very small magnetic field can give rise
to the MRI.

As we have seen, the Coriolis force induces a pressure
perturbation that can exactly cancel the MRI term. A fraction
k2
z /k̄

2 of the MRI drive remains so that long wavelengths
will be less unstable than smaller wavelengths. Since this
only holds for nonaxisymmetric modes, the axisymmetric
MRI will typically be more unstable than its nonaxisymmetric
counterpart.

Next we turn to a toroidal magnetically confined plasma,
where we will see that things are very similar except that there
the cancellation with the MRI term is incomplete.

IV. TOROIDAL ANALYSIS

We now switch to a toroidal geometry and will take into
account plasma compressibility. We exclude a gravitational
field so that the equilibrium is given by Eq. (4) with � = 0.
For the magnetic field we write

B = ∇φ × ∇ψ + F∇φ, (24)

with F (ψ) = RBφ . The poloidal magnetic flux ψ provides
a label for the nested magnetic surfaces. Normal to these
surfaces, pressure forces are balanced by Lorentz forces as
described by the Grad-Shafranov equation

R2∇ ·
(∇ψ

R2

)
= −FF ′ − R2 ∂p

∂ψ
. (25)

Within the magnetic surfaces the force balance is given by
∂p/∂R|ψ = ρR�2 which can be solved analytically by [14]

p = p0

(
1 + R2 − R2

0

R2
0

M2

ζ

)ζ

, (26)

ρ = ρ0

(
1 + R2 − R2

0

R2
0

M2

ζ

)ζ−1

, (27)

where p0, ρ0, and ζ are arbitrary nonzero functions of only
ψ . The quantity M ≡ R0�

√
ρ0/2p0 is approximately a Mach

number. The quantity γζ ≡ ζ/(ζ − 1) can be interpreted as the
adiabatic constant of the equilibrium [14].

We perform an expansion in terms of the inverse aspect ratio
ε = r/R0. We consider only the leading order terms in ε, so
that the Shafranov shift does not enter and we can use simple
polar coordinates (r,θ ) in the poloidal plane. The approach
we will follow is similar to that of Ref. [3]. We will however
allow for an arbitrary value of the adiabatic constant of both the
dynamics γ and the equilibrium γζ , both of which are taken
equal to one in [3]. For ε � 1, poloidal Fourier harmonics
∝ eimθ couple weakly so that we can write

ξr =
∑

m′=m,m±1

ξm′
r ei(m′θ−nφ−ωt), (28)

with ξm±1
r ∼ εξm

r and similarly for the other components ξθ ,ξφ .
We order β ≡ 2p0/B

2
0 ∼ ε2 and ωD ∼ � ∼ ε

√
p0/ρ0 so that

M ∼ 1 as in Refs. [3,4,6]. A consistent ordering turns out
to require for the component parallel to the magnetic field
ξm
‖ ∼ εξm

r , but ξm±1
‖ ∼ ξm

r ∼ ξm
θ . The components ξR,ξz, and

ξφ are ordered the same as ξ‖.
Making use of the equilibrium relation (4), the projection

of Eq. (5) in the direction of B can be written as [5]

−ρω2
D(B · ξ ) + 2iρωD�(B × êz) · ξ

= B · ∇(γp∇ · ξ ) + ρ�2B · [∇(ξ · R) − R∇ · ξ ]. (29)

To leading order in ε this becomes

−ρ0ω
2
Dξ‖−2iρ0ωD�ξR=ik‖(γp0∇ · ξ + ρ0�

2RξR), (30)

where acting on an m′ Fourier harmonic

km′
‖ ≡ B

B
· ∇ ≈ 1

R0

(
m′

q
− n

)
∼ ε, (31)

with the safety factor q = rBφ/R0Bθ + O(ε).
To solve for ξ‖ from Eq. (30) we need ∇ · ξ . For a low

β ∼ ε2 plasma, the toroidal magnetic field perturbation δF =
−R2∇ · (F ξp/R2), with ξp = ξ − ξφ êφ , creates such a large
restoring force that for instabilities it has to vanish to order
ε2 [15,16]. Therefore

∇ · ξp ≈ ξp ·
(

2∇R

R
− ∇F

F

)
= 2ξR

R
+ O(ε2), (32)

where we used that Eq. (25) gives F ′/F ∼ β ′ ∼ ε2. With
Eq. (31) we thus obtain to leading order

∇ · ξ = 2ξR

R
+ ik‖ξ‖ ∼ ε. (33)

Equation (30) now gives

ξm±1
‖ =

2iρ0ωD� + ikm±1
‖

( 2γp0

R0
+ ρ0R0�

2
)

γp0(km±1
‖ )2 − ρ0ω

2
D

ξm±1
R ,

≈ 2i
ωD� ± qω2

0

(
1 + M2

γ

)
ω2

0 − ω2
D

ξm±1
R , (34)

with ω0 = √
γp0/ρ0/qR0. The approximation in Eq. (34)

holds when we order km
‖ ∼ ε2 so that km±1

‖ ≈ ±1/qR0 ∼ ε.
By ordering km

‖ an order lower than implied by Eq. (31), we
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focus on a region close to a rational surface where q = m/n.
From Eq. (32) we have to zeroth order in ε that ∇ · ξp = 0 so

that ξm
θ = i(rξm

r )′/m. Therefore, to leading order we find for
ξR = cos θξr − sin θξθ

ξm±1
R = 1

2

(
ξm
r ∓ (rξm

r )′

m

)
. (35)

In the following we will not take into account the effect of the magnetic field perturbations explicitly, so that Fs = −∇δp. We
take the divergence of the cross-product of Eq. (5) with B̃ ≡ B/B2, to obtain after various vector operations

0 = êR × B̃ · ∇ρω2
DξR + êz × B̃ · ∇ρω2

Dξz + 2iêz · ∇ρωD�
ξ‖
B

+ 2B̃ × ∇B

B
· ∇δp + B̃ × êR

R
· ∇(R2∇ · (ρ�2ξ ))

+ ρω2
D(ξR∇ · êR × B̃ + ξz∇ · êz × B̃) − 2i∇ · (ρωD�B̃ · êzξ ) + ∇ × B

B2
· ∇δp + R2∇ · (ρ�2ξ )∇ ·

(
B̃ × êR

R

)
. (36)

We can write, using the covariant component ξψ ≡ ξ · ∂r/∂ψ

∇ · ρ�2ξ = ρ�2∇ · ξ + R(ρ�2)2

γζp
ξR + ∂ρ�2

∂ψ
ξψ, (37)

δp = −γp∇ · ξ − ρR�2ξR − ∂p

∂ψ
ξψ. (38)

The final terms of Eq. (37) and (38) give rise to the centrifugal
and pressure terms of Eq. (1). We will not take them into
account here. To leading order, Eq. (36) then greatly simplifies.
The entire second line vanishes. We can approximate êR ×
B̃ ≈ −êz/B, and êz × B̃ = êR/B so that Eq. (36) can be
written as (2/B)∂f/∂z = 0 where

f = −ρ0ω
2
DξR + iρ0ωD�ξ‖ + γp0

R2
0

(
1 + M2

γ

)
R0∇ · ξ

+ ρ0�
2

(
1 + M2

γζ

)
ξR. (39)

To rewrite the second term of Eq. (36) we used that ∇ × ξp =
0 to zeroth order in ε, so that ∂ξz/∂R = −∂ξR/∂z. Using
Eqs. (33) and (34) the poloidal harmonics of f can be written
as f m±1 = (a ± b)ξm±1

R , where

a = ρ0
(
ω2

D − ω2
−
)(

ω2
D − ω2

+
)

ω2
D − ω2

0

, (40)

b = 4qρ0ωD�ω2
0

ω2
0 − ω2

D

(
1 + M2

γ

)
. (41)

Here ω2
± = (ω2

0/2)(a1 ±
√
a2

1 − a2), with

a1 = 1 + 2q2

(
1 + 4M2

γ
+ M4

γ γζ

)
, (42)

a2 = 2q2M4

γ

(
1

γζ

− 1

γ

)
, (43)

the zonal flow and geodesic acoustic mode frequencies,
respectively. These frequencies were first derived for γζ = 1 in
Refs. [17,18], for γζ → ∞ in Ref. [19], and for general γζ in
Ref. [14]. To leading order, ∂/∂z = sin θ∂/∂r + cos θ∂/r∂θ

so that

2i
∂f

∂z
=

(
∂

∂r
− m − 1

r

)
f m−1 −

(
∂

∂r
+ m + 1

r

)
f m+1

= 1

r
[r(f m−1 − f m+1)]′ − m

r
(f m−1 + f m+1). (44)

With 2f m±1 = (a ± b)[ξr ∓ (rξr )′/m], we obtain

2imr
∂f

∂z
= {[ar(rξr )′ − bmrξr ]}′ − [am2ξr − bm(rξr )′]

= [ar(rξr )′]′ − m2[a + r(b/m)′]ξr = 0, (45)

which is equal in structure to the cylindrical mode equation (8).
The magnetorotational effect, from the final term of Eq. (37)
that we did not take into account, effectively adds ρ0�

2(1 +
M2) to b/m [3,4]. For M � 1 this gives the second and third
term on the right-hand side of Eq. (2). With Eq. (41), (b/m)′
gives only the Coriolis-pressure contribution. It derives from
two equal contributions of the Coriolis and perturbed pressure
terms, the second and third terms of Eq. (39), respectively. For
ωD ≈ 0 and M2 � 1, Eq. (41) gives(

b

m

)′
≈ 4ρ0ω

′
D�

n
= 2ρ0�

2′
, (46)

which is the first term on the right-hand side of Eq. (2).
Comparing this with the corresponding term in the cylindrical
mode equation (8), we find that it is twice as large in a toroidal
geometry. Consequently, only half of its effect is canceled
by the magnetorotational effect. This allows flow shear to be
stabilizing in a toroidal geometry.

V. SIMULATIONS

Next, we perform numerical computations using FINESSE

[20] and PHOENIX [21,22]. We take a circular equilibrium with
ε = 0.3 and use profiles β0 ≈ 0.01(1 − ψn)2 and ρ0 ∝ 1 − ψn,
where ψn is the poloidal flux scaled to zero on the magnetic axis
and unity at the plasma edge. The profile FF ′ ∝ −0.95ψn −
0.1ψn + 3ψ5

n gives q ≈ 1 in the core of the plasma while
increasing steeply near the edge to a value above 3.5. This
is relevant for the “hybrid scenario” envisioned for advanced
operation of the ITER tokamak. In the entire core of the plasma,
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FIG. 1. The normalized growth rate as a function of the flow
shear k = d ln �/dψn at ψn = 0.1 for various toroidal mode
numbers n.

starting from q = 0.995 on axis, the magnetic shear is very low,
with q ′ = 0.03 at ψn = 0.1 where q = 1.

With q ≈ 1 in the center, the stability criterion of Eq. (1)
for rigid rotation reads

r

4

(
q ′

q2

)2

>
ρ ′

0�
2

ρ0ω
2
A

, (47)

where ωA = B0/R0
√

ρ0. The destabilizing centrifugal term on
the right-hand side results in modes similar to those of Ref. [7]
with growth rates of several tens of a percent of ωA0 on the
magnetic axis. We use a rotation profile

�/ωA0 ≈ 0.02[1 + k(ψn − 0.1)], (48)

giving M = √
β�/ωA ≈ 0.2 at ψn = 0.1.

Near the plasma edge, a resistive computation with very
high radial resolution is required to resolve the eigenfunctions.
The growth rates were however found to be quite insensitive
to applying ideally conducting wall boundary conditions
at

√
ψn = 0.8, where q ≈ 1.1. A resolution of 100 radial

elements and seven poloidal Fourier harmonics was in this
case found to be sufficient.

Figure 1 shows the growth rate of the most unstable
modes as a function of the flow shear. It shows stabilization
for radially decreasing rotation k < 0 and destabilization for
radially increasing rotation k > 0, in correspondence with the
theoretical analysis of this work. The second derivative of the
growth rate with respect to k is negative. This may very well be
due to the shearing effect investigated for ballooning modes
in Refs. [23,24], which is always stabilizing. Indeed, for a
similar equilibrium with a higher value of β ≈ 0.05 on axis,
the growth rate of the higher n modes was found to decrease
with increasing positive flow shear k.

VI. DISCUSSION

We showed that a stabilizing effect of a radially decreasing
angular rotation frequency on nonaxisymmetric modes origi-
nates from the Coriolis effect. In spite of being perpendicular
to the displacement, the Coriolis effect has a significant
impact on stability through the mediating role of the perturbed
pressure. In the uncommon case that the angular rotation
frequency increases with minor radius, the effect can even

be destabilizing. In a rotating cylindrical plasma the effect on
nonaxisymmetric modes with no vertical variation is exactly
canceled by the centrifugal effect responsible for the MRI. The
effect may therefore be important for the recently observed
nonaxisymmetric MRI [25]. We expect modes with a long
vertical wavelength to be highly suppressed. Since the effect
results from a radial variation in the Doppler shifted mode
frequency, it does not influence axisymmetric modes like the
classical MRI.

The effect has often been missed in the literature. In
Refs. [3,4] ω′

D was incorrectly neglected along with ωD . In
Ref. [26] and later again in [27] an error was made in the
WKB analysis as explained in [28]. In Ref. [29] the perturbed
pressure δp was not included so that the effect was missed.
In a cylindrical geometry the effect is included in the original
analysis of [30] or more recently in for example [31,32]. The
fact that without axial variation the Coriolis force only modifies
the pressure was already observed in Ref. [33].

Instability resulting from the Coriolis-pressure effect may
be interpreted as a co-rotation instability. The part of the mode
inside the co-rotation radius where ωD = 0 moves slower than
the plasma and has negative energy [34,35]. Energy transfer
to the positive energy part of the mode outside the co-rotation
radius can cause growth of the mode. See Appendix C.

Relative to pressure effects, the effect discussed in this work
scales with M2, so it will become particularly significant for
high Mach number plasmas. In the plasma core of hybrid
scenario plasmas, with a safety factor close to one, plasma
pressure effects are small. Toroidal flow shear can therefore aid
the formation of internal transport barriers, by stabilizing mag-
netohydrodynamic instabilities. Because of its dependence on
the sign of the flow shear, the pressure-Coriolis effect can be
discriminated from other effects like that of Ref. [23,24], the
parallel velocity gradient or Kelvin-Helmholtz instability, and
nonlinear flow shear suppression.

Also for stable modes, the Coriolis-pressure effect can be
relevant. From Eq. (41), this particularly holds for modes
with a frequency ω2

D ≈ ω2
0, although such a singularity is

typically something that is “smoothed” in a more complete
kinetic analysis. In Ref. [36], the Coriolis-pressure effect was
predicted to influence the existence of reversed shear Alfvén
eigenmodes with ω2

D ≈ ω2
+, favoring modes propagating in

the direction of the plasma rotation [36].

ACKNOWLEDGMENTS

We thank J. P. Goedbloed, E. Westerhof, and B. Koren
for comments. This work, supported by NWO and the
European Communities under the contract of the Association
EURATOM/FOM, was carried out within the framework of
the European Fusion Program.

APPENDIX A: FRIEMAN-ROTENBERG EQUATION

1. General

We adopt a Lagrangian viewpoint in which we move along
with the flow. A Lagrangian perturbation of a quantity f with
equilibrium value f0 will be defined as δLf ≡ f (r + ξ ) −
f0(r) [37], related to the Eulerian perturbation δE = δL − ξ ·
∇. Here the so-called Lagrangian displacement vector ξ (r,t) =
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δLr gives the displacement of a fluid element that would have
been at position r at time t in the unperturbed flow.

We introduce the advective derivative D/Dt = ∂/∂t + u ·
∇ which commutes with δL [37]. It then follows from u =
Dr/Dt that δLu = Dξ/Dt . The Frieman-Rotenberg equation
is obtained by acting with δL on the momentum equation
ρDu/Dt = f, giving

(δLρ)
Du
Dt

+ ρ
D2ξ

Dt2
= δLf. (A1)

Similarly, acting with δL on the continuity equation Dρ/Dt =
−ρ∇ · u gives δLρ = −ρ∇ · ξ so that the first term of Eq. (A1)
can be written as

−ρ(∇ · ξ )
Du
Dt

= −∇ ·
(

ξρ
Du
Dt

)
+ ξ · ∇

(
ρ

Du
Dt

)
. (A2)

We define the static force operator Fs(ξ ) ≡ δEf, where in the
rest of the text we suppress the argument ξ . Equation (A1)
now gives the Frieman-Rotenberg equation [12]

ρ

(
∂

∂t
+ u · ∇

)2

ξ = Fs + ∇ · (ξρu · ∇u), (A3)

where we used that in equilibrium Du/Dt = u · ∇u. We
remark that the right-hand side of Eq. (A3) actually represents
the self-adjoint Galilean invariant generalized force operator
deployed for example in Refs. [38,39]. The total force operator
of Frieman and Rotenberg [12] is given by

F = Fs + ∇ · (ξρu · ∇u) − ρ(u · ∇)2ξ , (A4)

so that Eq. (A3) can be written as

ρ
∂2ξ

∂t2
+ 2ρu · ∇ ∂ξ

∂t
= F. (A5)

2. Normal modes

Considering normal modes ξ ∼ e−i(ωt+nφ+kzz) and a veloc-
ity u = R�êφ + uzêz we have with ωD = ω + n� + kzuz and
� = −�êz

Dξ

Dt
= −iωDξ + � × ξ , (A6)

so that

D2ξ

Dt2
= −ω2

Dξ − iωD� × ξ + D

Dt
(� × ξ ). (A7)

The final term reads

� × Dξ

Dt
= −iωD� × ξ + � × � × ξ . (A8)

The first term of Eq. (A8) combines with the second term of
Eq. (A7) to give the Coriolis force. For the right-hand side of
Eq. (A3) we need

∇ · (ξρu · ∇u) = −∇ · (ξρ�2R)

= −R · ∇(ρ�2ξ ) − ρ�2ξ · ∇R. (A9)

The last term can be written −�2(ξR êR + ξφ êφ) and exactly
cancels the last term of Eq. (A8). The Frieman-Rotenberg
equation (A3) can then be written as Eq. (5).

APPENDIX B: STABILITY ANALYSIS

In this section we will investigate stability. First we show
a very general criterion that determines stability a posteriori.
Next we investigate how the coefficients P and Q of the mode
equation (8) influence stability.

1. A general criterion

In the following we assume normal mode solutions ξ ∼
e−iωt . Taking the inner product of Eq. (A5) with the complex
conjugate ξ ∗ and integrating over the plasma volume we can
solve the resulting quadratic equation to give solutions ω = ω−
and ω+, where [12]

ω± = V̄ ±
√

V̄ 2 + W̄ . (B1)

A bar denotes normalization with I = 1
2

∫
ρ|ξ |2d3r and

V = 1

2

∫
ξ ∗ · (−iρu · ∇ξ )d3r, (B2)

W = 1

2

∫
−ξ ∗ · Fd3r (B3)

are both real [28]. Here V̄ and W are the average Doppler-
Coriolis shift and potential energy, respectively. The fre-
quencies of Eq. (B1) are real when W̄ � −V̄ 2, providing a
necessary and sufficient criterion for stability.

2. WKB analysis

We assume the radial variation of ξ is much faster than the
length scale L over which the equilibrium quantities vary. In
this case we can insert WKB solutions RξR ∼ ei

∫
kRdR into

Eq. (8) and neglect terms higher order in 1/L to obtain

−k2
RR2P − Q = 0. (B4)

We assume that either the magnetic field or kz vanishes so that
the term ρhk2

z /k̄
2 does not depend on the mode frequency.

Then Eq. (B4) becomes a quadratic equation in ωD with
solution

ωD = V̄ ±
√
V̄2 + W̄, (B5)

where with k2 = k2
R + k̄2,

V̄ = − k̄2

k2

R

ρ

(
nρ�

k̄2R2

)′
(B6)

and

W̄ = ω2
A − k2

z

k2
(h − R�2′

) − 2
nkz

Rk2
u′

z�

− k̄2

k2

R

ρ

[
ρ ′

(
�′

R
− �2

)
+(

ρω2
Aφ

)′+
(

2nρωAωAφ

k̄2R2

)′]
.

(B7)

The equilibrium is stable against the rapidly varying WKB
modes when W̄ > −V̄2.

Equation (B7) consists of a stabilizing Alfvén contribution
and several potentially destabilizing terms. The first of these
is the inertial term that becomes equal to (k2

z /k2)κ2 in the
absence of a magnetic field. The final term on the first line of
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Eq. (B7) was already found in Ref. [30] and arises through the
radial variation of the Doppler shift.

On the second line of Eq. (B7) we have first the gravitational
convective term augmented by the centrifugal force. Together
with the next term, it may be rewritten using the equilibrium
relation (18) as ρ ′ times the total pressure gradient. The
remaining term proportional to (ω2

Aφ)′ was in Ref. [43] argued
to be responsible for the helical MRI [44,45]. This term is
the magnetic field line bending analog of the centrifugal MRI
term proportional to �2′

. The final term of Eq. (B7) is then
analogous to the pressure-Coriolis term that canceled part
of the MRI term to give the prefactor k2

z /k2. Because of
the sign difference in Eqs. (20) and (21), this term however
always adds to the previous. For example, for kz = 0 it
reads (2ρω2

Aφ)′.
Comparing Eq. (B1) with (B5) we see that V̄ = V̄ − n� −

kzuz. We would like to show, at least for kz = 0, that our result
for V̄ of Eq. (B6) agrees with the definition of V̄ given in
Eq. (B2). We first write

ξ ∗ · (−iu · ∇ξ ) = ξ ∗ · (−n�ξ + i�êz × ξ ) (B8)

= −n�|ξ |2 + i�êz · (ξ × ξ ∗), (B9)

where in (R,z,φ) coordinates

iêz · (ξ × ξ ∗) = i(ξφξ ∗
R − ξRξ ∗

φ ) = (|RξR|2)′

nR
. (B10)

In the final step we used that incompressibility implies ξφ =
(RξR)′/in. Therefore Eq. (B2) can be written as

V̄ = −
∫

ρ�(n|ξ |2 − (|RξR|2)′/nR)d3r∫
ρ|ξ |2d3r

, (B11)

= −
∫

[ρn�|ξ |2 + (ρ�)′|RξR|2/nR]d3r∫
ρ|ξ |2d3r

, (B12)

≈ −n� − n

ρRk2
(ρ�)′. (B13)

On the second line we partially integrated using d3r =
RdRdφdz assuming that at R = 0 and the plasma edge |RξR|
vanishes. Since we assume that the perturbation varies over
a much smaller length scale, on the final line we took the
equilibrium quantities out of the integrals. For evaluation
of the remaining integrals we used that ξφ = kRRξR/n. We
thus find that indeed the result of Eq. (B13) agrees with
Eq. (B6).

3. Cluster point analysis

Our mode equation (8) becomes singular for P = 0 (ωD =
ωA), signaling the presence of a continuous spectrum. When
also P ′ = 0 (ω′

D = ω′
A) a so-called cluster point may exist,

where global modes cluster towards the continuum [46]. To
leading order in the distance s to this point, we can write Eq. (8)
as [s2(RξR)′]′ + DRξR = 0. Here

D ≡ − Q
1
2R(RP )′′

(B14)

is evaluated at s = 0. This equation has solutions of the
form RξR = sν with ν = −1/2 ± √

1/4 − D. More formally

we can perform a Frobenius expansion around s = 0. Either
way, we find that oscillatory behavior of the solutions cannot
occur when D < 1/4 providing a sufficient criterion for local
stability. Using ω′

D = n�′ + kzu
′
z this gives

D = −ρ
k2
z

k̄2 (h − R�2′
) + ρ ′(�′ − R�2) + 2nρkzu

′
z�

Rk̄2

1
2ρ

(
ω2

A − ω2
D

)′′
R2

− ωD

( 2nρ�

R2 k̄2

)′ + (
ρω2

Aφ + 2nρωAωAφ

R2 k̄2

)′

1
2ρ

(
ω2

A − ω2
D

)′′
R

<
1

4
. (B15)

For highly localized modes, the Coriolis shift vanishes [28] so
that at marginal stability ωD = ωA = 0 and 1

2 (ω2
A − ω2

D)′′ =
ω′2

A − ω′2
D . When positive, both sides of Eq. (B15) can

be multiplied with this quantity. The term ω′2
A gives the

stabilizing effect of magnetic field line bending while −ω′2
D

gives a destabilizing Kelvin-Helmholtz flow shear effect. The
resulting stability criterion is the incompressible version of that
derived in [47–49], which generalized the Suydam criterion [8]
to include flow. Without magnetic and gravitational fields and
density gradients, Eq. (B15) was first obtained in Ref. [30].
A magnetic field was included in this reference only for
axisymmetric instabilities (n = 0) and pure rotation (uz = 0).
This generalized the result of Velikhov [1] whose analysis
excluded an azimuthal magnetic field Bφ .

APPENDIX C: NEGATIVE ENERGY WAVES

In Appendix B 1 we took the inner product of Eq. (A3) with
ξ ∗. When instead we take the inner product of Eq. (A3) with
∂ξ ∗/∂t and use that F and −iρu · ∇ are self-adjoint operators,
we can obtain ∂E/∂t = 0. Here, the mode energy [28,34,35]

E = 1

2

∫ (
ρ

∣∣∣∣∂ξ

∂t

∣∣∣∣
2

− ξ ∗ · F

)
d3r = (|ω|2 + W̄ )Ie2Im(ω)t .

(C1)

For unstable modes, Eq. (B1) gives |ω±|2 = −W̄ so that E =
0. For stable modes however, Eq. (B1) gives |ω±|2 = W̄ +
2V̄ ω± so that

E = 2ω±(ω± − V̄ )I = ±2ω±I
√

V̄ 2 + W̄ . (C2)

This shows that when ω+ and ω− have the same sign, the
two solutions of Eq. (B1) correspond to a pair of modes
with energies of opposite sign. A negative energy mode
accompanied by one with positive energy. Note that this is
only possible when

0 < −W̄ � V̄ 2. (C3)

The stability criterion of Eq. (1) is derived in Ref. [7] under the
assumption that the Coriolis shift and the Doppler shifted mode
frequency ωD = ω + n� vanish. At marginal stability then
V̄ 2 = n2�2 = −W̄ , marginally satisfying Eq. (C3). Before the
system becomes unstable there will therefore be two modes,
one with a small positive energy and one with an opposite
negative energy, that combine to form an instability.

The condition ωD = 0 implies that the “pattern frequency”
−ω/n locally equals the plasma rotation frequency �. This
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co-rotation condition holds quite generally for nonaxisymmet-
ric instabilities [40]. In instabilities like the Papaloizou-Pringle
instability [41] or the Rossby wave instability [42], waves
reflect at the boundaries or get trapped near a maximum of

an equilibrium quantity, respectively. In a magnetized plasma
we may speculate that the localizing effect of magnetic field
line bending can play a similar role in confining waves with
positive and negative energy.
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