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Breaking of upper hybrid oscillations in the presence of an inhomogeneous magnetic field
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We present space-time evolution of large-amplitude upper hybrid modes in a cold homogeneous plasma in
the presence of an inhomogeneous magnetic field. Using the method of Lagrange variables, an exact space-
time-dependent solution is obtained in parametric form. It is found that the magnetic field inhomogeneity causes
various nonlinearly excited modes to couple, resulting in phase mixing and eventual breaking of the initially
excited mode. The occurrence of wave breaking is seen by the appearance of spikes in the density profile. These
results will be of relevance to laboratory and space plasma situations in which the external magnetic field is
inhomogeneous.
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I. INTRODUCTION

The search for analytical solutions expressing space-time
evolution of normal modes in plasmas seems to have been at-
tracting attention for quite some time. This is because analytic
solutions facilitate the understanding of basic experimental
situations in which large amplitude modes are excited, thus
leading to deeper insight into the underlying phenomenon.
Starting from some physically realizable initial state, the
excited modes generally evolve in nonlinear fashion and reach
toward a final state. Phase mixing and breaking of such excited
modes play a central role in nonlinear plasma theory. It is
well known that nonlinear oscillations in a cold homogeneous
unmagnetized plasma exhibit coherent oscillatory behavior up
to a critical value of initial amplitude in perturbations. Beyond
the critical amplitude, waves and oscillations break [1]. In-
clusion of various physical effects, such as relativistic effects,
inhomogeneity in the ion density, etc., in wave dynamics leads
to wave breaking via a phenomenon called phase mixing [2–6].
In such situations, the characteristic frequency of the mode
under consideration becomes space-dependent. In response to
wave dynamics, plasma particles situated at different locations
oscillate at different local frequencies. As a result, mixing
of phases corresponding to various parts of the mode occurs
and the mode breaks. The wave breaking and phase mixing
phenomena in an unmagnetized plasma have been studied
extensively. In the present paper, we have studied the wave
breaking phenomenon in a magnetized plasma corresponding
to the high-frequency upper hybrid mode. We show here
that upper hybrid modes in a cold plasma break via phase
mixing in the presence of an externally applied inhomogeneous
magnetic field. Inhomogeneity in a magnetic field is prevalent
in almost all realistic situations involving a magnetized plasma.
Examples include laboratory-based plasma experiments such
as the magnetized plasma linear device, tokamak, etc., and
space plasma situations such as magnetospheric plasma.

A number of problems regarding nonlinear waves and
oscillations in a homogeneous plasma have been solved using
Lagrangian coordinates [7–9]. All of the ones mentioned above
have been solved exactly and illustrate the nature of nonlinear
evolution of the modes in space and time. Variants of nonlinear
solutions achieved by introducing Lagrangian variables have

also been obtained [10–13]. In addition, instead of treating
plasma as homogeneous, periodicity in ion density background
has also been assumed by several authors. The effect of such
a spatially periodic ion density fluctuation on electron plasma
waves has been studied analytically as well as in numerical
simulation and reported in Ref. [14]. Further, taking periodic
or hyperbolic-secant-square pulse and cavity type ion density,
exact nonlinear solutions have been obtained in parametric
form [3,4]. These studies show that ion density fluctuations
enhance the amplitude of plasma oscillations, resulting in
peaks in the density profile. Physically, inhomogeneity in ion
density makes the local plasma frequency space-dependent. As
a result, plasma waves phase-mix. In this paper, we investigate
the effects of inhomogeneity in the magnetic field on upper
hybrid modes in a cold plasma where ion density is taken
as independent of both space and time. Inclusion of inho-
mogeneity in the magnetic field makes the electron cyclotron
frequency space-dependent. This causes phase mixing of upper
hybrid oscillations. Performing a linear analysis, we show that
mode coupling happens between finite-amplitude magnetic
field fluctuation and initial perturbation corresponding to the
mode under study. We further obtain an exact solution to
this problem by using Lagrangian coordinates in one space
variable. Nonlinear analysis shows the appearance of density
spikes, indicating the breaking of such modes.

The paper is organized as follows. In Sec. II, the basic
equations which describe space-time evolution of upper hybrid
modes in a cold magnetized plasma are given along with linear
analysis. In Sec. III, the Lagrangian variables are introduced
for nonlinear analysis and an exact analytical solution is
presented in parametric form. In the next subsection, an
approximate analytic solution together with the frequency-
amplitude relationship of oscillations using the homotopy
perturbation method are presented [15,16]. This yields an
approximate expression for phase-mixing time. Finally, in
Sec. IV we summarize our results.

II. BASIC EQUATIONS AND LINEAR ANALYSIS

In one dimension, in the presence of an external inhomo-
geneous magnetic field, the space-time evolution of an upper
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hybrid mode under electrostatic approximation is governed by
the following equations:
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∂x

)
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∂vex
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, (1)

(
∂

∂t
+ vex

∂

∂x

)
vex = − e

me

Ex − eB(x)

mec
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∂
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)
Ex = 4πen0vex, (4)

where the external magnetic field B(x) is directed along the
z direction and the other symbols have their usual meaning.
The plasma is assumed to be cold and collisionless, and ions
form an immobile homogeneous neutralizing background. To
extract the physical content from the above set of equations,
we first perform a linear analysis. Linearizing the above
equations (1)–(4), we obtain the following evolution equation

for perturbed electron density:

∂2ñe

∂t2 + [
ω2

p + �2
e(x)

]
ñe = 0. (5)

To find an analytical solution corresponding to the linearized
Eq. (5), we need to specify the functional form of the externally
applied inhomogeneous magnetic field. As a typical example,
we take the magnetic field having sinusoidal variation in space,
i.e., B(x) = B0 cos(αx), where α is the inverse of the magnetic
field variation length LB . In the limit LB → ∞, the external
magnetic field becomes constant with magnitude B0. With the
initial conditions for the perturbations, ñe(x,0) = δ cos(kx)
and ˙̃ne(x,0) = 0, where δ is the amplitude of perturbation and
k is the inverse of perturbation scale, we get

ñe(x,t) = δ cos(kx) cos [
√

1 + �̄ cos(2αx)ω̄uh0t], (6)

where ωuh0 =
√

ω2
p + �2

e0 with �e0 = eB0/mec, ω̄uh0 =√
1 − �ωuh0 with � = (�2

e0/2)/ω2
uh0 < 1/2, and �̄ =

�/(1 − �) < 1. Notice that the frequency of oscillation has
a spatial dependence which leads to phase mixing of upper
hybrid oscillations. This can be seen explicitly by expressing
the solution in terms of Bessel functions of the first kind,
Jl , as

ñe(x,t) = δ

2

∞∑
l=−∞

Jl

(
�̄ω̄uh0t

2

)[
cos

(
ω̄uh0t + lπ

2

)
{cos(k + 2lα)x + cos(k − 2lα)x}

+ sin

(
ω̄uh0t + lπ

2

)
{sin(k + 2lα)x − sin(k − 2lα)x}

]
. (7)

The result given in Eq. (7) shows mode coupling. This can
be interpreted as follows: At t = 0, the electrostatic energy
is injected into a single mode with wave number k. As time
goes on, energy flows toward higher and higher modes with
wave numbers (k ± lα). At the same time, primary disturbance
dies out in a time scale ωuh0tmix � 2

�

√
1 − � because the

amplitude of the primary mode varies as ∼δJ0(�̄ω̄uh0t/2).
The physical reason for this occurrence of mode coupling is
that the characteristic frequency of the oscillation is space-
dependent [see Eq. (6)], i.e., ω/ω̄uh0 =

√
1 + �̄ cos(2αx).

Therefore, finite-amplitude magnetic field fluctuations can in-
teract with the initial perturbation, which causes phase mixing,
and the higher the value of the amplitude of magnetic field in-
homogeneity, the less time it takes the upper hybrid oscillations
to phase-mix. From Fig. 1, we see that at phase-mixing time
(ωuh0t ∼ 9), the initial coherence pattern is almost destroyed.
Beyond phase mixing time, wave packets are observed, which
is depicted in Fig. 1 corresponding to time ωuh0t ∼ 400. The
high “k” modes shown in Fig. 1 arise due to coupling of
the initially excited mode “k” with the mode number of the
magnetic field inhomogeneity “α” and its harmonics. Hence
their spatial scale is entirely determined by the scale length of
the magnetic field inhomogeneity and is not associated with
any intrinsic plasma spatial scale. It should be noted that one
should not expect an appearance of density spikes within a
linear analysis. This is because linear analysis is valid only
when the amplitude of oscillation is small, i.e., δ << 1.

III. NONLINEAR ANALYSIS

Now we wish to analyze Eqs. (1)–(4) in a nonlinear fashion
by keeping the “convective nonlinearity” term vex∂/∂x. For

−6.28 −3.14 0 3.14 6.28
0

0.5

1

1.5

2

kx

n/
n

0

FIG. 1. (Color online) Normalized plasma density n/n0 as a
function of kx for various values of ωuh0t , with δ = 0.2, � = 0.2,
and α/k = 0.2 (linear case). The blue (dashed) line shows the profile
at ωuh0t = 0, the green (dash-dotted) line at ωuh0t = 9, and the red
(solid) line at ωuh0t = 400.
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this purpose, we introduce Lagrangian transformation. The
transformation relation from Eulerian variables (x,t) to La-
grangian variables (ξ,τ ) can be expressed through an auxiliary
variable ψ as

ξ = x − ψ, τ = t, ψ =
∫ τ

0
vex(ξ,τ )dτ. (8)

From Eq. (8), it can be easily seen that the spatial and temporal
derivatives transform as

∂

∂x
=

[
1 +

∫ τ

0

∂vex(ξ,τ )

∂ξ
dτ

]−1
∂

∂ξ
,

∂

∂t
+ vex

∂

∂x
= ∂

∂τ
.

(9)

In terms of Lagrangian variables and with B(x) = B0 cos(αx),
Eqs. (1)–(4) give, respectively,

ne(ξ,τ ) = ne(ξ,0)

(
1 + ∂ψ

∂ξ

)−1

, (10)

∂2ψ

∂τ 2
= −eEx

me

− �e0 cos{α(ξ + ψ)}vey, (11)

∂vey

∂τ
= �e0 cos{α(ξ + ψ)}∂ψ

∂τ
, (12)

∂Ex

∂τ
= 4πen0

∂ψ

∂τ
. (13)

Combining Eqs. (11)–(13), we obtain

∂3ψ

∂τ 3
+ [

ω2
p + �2

e0 cos{2α(ξ + ψ)}

+�2
e0 sin(αξ ) sin{α(ξ + ψ)}]∂ψ

∂τ
= 0, (14)

where we have used an initial condition vey(x,0) = 0. More-
over, using the initial conditions ne(x,0) = n0(1 + δ cos kx),
vex(x,0) = 0, or equivalently using ψ(ξ,0) = (∂ψ/∂τ ) |(ξ,0)=
0 and (∂2ψ/∂τ 2) |(ξ,0)= (ω2

pδ/k) sin(kξ ), two consecutive
integrations of Eq. (14) yield
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2

)}
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2
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and (
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= 2δω̄2
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2
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(
ᾱφ

2

)]
− 8�

ᾱ2
− ω̄2

pφ2, (16)

respectively. Here we have defined φ = kψ , τ̄ = ωuh0τ , x̄ = kξ , ᾱ = 2α/k, and ω̄2
p = ω2

p/ω2
uh0 ≡ (1 − 2�). Moreover, from

Eq. (16) we have
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∫ φ
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From Eq. (10), we get

ne(ξ,τ ) = n0(1 + δ cos x̄)

(
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Finally from Eq. (8), the coordinate transformation relation
becomes

kx = φ + x̄. (20)

Equations (17), (18), and (20) represent the exact solution in
parametric form:

t = t(φ,x̄), ne = ne(φ,x̄), x = x(φ,x̄). (21)

To interpret the exact solutions expressed in parametric form,
a conventional way is to look at the corresponding phase-space
diagram. The phase-space diagram (φτ̄ ,φ) for various values

of x̄ is shown in Fig. 2. This figure illustrates the dependence of
velocity field on the initial position of different fluid elements
because each individual fluid element is characterized by one
specific value of ξ . Thus, although the motion of each fluid
element is periodic, the local time period of oscillations of
various fluid elements situated at different initial positions is
different. Therefore, φ is a periodic function of τ , where the
time period is a function of x̄, hence it can be written as

φ = φ [x̄,ω(x̄)τ ] .
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FIG. 2. (Color online) Phase-space diagrams (φτ̄ ,φ) for various
values of kξ as indicated in the figure with δ = 0.45, � = 0.2, and
α/k = 0.2 (exact case).

Therefore,

∂φ

∂x̄
= ∂φ

∂x̄
+ φ̇

[
τ

dω(x̄)

dx̄

]
,

where the dot represents differentiation with respect to ω(x̄)τ .
Because φ is periodic, its derivative is also periodic and
goes through both signs. Therefore, at some finite τ , the
denominator of Eq. (18) in the paper will become zero and
ne becomes singular. Thus space-dependent frequency leads
to fine scale mixing of various parts of the oscillation, which
results in a breakdown of the coherent oscillatory motion of
fluid elements.

A. Approximate analysis

In the above section, we obtained an exact solution of the
problem in parametric form. To make the problem physically
more transparent, we now obtain an approximate solution for
φ and then compare with the exact solution. This approximate
analysis also yields an expression for phase-mixing time.
Keeping up to the φ2 term in Eq. (15), we obtain the following
approximate equation:

∂2φ

∂τ̄ 2
+ (1 − �)φ + � cos (ᾱx̄) φ

− 3

4
�ᾱ sin (ᾱx̄) φ2 − δω̄2

p sin x̄ = 0. (22)

Now we solve Eq. (22) using the homotopy perturbation
method [15,16] subjected to the following initial conditions:
φ(x̄,0) = (∂φ/∂τ̄ ) |(x̄,0)= 0. The homotopy to this equation
can be constructed as follows:

∂2φ

∂τ̄ 2
+ β2(1 − �)φ + p

[
(1 − β2)(1 − �)φ + � cos(ᾱx̄)φ

− 3

4
�ᾱ sin (ᾱx̄) φ2 − δω̄2

p sin x̄

]
= 0, (23)

where p has been introduced as an embedding small parameter,
p ∈ [0,1]. Notice that, when p = 0, Eq. (23) takes the form of a

well known nonrelativistic linear harmonic oscillator equation,
and if p = 1, it turns out to be the original Eq. (22). Looking
for the periodic solution, we expand φ in powers of small
parameter p as

φ =
∞∑
i=0

piφi.

Substituting φ into Eq. (23), we collect various powers of p:

p0 :
∂2φ0

∂τ̄ 2
+ β2(1 − �)φ0 = 0, φ0(x̄,0) = 0,

(24)
(∂φ0/∂τ̄ ) |τ̄=0 = 0

yields the zeroth-order solution φ0(x̄,τ̄ ) = 0;

p1 :
∂2φ1

∂τ̄ 2
+ β2(1 − �)φ1 + (1 − β2)(1 − �)φ0

+� cos(ᾱx̄)φ0 − 3

4
�ᾱ sin(ᾱx̄)φ2

0 − δω̄2
p sin x̄ = 0,

φ1(x̄,0) = 0, (∂φ1/∂τ̄ ) |τ̄=0= 0. (25)

Substituting φ0 in the above equation, the solution of
Eq. (25) is

φ1 = f (x̄)

β̄2
{1 − cos(β̄τ̄ )}, (26)

where f (x̄) = δ(ω̄2
p) sin x̄ and β̄ = √

1 − �β. The next-order
equation in p is

p2 :
∂2φ2

∂τ̄ 2
+ β2(1 − �)φ2 + (1 − β2)(1 − �)φ1

+� cos(ᾱx̄)φ1 − 3

4
�ᾱ sin (ᾱx̄) (2φ0φ1) = 0,

φ2(x̄,0) = 0, (∂φ2/∂τ̄ ) |τ̄=0= 0. (27)

To remove secular terms in φ2, we require a vanishing
coefficient of cos β̄τ̄ , which yields the characteristic frequency
of oscillation as

β = {1 + �̄ cos (ᾱx̄)}1/2, (28)
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FIG. 3. (Color online) Phase-space diagrams (φτ̄ ,φ) for various
values of kξ as indicated in the figure with δ = 0.45, � = 0.2, and
α/k = 0.2 (approximate case).
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FIG. 4. (Color online) Normalized plasma density n/n0 as a
function of kx in the wave breaking situation, with δ = 0.45, � = 0.2,
and α/k = 0.2 (nonlinear approximate case), corresponding to the
wave breaking time ωuh0twb = 54.7.

where �̄ = �/(1 − �). Now the solution of Eq. (23) up to
first order can be written as

φ = lim
p→1

[φ0 + pφ1] = f (x̄)

β̄2
{1 − cos(β̄τ̄ )}, (29)

where β is given by Eq. (28), which clearly shows spatial
dependence of frequency, indicating phase mixing of upper
hybrid oscillations. Now using the above expression for φ, the
equation for phase-space curves is given by(

∂φ

∂τ̄

)2

+ (1 − �)
{
1 + �̄ cos (ᾱx̄)

}
φ2 − 2δω̄2

pφ sin x̄ = 0,

(30)

which is an approximate form of Eq. (16). Figure 3 shows
the phase-space plot as governed by Eq. (30) for the same
values of parameters as used in Fig. 2. This shows that Eq.
(30) is indeed a good approximation to Eq. (16), and hence
can be used with confidence for small values of (α/k). Using
the above approximate expression for φ, the electron density
and coordinate transformation relation can be expressed as

ne(x̄,τ̄ ) = n0(1 + δ cos x̄)

[
1 + 1

β̄2

∂f

∂x̄
{1 − cos(β̄τ̄ )}

+τ̄
f

β̄2

∂β̄

∂x̄
sin(β̄τ̄ ) − 2

f

β̄3

∂β̄

∂x̄
{1 − cos(β̄τ̄ )}

]−1

,

(31)

kx = f (x̄)

β̄2
{1 − cos(β̄τ̄ )} + x̄. (32)

The phase-mixing time (i.e., the time at which the wave
breaks, τwb) is given by the zero of the denominator of the
density equation and is approximately given by

ωuh0τwb � 2
√

1 − �

�

(1 − �)(1 + �̄ cos 2αξ )3/2

δ(1 − 2�)(2 sin kξ sin 2αξ )

(α

k

)−1
.

(33)

The normalized electron density is plotted against kx in
Fig. 4 corresponding to the approximate solution. We see that
density spikes appear indicating breaking of oscillations in a
time ωuh0τwb. Notice that the wave breaking time is inversely
proportional to the ratio (α/k). For α = 0 (or, equivalently,
LB → ∞), the wave breaking time becomes infinity, which
corresponds to coherent oscillations in the presence of a
constant magnetic field. Therefore, we conclude that upper
hybrid modes always phase-mix and eventually break in
the presence of a finite-amplitude inhomogeneous magnetic
field.

IV. SUMMARY

In summary, we have investigated the space-time evolution
of upper hybrid modes in a cold plasma with an immobile
homogeneous neutralizing ion background in the presence
of an externally applied inhomogeneous magnetic field. Our
analysis shows that upper hybrid oscillations in the presence
of an inhomogeneous magnetic field phase-mix and eventually
break. Physically, the magnetic field inhomogeneity causes
the upper hybrid frequency to acquire a spatial dependence.
As a result, different parts of the upper hybrid oscillation
oscillate at different local frequency, causing a mixing of
phases of the neighboring oscillators. A manifestation of this
process is seen in mode coupling, where, as time progresses,
energy flows from the initially excited mode “k” to higher
modes k ± lα, where α is the inverse of the magnetic field
inhomogeneity scale length. Finally, a time comes when
neighboring fluid elements cross, resulting in a spike in the
density profile. Nonlinear analysis of the problem gives an
estimate of the phase-mixing time, which scales with the
perturbation amplitude δ and the inhomogeneity scale length
α as ωuh0τwb � 2

√
1−�

�

(1−�)(1+�̄ cos 2αξ )3/2

δ(1−2�)(2 sin kξ sin 2αξ ) (
α
k

)−1. We note that
inclusion of thermal effects, collisional drag, or viscous
damping might remove the singularity in the density profile
[17]. We would further like to add that, to our knowledge,
there is no specific experiment that has examined the breaking
of upper hybrid modes in a plasma in an inhomogeneous
magnetic field. It would be interesting to carry out exper-
iments in this direction and look for signatures of wave
breaking of upper hybrid modes, such as a burst of energetic
electrons.
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