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The preceding paper [Brown, Preston, and Singleton Jr., Phys. Rev. E 86, 016406 (2012)] presented precise
results for the partition of the initial energy E0 of a fast particle into the ions and electrons—EI/E0 and
Ee/E0—when the fast particle slows in a plasma whose ion and electron temperatures may differ. As emphasized
in that paper, this is an important problem because nuclear fusion reactions, such as those that occur in an inertial
confinement fusion capsule, involve ion temperatures that run away from the electron temperatures. As also
noted in the preceding paper, a precise evaluation entails the use of a well-defined Fokker-Planck equation for
the phase-space evolution of initially fast projectile particles. When the plasma has differing ion and electron
temperatures, the projectiles must slow into a “schizophrenic” final ensemble of particles that has neither the
electron nor the ion temperature. This is not a simple Maxwell-Boltzmann distribution since the electrons are
not in thermal equilibrium with the ions. Thus, detailed calculations are required for the solution of the problem.
These we provide here for a weakly to moderately coupled plasma. The Fokker-Planck equation holds to first
subleading order in the dimensionless plasma coupling constant, which translates to computing to order n ln n

(leading) and n (subleading) in the plasma density n. The energy partitions for a background plasma in thermal
equilibrium have been previously computed, but the order n terms have not been calculated, only estimated.
The “schizophrenic” final ensemble of slowed particles gives a new mechanism to bring the electron and ion
temperatures together. The rate at which this new mechanism brings the electrons and ions in the plasma into
thermal equilibrium will be computed.
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I. INTRODUCTION

The underlying theme of this paper is the thermonuclear
burn of deuterium-tritium plasmas. We do not consider the
initiation of the burn process, which is system specific, nor are
we interested in the late stages of the process when most of the
deuterium-tritium (DT) fuel has been burned into α particles
and neutrons, and the electrons and ions are nearly in thermal
equilibrium. We instead focus on intermediate times when, in
general, there is a significant difference between the electron
and ion temperatures, but the α particle density has not yet
become a significant fraction of the D and T ion densities.1

The fusion rate is very sensitive to the ion temperature TI.
The ion temperature is determined by competition between
deposition of the α-particle energy into the ions, which, of
course, increases TI, and thermal equilibration with the electron
distribution, which drives TI down. Our main concern in this
paper is the partition of the total α energy between the ions
and electrons in a two-temperature plasma in the circumstances
that we have outlined.2 This is important in the understanding
of the time scale and the robustness of the fusion process.
Our evaluations of the functions which determine the energy
partition do not include a contribution from the α particles;
hence, our results are valid only if the ensemble of αs is
sufficiently dilute. We find that the α particles slow down into

1When the α particle density is a significant fraction of the plasma
ion density, the effect of the αs on the dielectric response of the plasma
must be taken into account. This introduces additional complications
and, as such, merits a separate publication.

2A short preliminary account of the methods that we employ in this
paper, but restricted to the case of equal ion and electron temperatures,
has previously been presented in Ref. [1].

a non-Maxwellian distribution in which the mean α energy Ē

lies between the thermal energies of the ions and electrons. Our
work shows that these nonthermal α particles increase the rate
of energy transfer between the electrons and ions but, since we
do not examine late times when the population of α particles is
large, this new mechanism does not significantly enhance the
energy transfer rate. In general, as in other work on stopping
power and the partition of a fast projectile particle’s energy
between the electrons and ions in the plasma, we assume
(as is most often the case) that the stopping times are much
shorter than the time scale of the fusion so we can work in
the adiabatic approximation in which the time dependencies
of our results are only those brought about by the changes in
the plasma parameters on which they depend. We also require,
as is generally assumed, that the charged particle range is
short in comparison with the distances over which the plasma
conditions vary so the plasma may be treated as uniform.

The purpose of this paper is to provide the detailed
theoretical description of the energy transfer to the electrons
and ions in the plasma when a fast particle slows—to provide
the theoretical basis for the results described in the preceding
paper [2]. Using our theory, we have worked out the energy
partition for differing electron and ion temperatures; this has
not been previously considered in the literature. Second, even
for the case of equal ion and electron temperatures, where
the αs relax into a Maxwellian distribution, we have made two
improvements. We have developed a formulation that precisely
defines the energy partition so a correction of order T/E0 is
now included, a correction that is missing in the literature. In
addition to the well-known n ln n (n is the number density)
terms in the energy partition, we have computed exactly the
coefficient of the order n term, which has previously been only
estimated. We turn now to describe our work in some detail.

016407-11539-3755/2012/86(1)/016407(22) ©2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.86.016406
http://dx.doi.org/10.1103/PhysRevE.86.016407


BROWN, PRESTON, AND SINGLETON JR. PHYSICAL REVIEW E 86, 016407 (2012)

In our work, we do not follow the trajectory of a single
projectile particle. Rather, we achieve a much simpler theoret-
ical framework by considering a time-independent situation in
which initial projectile (impurity) particles are continuously
created and slow into a nonthermal distribution. This is akin
to examining the steady motion of a fluid rather than the much
more complicated motion of a single atom. The problem is
further simplified by assuming that the sources of the charged
projectile particles (the α particles in DT fusion) are uniformly
distributed throughout the plasma and that the initial energetic
particles are created with an isotropic velocity distribution;
hence, the phase-space distribution of the projectile particles
is only a function of the energy and time. The evolution of
this distribution is governed by a Fokker-Planck equation
derived3 by Brown, Preston, and Singleton (BPS) [3]. After
first establishing the proper conditions, which does involve an
initial time evolution, but one that is easily treated with the
proper formalism, we then pass to a time-independent, steady
state, so we need solve only ordinary differential equations in
the projectile particle’s energy.

The Fokker-Planck equation involves coefficient functions
AI(E) and Ae(E) which were computed in BPS to order
n(ln n + c) in the plasma density n. Their definition is rather
complicated; hence, it is deferred to Appendix A, which
presents a detailed description. Since n ∼ g2, with g the
plasma coupling constant, it is evident that these two terms
in the density are the leading and first subleading terms in
the perturbative expansions in g of the coefficient functions.
Higher-order terms in the expansions become significant at
high densities; hence, our results are not applicable, in partic-
ular, to (strongly coupled) warm dense plasmas. Numerical
simulations provide the only potentially reliable means of
validating our analytic expressions for the energy partition
extended to moderately coupled plasmas and for evaluating
the partition in the strongly coupled case. Although such
computations have not been performed, careful, large statistics,
molecular dynamics (MD) simulations have been carried out
by Dimonte and Daligault [5] to investigate a different process,
the electron-ion temperature relaxation. They have done so
over a wide range of plasma parameters that span weak to
strong coupling. Their MD results for the Coulomb logarithm
for this process agree with those of BPS [3] for g < 0.2 to
within the statistical uncertainty of ±5% in the simulations,
with a difference of about 15% for g = 0.3 that grows
rapidly for g > 0.3. This indicates the range of validity of
the Fokker-Planck equation that we use to compute a different
process, the energy partition.

Following a detailed discussion of the Fokker-Planck
equation in Secs. II A and II B, the late-time distribution f∞(E)
of a δ(t) source of projectile (impurity) particles, which is
needed to obtain the electron-ion energy split, is derived in
Sec. II C. In Sec. III a source is slowly turned on and eventually
emits particles at a constant rate. The solution f (E,t) of

3This derivation utilizes a rather subtle method of dimensional
continuation. Although we shall make no use of the dimensional
continuation method in this paper, we note that a detailed, pedagogical
explanation of the method that facilitates the understanding of the
results derived in BPS [3] is contained in Secs. IV and V in Ref. [4].

the now inhomogeneous Fokker-Planck equation is shown
to be the sum of two terms: f (E,t) = n(t) f∞(E) + f̄ (E),
where n(t) is the number density of projectile particles that
have come into the distribution described by f∞(E), and
f̄ (E), which describes the transfer of energy to the electrons
and ions. The energy losses Ee and EI to the electrons and
ions are expressed as single integrals involving the function
f̄ (E) [whose computation involves the A coefficients] and
the A coefficients themselves. For differing electron and ion
temperatures, the late-time energy distribution f∞(E) of the
projectile particles is not a Maxwell-Boltzmann distribution.
This ensemble increases the rate of ion-electron thermal
equilibration above that of the impurity-free plasma. In
Sec. IV A we carry out the explicit construction of f̄ (E).

We, first, discuss our precise results for equal ion and
electron temperatures in Sec. IV B and then go on in Sec. IV C
to compute EI/E0 and Ee/E0 for the general case of different
plasma electron and ion temperatures in terms of integrals over
AI and Ae. At this point, as summarized in Sec. V, we have
finished a logically complete exposition of our methodology
and results, which is essentially self-contained. However, for
those interested in supporting details and who may wish to
work out the intermediate steps in our calculations, we include
these details in the appendices. We provide a review of the A
functions that were computed in BPS [3] which are needed
for the present work in Appendix A, a host of details on
these functions that include their approximate forms in various
regions in Appendix B, and an accurate approximation for one
of the two multiple integrals appearing in our final expressions
for EI and Ee is provided in Appendix C.

II. FORMULATION OF THE PROBLEM

A. The Fokker-Planck equation to leading and
next-to-leading order

We consider a plasma containing a dilute population of
projectile particles with a phase-space density f (r,p,t). For
example, in a DT plasma, the impurities could consist of the
charged α particles produced from the DT fusion. The problem
we shall address is the manner by which such impurities reach
the f∞(E) distribution. During this process, the impurities
deposit portions of their energy to plasma electrons and plasma
ions, and the formalism we now develop will allow us to
compute the electron-ion energy splitting in a systematic and
unambiguous fashion. We take the plasma to have an electron
temperature Te = β−1

e and a common temperature TI = β−1
I

for all the ions, in which case the Fokker-Planck equation for
the distribution f of an projectile species has the form[

∂

∂t
+ v · ∇

]
f (r,p,t)

=
∑

b

∂

∂pk
Ck�

b (p)

[
βbv

� + ∂

∂p�

]
f (r,p,t), (2.1)

where v = p/m is the velocity of a projectile particle with
momentum p, the explicit sum runs over all the particle species
b in the background plasma, and the summation convention
is used for repeated vector indices k and �. As we shall
describe more fully, the diffusion coefficient Ck�

b has been
analytically calculated to leading and next-to-leading orders
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in the plasma density in BPS [3] or, more precisely, to orders
g2 ln g2 and g2 in the generic dimensionless plasma coupling
constant g = e2κ/4πT . We use rationalized electrostatic units,
so this parameter is the Coulomb energy of two particles of
charge e a Debye distance 1/κ apart divided by an average
temperature T .

With our conventions, the number of projectile particles is
given by

N (t) =
∫

d3r

∫
d3p

(2πh̄)3
f (r,p,t), (2.2)

and their kinetic energy appears as

E(t) =
∫

d3r

∫
d3p

(2πh̄)3

p2

2m
f (r,p,t). (2.3)

Here we normalize phase-space integration measures with the
factors (2πh̄)3 = h3 in the denominators. We do this because
h is the phase-space volume of one quantum state.4 Since the
right-hand side of the Fokker-Planck equation (2.1) contains
an overall total momentum derivative, it does not contribute to
the time rate of change of the particle number—the Coulomb
collisions in the plasma preserve particle number. When the
electrons and ions are at common temperature T = β−1, the
terms in the final square brackets in the Fokker-Planck equation
(2.1) annihilate a thermal Maxwell-Boltzmann distribution
[f ∝ exp{−β p2/2m}] of projectile particles—a collection
of particles in thermal equilibrium is not altered by their
collisions with a background plasma at the same temperature.
However, for those cases in which the ions and electrons
have different temperatures, the projectile particles attain
a nonthermal quasistatic distribution that will be described
shortly. Eventually this quasistatic distribution will relax into
a thermal distribution as the electron and ion components
themselves thermally relax. As we shall see, however, the
projectile distribution has interesting effects on temperature
relaxation at intermediate times.

The stopping power can be extracted from the Fokker-
Planck equation by considering a single projectile particle at rp

moving with the velocity vp. The corresponding distribution
function is given by fp(r,p,t) = (2πh̄)3δ(r − rp)δ(p − pp),
and one can easily check that this distribution indeed gives
N = 1 as it should. Inserting this single-particle distribution
into Eq. (2.1) and performing a partial integration, it is easy to
see that the rate of energy loss of the particle is given by

dE

dt
= +

∑
b

(
βbv

�
p − ∂

∂p�
p

)
vk

p Ck�
b (pp). (2.4)

To make the sign of this expression clear, we emphasize that it
gives the rate at which the particle loses energy to the plasma
[it is the negative of the time derivative of Eq. (2.3)]. Hence,
the stopping power, which is the energy loss of the particle per

4With this normalization, the Maxwell-Boltzmann distribution for
each spin state of a particle is simply

exp[μ/T − (1/2)mv2/T ],

in which μ is the chemical potential.

unit distance traveled, appears as

dE

dx
= + 1

vp

dE

dt
. (2.5)

B. Longitudinal and transverse components
of the diffusion tensor

As described in detail in BPS, the isotropy of the back-
ground thermal plasma allows one to decompose the diffusion
tensor as

Ck�
b (p) = Ab(v)

v̂kv̂�

βbv
+ Bb(v)

1

2
(δk� − v̂kv̂�), (2.6)

where v is the magnitude of the velocity, v = |v|, with
the velocity direction given by v̂ = v/v. We often take the
independent variable to be the energy E = 1

2 mv2 and, with a
slight abuse of notation, we shall also write Ab = Ab(E) and
Bb = Bb(E). As a matter of completeness, the A coefficients
are provided in Appendix A, and their various limits can
be found in Appendix B. For a homogeneous and isotropic
source of projectile particles, the case we shall consider, the B
coefficients do not enter, although their analytic forms can be
found in BPS [3] if desired.

Let us return to the stopping power (2.4) of a charged par-
ticle. Since the velocity tensor multiplying the B contribution
is transverse—its contraction with vk or v� vanishes—the rate
of energy loss (2.4) of a projectile becomes

dE

dt
=

∑
b

(
v − 1

βbm

∂

∂v�
v̂�

)
Ab, (2.7)

where we have now omitted the p subscript. The respective
energy losses to the ions and electrons are given by separating
this formula into the ion contribution described by

AI =
∑

i

Ai , (2.8)

and the electron part governed by Ae, so5

dEI

dt
=

(
v − 1

βIm

∂

∂v�
v̂�

)
AI (2.9)

5As noted in BPS, to the order in g in which we are working, namely
to leading (g2 ln g2) and next-to-leading (g2) order, only the kinetic
energy of the stopping ion enters, and a meaningfully separation into
electron and ion energy components can be made. This is because of
the trivial fact that the kinetic energy is independent of g—it is of
order g0. In addition to this kinetic energy, the projectile particle has
potential energy interactions with the ions in the background plasma.
The change in these interaction energies associated with the motion
of an projectile particle in a plasma cannot be separated into different
parts that are associated with the ions and with the electrons. This
is because this potential energy starts out at order g, and, thus, its
evolution, which involves interactions akin to those involved in the
kinetic energy dE/dx, is of order g3 (modulo possible logarithms),
an order that is higher than that considered in this paper. Thus, it
should be emphasized that at higher orders in g, such clean separation
into energies deposited into well-defined, separate ion and electron
components cannot be performed.
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and

dEe

dt
=

(
v − 1

βem

∂

∂v�
v̂�

)
Ae, (2.10)

with their sum giving

dE

dt
= dEI

dt
+ dEe

dt
. (2.11)

In particular, we should emphasize that our Fokker-Planck
equation describes a particle’s energy loss, including orders
g2 ln g2 and g2 with no ambiguity.6

Rather than tracking an individual charged particle slowing
down in the plasma, it is much simpler—and equivalent—to
examine an isotropic distribution of particles. When the
projectile particle distribution is isotropic, f is a function
the magnitude of the momentum p = |p| or, equivalently,
of the speed v or energy E. In such cases, a momentum
derivative of f produces a factor of the velocity vector
whose contraction with the velocity tensor multiplying the
Bb coefficients vanishes. Hence, in the isotropic case, the
Fokker-Planck equation (2.1) reduces to[

∂

∂t
− ∂

∂v
· v̂

∑
b

Ab

m

(
1 + v̂

βbmv
· ∂

∂v

)]
f (E,t) = 0.

(2.12)

To avoid notational clutter, we define the total A coefficient
by

A(E) = AI(E) + Ae(E), (2.13)

and the temperature-weighted A coefficient by

〈TA(E)〉 = TI AI(E) + Te Ae(E). (2.14)

Thus,{
∂

∂t
− ∂

∂v
· v̂

[A(E)

m
+ 〈TA(E)〉

m2v
v̂ · ∂

∂v

]}
f (E,t) = 0.

(2.15)

Using the operator forms

∂

∂v
· v̂ = v−2 ∂

∂v
v2 = 2

v

∂

∂E
E (2.16)

and

v̂ · ∂

∂v
= ∂

∂v
= mv

∂

∂E
, (2.17)

we may express Eq. (2.15) in the form{
∂

∂t
− 2

mv

∂

∂E
E

[
A(E) + 〈TA(E)〉 ∂

∂E

]}
f (E,t) = 0.

(2.18)

6See BPS [3] for a full discussion of the range of validity of the
Fokker-Planck equation.

C. Asymptotic solution

As we shall see, to use these results to obtain an un-
ambiguous formulation of the fractions of the total energy
deposited into the ions and electrons, we, first, need to
compute the asymptotic distribution into which an initial
swarm of projectile particles relaxes in the presence of a
background plasma of differing electron and ion temperatures.
This quasistatic distribution will be a function of E (or
equivalently of p), which we express in terms of a function
S(E) as

f∞(E) = N e−S(E), (2.19)

where we choose N to normalize the distribution to unity,

1 = N
∫

d3p

(2πh̄)3
e−S(E). (2.20)

The function S(E) is determined by inserting the structure
(2.19) into Eq. (2.18) which gives

d

dE
E

[
A(E) + 〈TA(E)〉 d

dE

]
e−S(E) = 0. (2.21)

One solution of the second-order differential equation
(2.21) is obtained by requiring that the quantity in square
brackets operating on exp{−S(E)} vanishes:

A(E) − 〈TA(E)〉 dS(E)

dE
= 0, (2.22)

and the solution can be obtained by a simple integration,

S(E; Te,TI) =
∫ E

0
dE′ A(E′)

〈TA(E′)〉 . (2.23)

Here we have temporarily indicated the explicit dependence on
the electron and ion temperatures to emphasize that when the
ions and electrons are at a common temperature T = TI = Te,
this solution reduces to the Maxwell-Boltzmann distribution

S(E; T ,T ) = E

T
, (2.24)

and, consequently, a swarm of projectile particles simply
relaxes to the background plasma equilibrium distribution.
For the equal temperature solution (2.24), a simple analytic
Gaussian integration evaluates the normalization factor defined
in Eq. (2.20) as

N =
(

2πh̄2

mT

)3/2

. (2.25)

Expression (2.23) is indeed the physical solution for S(E).
This is because, having the solution (2.23) in hand, it is a
matter of simple quadratures to construct the second, linearly
independent solution for our second-order differential equation
(2.21). It is not difficult to then confirm that this second
solution is not normalizable, and so our first solution is the
only physically relevant solution. We can also see that this is
the desired solution since, for equal temperatures, it relaxes to
a thermal Maxwellian distribution.

The Maxwell-Boltzmann distribution has an average energy
of 3T/2. However, for the ions and electrons at different
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FIG. 1. (Color online) Average energy Ē to which the α particle
relaxes as a function of the ion temperature TI for various electron
temperatures Te. The ascending curves describing larger values of Ē

have the increasing electron temperatures Te = 10 , 30 , 50 , 100 keV
(solid, short-dashed, long-dashed, dot-dashed). When Te = TI = T

then Ē = 3
2 T . The background plasma is equimolar DT with electron

number density ne = 1.0 × 1025 cm−3.

temperatures, the swarm of projectile particles relaxes to the
average energy

Ē = N
∫

d3p
(2πh̄)3

p2

2m
exp

[
−S

(
p2

2m

)]
. (2.26)

In this case, numerical integrations are needed to evaluate
the normalization constant N and the average energy Ē.
Figure 1 plots the average final energy Ē for an α particle
in an equimolar DT plasma with an electron density ne =
1.0 × 1025 cm−3. The figure displays Ē as a function of the
ion temperature TI for various electron temperatures Te.

III. FORMAL SOLUTION

A. A homogeneous and isotropic source

We shall assume that the background plasma parameters,
such as its density and temperatures, change very little over
distances that are large in comparison with the stopping
distance of the charged projectile particles and that the plasma
parameters also change very little during the stopping time.
Thus, the plasma is treated as homogeneous and static. In
addition, we assume that the sources of the projectile particles
are distributed uniformly in space and that they emit the
projectile particles isotropically with a definite energy E0. For
example, the fusion process in a homogeneous DT plasma
produces α particles uniformly in space and isotropically
in angle with an initial energy of E0 = 3.54 MeV. Thus,
instead of considering the motion of a single projectile particle,
we compute energy partitions and final states of charged

particles emitted isotropically with a definite energy E0 from
a uniform distribution of sources. This greatly simplifies the
problem in that we can employ the homogeneous Fokker-
Planck Eq. (2.18) except that it is now modified to include a
time-varying source of particles of energy E0:{

∂

∂t
− 2

mv

∂

∂E
E

[
A(E) + 〈TA(E)〉 ∂

∂E

]}
f (E,t)

= δ (E − E0) s(t). (3.1)

The number and energy densities, n(t) and E(t), are simply
given by removing the spatial volume integrations from the
previous definitions (2.2) and (2.3). The inhomogeneous
Fokker-Planck equation (3.1) gives the time variations of these
quantities:

ṅ(t) =
∫

d3p
(2πh̄)3

δ (E − E0) s(t) = s(t)

2π2h̄3

√
2m3E0 (3.2)

and

Ė(t) = E0 ṅ(t) −
∫

d3p
(2πh̄)3

v

{
[AI(E) + Ae(E)]

+ [TI AI(E) + Te Ae(E)]
∂

∂E

}
f (E,t). (3.3)

When the projectile particle source s(t) is turned on and then
attains a constant fixed value s0, the number density n(t)
eventually increases linearly in time,

n(t) =
∫ t

−∞
dt ′ ṅ(t ′) =

√
2m3E0

2π2h̄3

∫ t

−∞
dt ′ s(t ′)

= ṅ∞ t + constant, (3.4)

where

ṅ∞ = s0

2π2h̄3

√
2m3E0. (3.5)

B. Asymptotic solution to the inhomogeneous problem

We turn now to obtain the asymptotic solution to (3.1)
satisfying the initial condition that there are no projectile
particles in the distant past.

As a first step in obtaining the asymptotic solution of the
inhomogeneous Fokker-Planck equation (3.1), we set

f (E,t) = exp[−S(E)/2] g(E,t). (3.6)

Multiplying the resulting Fokker-Planck equation by
exp[S(E)/2] on the left yields a similarity transformation
that converts the (velocity ∼ momentum) differential operator
structure in Eq. (3.1) into

H = −
[

∂

∂p
· v̂ − vA(E)

2〈TA(E)〉
] 〈TA(E)〉

v

×
[

v̂ · ∂

∂p
+ vA(E)

2〈TA(E)〉
]

, (3.7)

so the new Fokker-Planck equation now appears as(
∂

∂t
+ H

)
g(E,t) = δ (E − E0) eS(E0)/2 s(t). (3.8)
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Incorporating the boundary condition that the solution van-
ishes initially, the inhomogeneous differential equation (3.8)
has a formal solution:

g(E,t) =
∫ t

−∞
dt ′ e−H (t−t ′) δ (E − E0) eS(E0)/2 s(t ′). (3.9)

Because of the operator nature of the formal solution (3.9), it
is convenient to view functions in momentum space as vectors
in an abstract real vector space and define an inner product by

(ψ,χ ) =
∫

d3p
(2πh̄)3

ψ(p) χ (p). (3.10)

With obvious partial integrations, it is straightforward to verify
that H considered as an operator on this function space is
Hermitian with this definition of the inner product.

In view of our previous work, it is easy to check that

φ(p) = N 1/2 exp [−S(E)/2] (3.11)

now appears as a zero mode of the operator H ,

H φ = 0, (3.12)

that has unit normalization,

(φ,φ) = 1. (3.13)

Except for this zero mode function, the remaining spectrum of
H is positive. This is true because, for any function ψ(p),

(ψ,Hψ) =
∫

d3p
(2πh̄)3

〈TA(E)〉
v

×
{[

v̂ · ∂

∂p
+ vA(E)

2〈TA(E)〉
]

ψ(p)

}2

� 0, (3.14)

since an examination of our results for theA coefficients shows
that 〈TA(E)〉 � 0. The equality in Eq. (3.14) holds only if[

v̂ · ∂

∂p
+ vA(E)

2〈TA(E)〉
]

ψ(p) = 0. (3.15)

The spherically symmetric solution ψ(p) = ψ(|p|) is clearly
the previous zero mode function ψ(p) = φ(E). Hence, within
the class of isotropic solutions—the only class that is relevant
to our work—there are no other zero modes of H and all
its other eigenvalues are positive. Since the operator H is
Hermitian,

φ H = 0. (3.16)

In view of this adjoint equation, it follows that

φ e−H (t−t ′) = φ. (3.17)

Except for this zero mode, we have shown that the other
eigenvalues of the Hermitian operator H are positive. This
positivity constraint must be obeyed, for otherwise the Fokker-
Planck equation would have diverging “runaway” solutions at
large times. The operator that projects out the zero mode is
obviously the outer product of the zero mode vector with itself,

P = φ ⊗ φ, (3.18)

and we write the complement operator as

Q = 1 − P, (3.19)

where the first term in Eq. (3.19) is the unit operator on
the function space. By definition, the operator P acts on an
arbitrary function ψ as

P ψ(p) = (φ ⊗ φ)ψ(p) = φ(p) (φ,ψ). (3.20)

We now see that the unit operator in the form P + Q acting
on g(E,t) in Eq. (3.9) produces

g(E,t) = φ(p)
∫

d3p′

(2πh̄)3
φ(p′)δ(E′ − E0) eS(E0)/2

∫ t

−∞
dt ′s(t ′)

+
∫ t

−∞
dt ′ e−H (t−t ′) Qδ (E − E0) eS(E0)/2 s(t ′).

(3.21)

The momentum integral in the first term of (3.21) is easy to
evaluate,

φ(p)
∫

d3p′

(2πh̄)3
φ(p′)δ(E′ − E0) eS(E0)/2

= N e−S(E)/2

√
2m3E0

2π2h̄3 . (3.22)

As for the second term, since the operator Q selects out the
positive eigenvalues of H , an integration by parts can be
performed to produce∫ t

−∞
dt ′ e−H (t−t ′) Qδ (E − E0) eS(E0)/2 s(t ′)

= 1

H
Qδ (E − E0) eS(E0)/2 s(t)

−
∫ t

−∞
dt ′ e−H (t−t ′) 1

H
Qδ (E − E0) eS(E0)/2 ṡ(t ′).

(3.23)

We now assume that the source s(t) is adiabatically turned on
and attains the constant value s(t) = s0 at late times. In the
asymptotic limit, the rate ṡ(t) is, therefore, vanishingly small
and the second term in Eq. (3.23) may be neglected. We may
also replace s(t) by its asymptotic value s0 in the first line.
Hence, on multiplying g(E,t) by exp{−S(E)/2} to return to
the function f (E,t), we obtain

f (E,t) = N e−S(E)

√
2m3E0

2π2h̄3

∫ t

−∞
dt ′ s(t ′) + f̄ (E), (3.24)

where

f̄ (E) = e−S(E)/2 1

H
Qδ (E − E0) eS(E0)/2 s0. (3.25)

Using Eq. (3.4), we can write this asymptotic late time solution
more suggestively as

f (E,t) = n(t)f∞(E) + f̄ (E), (3.26)

with f∞(E) = N e−S(E). We emphasize that expression (3.26)
is the asymptotic late-time solution to the inhomogeneous
Fokker-Planck equation since the term involving the derivative
ṡ(t) is omitted.

C. Energy deposition

Before presenting an explicit version of the formal solution
(3.26), we pause to describe its physical interpretation and

016407-6



ELECTRON-ION ENERGY PARTITION WHEN A CHARGED . . . PHYSICAL REVIEW E 86, 016407 (2012)

n(t)

f(E)
E0 _

f  (E)

FIG. 2. (Color) The waterfall analogy: The small blue rocks
represent the plasma electrons while the larger red rocks are the
plasma ions. The motion of the “water” represents the evolution of
the projectile ions that are injected into the background plasma. As
“water” falls down the electron-ion slope at a constant rate determined
by f̄ (E), energy is deposited into electrons and ions—in the analogy,
the rocks are heated. At the bottom of the fall is a lake into which the
excess “water” drains and whose height n(t) rises linearly with time.
In the analogy, the lake represents the final distribution f∞(E).

its relation to the ways in which the slowing charged particle
deposits its energy to the background plasma. At large times,
the phase-space density has the time-independent contribution
f∞(E) = N exp[−S(E)] into which any set of initial projec-
tile particles must relax, and the first term of (3.26) describes
this distribution normalized to the correct density n(t). There
remains a time-independent part f̄ (E) that describes the
stationary process of particles losing energy to the background
electrons and ions as particles pass through “energy bins” from
the initial energy E0 to the final asymptotic distribution. The
situation described here can be pictured as the flow of water
over a rocky waterfall that slows the motion of the water as it
descends. The initial rate of flow of the river corresponds to the
rate ṅ(t); the height h of the waterfall giving a potential energy
proportional to gh corresponds to the initial energy E0. The
energy dissipated in the fall corresponds to the energies lost
to the ions and electrons (large and small rocks respectively).
The final flow into a horizontal lake corresponds to the buildup
of the particles in their final distribution described by f∞(E).
This analogy is depicted in Fig. 2.

D. Energy splitting

On inserting the form (3.26) into Eq. (3.3), we can identify
the asymptotic constant rates of energy loss as

Ē ṅ∞ = (E0 − EI − Ee) ṅ∞, (3.27)

in which

EI, e

E0
= 1

ṅ∞ E0

∫
d3p

(2πh̄)3
vAI, e(E)

(
1 + TI, e

∂

∂E

)
f̄ (E).

(3.28)

Here, we write a single generic equation to represent, in fact,
two separate equations: one for the ions and one for the
electrons by the simple expedient of using the double subscript
notation I, e. The constant fractions of the original energy E0

deposited into ionic energy EI and electronic energy Ee are
given in Eq. (3.28)—the energy losses analogous to those of
the water passing through the rocky waterfall.

E. Plasma heating and energy exchange

Part of E0 goes into energies lost to the ions and electrons,
with the remainder being the average energy Ē of an projectile
particle in the final f∞(E) ensemble. For a background plasma
with the ions and electrons at a common temperature T , this
final ensemble is just the Maxwell-Boltzmann distribution,
Ē = 3T/2, and the result (3.27) becomes obvious.

When the electrons and ions have the same temperature T =
Te = TI, the slowing down of fast particles in the plasma gives
a steady-state heating rate per unit volume P = (EI + Ee)ṅ∞.
This heating raises the temperature T of the plasma, but, in
most cases, the rate of this heating is small in comparison with
the slowing down time of the fast projectile particles, and so our
quasi-steady-state computation is valid, with the temperature
treated as a slowing varying function in our formulas.

When the electrons and ions have different temperatures Te

and TI, the situation may differ markedly. In addition to the
overall plasma heating P , the final ensemble of the projectile
particles works to bring the electrons and ions to a common
temperature. Returning to Eq. (3.3), we see that the final
ensemble contribution produces energy density transfer rates
to the ions and electrons given by

ĖI, e(t) = +
∫

d3p
(2πh̄)3

vAI, e(E)

(
1 + TI, e

∂

∂E

)
N

exp[−S(E)] n(t). (3.29)

Carrying out the energy derivatives yields

ĖI(t) = −(TI − Te) Cα
I e (3.30)

and

Ėe(t) = −(Te − TI) Cα
e I, (3.31)

with identical coefficients

Cα
I e = Cα

e I = n(t)
∫

d3p
(2πh̄)3

v
AI(E)Ae(E)

〈TA〉 N exp[−S(E)] .

(3.32)

Hence,

ĖI(t) + Ėe(t) = 0 , (3.33)

and there is no net heating of the plasma. This process only
brings the ions and electrons to a common temperature.

When only a relatively small number of projectile particles
have slowed into their final f∞(E) distribution, they may be
neglected, and the thermal relaxation rate coefficient is well
approximated by7

CI e = Ce I = κ2
e

2π
ω2

I

√
me

2π Te

1

2

[
ln

(
8T 2

e

h̄2 ω2
e

)
− γ − 1

]
.

(3.34)

Here

κ2
e = e2 ne

Te

(3.35)

7This is the sum of Eqs. (12.44) and (12.57) in BPS [3] as quoted
in Eq. (12.12) except that a simple transcription error was made in
the sum quoted in BPS in that the −γ − 2 in Eq. (12.12) should be
replaced by −γ − 1.

016407-7



BROWN, PRESTON, AND SINGLETON JR. PHYSICAL REVIEW E 86, 016407 (2012)

FIG. 3. (Color online) The ratio nI C
α
I e/n CI e as a function of the

electron temperature for an equimolar DT plasma with an electron
density of 1.0 × 1024 cm−3 for ion temperatures of 3, 10, 30,
and 100 keV. The curves for increasing ion temperatures TI have
increasing values for small electron temperatures Te, although they
do cross at larger Te.

is the squared electron Debye wave number, and

ω2
a = e2

ana

ma

(3.36)

is the definition of the squared plasma frequency for particle
a, with the electron squared plasma frequency ω2

e specified by
a = e, while the total squared ionic plasma frequency ω2

I is
the sum over all the ions in the plasma

ω2
I =

∑
i

ω2
i . (3.37)

In numerical terms, for an equimolar DT plasma,

CI e = 3.13 × 10−26n2
e T −3/2

e

×
[

ln

(
5.80 × 1027 T 2

e

ne

)
−1.58

]
cm−3 ps−1, (3.38)

in which the electron density ne is measured in cm−3, the
electron temperature Te in keV, and the overall units are
(1.0 cm−3)/(1.0 × 10−12 s) as indicated.

The total rate coefficient for electron-ion thermal relaxation
is the sum CI e + Cα

I e. It is of interest to compare Cα
I e to

CI e. Since Cα
I e is proportional to the number density n(t)

of projectile particles in their final distribution f∞(E), this
comparison can be made independent of this density by
evaluating the ratio of Cα

I e/n(t) to CI e/nI. In Fig. 3 we plot this
dimensionless ratio as a function of the electron temperature
Te for various values of the ion temperature TI ranging from
3 to 100 keV at an electron density ne = 1.0 × 1024 cm−3.
Explicit calculation shows that the dependence of this ratio

upon the electron density ne is weak. As ne is increased from
1.0 × 1024 cm−3 to 1.0 × 1026 cm−3, the greatest change in
the ratio occurs for TI 
 Te: for TI = 100 keV and Te = 3 keV,
the ratio increases by 20%.

We must add the caveat, already noted in the Introduction,
that the preceding discussion applies only to the case in which
the final α particle population is not large. Hence, although in
some cases the ratios shown in Fig. 3 are of order one, the net
effect of this new mechanism must be relatively small.

IV. EXPLICIT SOLUTION

A. General development

We turn now to the explicit construction of the function
f̄ (E) from the formal expression (3.25). We start by multi-
plying Eq. (3.25) by the (velocity ∼ momentum) differential
operator structure in Eq. (3.1). Passing this operator through
the factor exp[−S(E)/2] is equivalent to the similarity trans-
formation that converts it into the operator H . Hence,

− ∂

∂p
· v̂

[
A + 〈TA(E)〉 v̂

v
· ∂

∂p

]
f̄ (E)

= e−S(E)/2 Qe+S(E)/2 δ (E − E0) s0, (4.1)

and remembering Eqs. (2.16), we see that this is equivalent to

− ∂

∂v

v2

m

[
A + 〈TA(E)〉 ∂

∂E

]
f̄ (E)

= v2e−S(E)/2 Qe+S(E)/2 δ (E − E0) s0

= δ (E − E0)
2E0

m
s0 − v2N e−S(E)

√
2m3E0

2π2h̄3 s0. (4.2)

In the second equality we employed the definitions (3.18)
and (3.19) of the operators P and Q and in the last line
used the result (3.22). Obviously, a trivial first integral of this
differential equation exists. Since the constant of integration
must be chosen to make f̄ (E) vanish at large E, this first
integral reads[
A(E) + 〈TA(E)〉 ∂

∂E

]
f̄ (E)

= s0

E

√
mE0

2

[
θ (E0 − E) −

∫ ∞

E

dE′ m
√

2mE′

2π2h̄3 N e−S(E′)
]
,

(4.3)

where θ (x) is the unit step function that vanishes for x < 0.
Note that, in view of the normalization (2.20),∫ ∞

0
dE′ m

√
2mE′

2π2h̄3 N e−S(E′) =
∫

d3p′

(2πh̄)3
N e−S(E′) = 1,

(4.4)

and so the sum of the terms in the square brackets in Eq. (4.3)
vanishes when E → 0. This is in accord with the fact that these
terms on the right of Eq. (4.3) were produced by the integral of
a derivative on the left-hand side of Eq. (4.2), a derivative of a
quantity that vanishes at both E = 0 and E = ∞. Moreover,
since the square brackets vanishes at E = 0, the right-hand
side of Eq. (4.3) is finite at this end point as it must be.
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At this juncture, it is convenient to remember the definition
(3.5) of ṅ∞, which can be expressed as√

mE0

2
s0 = π2h̄3

mE0
E0 ṅ∞, (4.5)

and to simplify the notation by writing

N = m
√

2m

2π2h̄3 N , (4.6)

so we have ∫ ∞

0
dE′√E′ N e−S(E′) = 1. (4.7)

Thus, Eq. (4.3) now reads,[
A(E) + 〈TA(E)〉 ∂

∂E

]
f̄ (E)

E0 ṅ∞

= π2h̄3

mE0E

[
θ (E0 − E) −

∫ ∞

E

dE′√E′ N e−S(E′)
]

.

(4.8)

To solve this differential equation, we set

f̄ (E) = e−S(E) ḡ(E), (4.9)

because then[
A(E) + 〈TA(E)〉 ∂

∂E

]
f̄ (E) = e−S(E) 〈TA(E)〉 ∂

∂E
ḡ(E).

(4.10)

Since the integrating factor involves exp{+S(E)}, which
exponentially increases without bound as the energy increases,
to obtain a finite well-defined result we must integrate over the
range E′ = 0 to E′ = E and obtain

ḡ(E)

E0 ṅ∞
= π2h̄3

mE0

∫ E

0

dE′

E′
e+S(E′)

〈TA(E′)〉
×

[
θ (E0 − E′) −

∫ ∞

E′
dE′′√E′′ N e−S(E′′)

]
.

(4.11)

B. Equal electron and ion temperatures

The case in which the ions and electrons have the same
temperature, TI = Te = T = β−1, is simple in several respects.
First, it is physically simpler because the final distribution
of the stopping charged particles is the Maxwell-Boltzmann
thermal equilibrium distribution of the background plasma,

exp[−S(E)] = exp

(
−E

T

)
. (4.12)

Thus, the energy transfer processes (3.29) do not appear
because, with Eq. (4.12) holding, the combination in the large
parentheses of Eq. (3.29) annihilates exp[−S(E)]. Thus, only
the energy partitions EI and Ee need to be examined, and these
obey the obvious sum rule

3
2 T = E0 − EI − Ee, (4.13)

to which Eq. (3.27) reduces. Second, it is mathematically
simpler because there is no need to find an explicit solution to
Eq. (4.11) because Eq. (4.8) reduces to

(
1 + T

∂

∂E

)
f̄ (E)

E0ṅ∞

= θ (E0 − E)
1

EA(E)

π2h̄3

mE0

− 1

E0E A(E)

(
2πh̄2

mT

)3/2 ∫ ∞

E

dE′ √2mE′ e−βE′
.

(4.14)

The operation in the square brackets that acts on f̄ (E) on the
left-hand side of this equation is just that which appears in the
energy partitions (3.28).

Placing this expression into the energy partitions Eq. (3.28)
and changing the momentum integration into an integration
over energy expresses the fractional energy loss into ions and
electrons as

EI, e

E0
=

∫ E0

0

dE

E0

AI, e(E)

A(E)

−
∫ ∞

0

dE

E0

AI, e(E)

A(E)

2 β3/2

√
π

∫ ∞

E

dE′ √E′ e−βE′
.

(4.15)

Adding the separate results for the ions and electrons gives

EI + Ee = E0 − 2 β3/2

√
π

∫ ∞

0
dE

∫ ∞

E

dE′ √E′ e−βE′

= E0 − 3

2
T . (4.16)

This is just the obvious result of energy conservation previ-
ously stated in Eq. (3.27).

The results (4.15) can be simplified for their explicit
evaluation. Writing these results with a trivial rearrangement
of the terms presents them as

EI, e

E0
=

∫ E0

0

dE

E0

AI, e(E)

A(E)

(
1 − 2 β3/2

√
π

∫ ∞

E

dE′ √E′ e−βE′
)

−
∫ ∞

E0

dE

E0

AI, e(E)

A(E)

2 β3/2

√
π

∫ ∞

E

dE′ √E′ e−βE′
.

(4.17)

As we shall see, the second line in Eq. (4.17) is exponentially
small. Hence, it suffices to use the simple bounds

AI(E)

A(E)
= AI(E)

AI(E) + Ae(E)
� 1, (4.18)

and, similarly,

Ae(E)

A(E)
� 1. (4.19)
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Using these bounds, we encounter

−
∫ ∞

E0

dE

E0

2 β3/2

√
π

∫ ∞

E

dE′ √E′ e−βE′

= −2 β3/2

√
π

∫ ∞

E0

dE′ √E′ e−βE′
∫ E′

E0

dE

E0

= −2 β3/2

√
π

∫ ∞

E0

dE′ √E′ e−βE′
(

E′

E0
− 1

)
. (4.20)

The variable change E′ = E0 (x + 1) presents this as

−2 β3/2

√
π

E
3/2
0 e−βE0

∫ ∞

0
dx (1 + x)1/2 x e−βE0x


 − 2√
π

1√
βE0

e−βE0 , (4.21)

with the evaluation on the right-hand side following from the
fact that βE0 
 1 so only small x regions contribute, justifying
the replacement (1 + x)1/2 → 1. Hence, we indeed find that
the second line in Eq. (4.17) is exponentially small.

Since

2 β3/2

√
π

∫ ∞

0
dE′ √E′ e−βE′ = 1, (4.22)

we may now write the result (4.17) as

EI, e

E0
=

∫ E0

0

dE

E0

AI, e(E)

A(E)
ψ(β E), (4.23)

in which

ψ(x) = 2√
π

∫ x

0
dt t1/2 e−t . (4.24)

Writing exp{−t} = −d exp{−t}/dt and integrating by parts
yields

ψ(x) = 2√
π

∫ x

0
dt

1

2
t−1/2 e−t −

√
4 x

π
e−x. (4.25)

The variable change t = y2 identifies the integral here as the
error function,

erf(
√

x ) = 2√
π

∫ √
x

0
dy e−y2

, (4.26)

and so

ψ(x) = erf(
√

x ) −
√

4 x

π
e−x. (4.27)

These are the results quoted in the preceding paper [2].

C. Differing electron and ion temperatures

As we have seen, when the ion and electron temperatures
of the background plasma differ, TI �= Te, both the physical
interpretation is richer and the mathematics becomes more
difficult. With different temperatures, there is the additional

physical process in which the final distribution of projectile
particles works to bring the electrons and ions into thermal
equilibrium at a common temperature T = TI = Te. Moreover,
mathematically, we must now work with Eq. (4.11).

We use Eq. (4.11) to return to the f̄ (E) function and insert
the result for f̄ (E) into Eq. (3.28) to compute EI/E0 and
Ee/E0. To simplify the resulting formulas, and place them in
a form that parallels those for the previous equal ion-electron
temperature case, we note that{

AI(E)
Ae(E)

} [
1 +

{
TI

Te

}
d

dE

]
e−S(E)

=
{+

−
}

(Te − TI)
AI(E)Ae(E)

〈TA(E)〉 e−S(E). (4.28)

Hence, with the definition

G(TI,Te; E0)

=
∫ ∞

0
dE E

AI(E)Ae(E)

〈TA(E)〉 e−S(E)
∫ E

0

dE′

E′
e+S(E′)

〈TA(E′)〉
×

[
θ (E0 − E′) −

∫ ∞

E′
dE′′√E′′ N e−S(E′′)

]
, (4.29)

the energy loss fractions may be expressed as

EI

E0
=

(
Te − TI

E0

)
G(TI,Te; E0) +

∫ ∞

0

dE

E0

TI AI(E)

〈TA(E′)〉
×

[
θ (E0 − E) −

∫ ∞

E

dE′√E′ N e−S(E′)
]

(4.30)

and

Ee

E0
=

(
TI − Te

E0

)
G(TI,Te; E0) +

∫ ∞

0

dE

E0

Te Ae(E)

〈TA(E′)〉
×

[
θ (E0 − E) −

∫ ∞

E

dE′√E′ N e−S(E′)
]

. (4.31)

The second lines in the results (4.30) and (4.31) are straight-
forward generalizations of the common ion and electron
temperature form (4.15). The first lines of the new results
(4.30) and (4.31) cancel when they are summed, so

EI + Ee = +
∫ E0

0
dE − N

∫ ∞

0
dE

∫ ∞

E

dE′ √E′ e−S(E′).

(4.32)

On interchanging the order of integration,∫ ∞

0
dE

∫ ∞

E

dE′ √E′ e−S(E′)

=
∫ ∞

0
dE′ √E′ e−S(E′)

∫ E′

0
dE

=
∫ ∞

0
dE′ E′ √E′ e−S(E′). (4.33)

Hence, on passing from an integration over energy to an equiv-
alent momentum integral and reverting to the corresponding
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normalization factor N , we have

EI + Ee = E0 −
∫

d3p
(2πh̄)3

E N e−S(E) (4.34)

or, in view of Eq. (2.26),

EI + Ee = E0 − Ē, (4.35)

in which Ē is the average energy to which a projectile particle
relaxes. This result is in accord with the previous Eq. (3.27).

The final energy integrals in Eqs. (4.30) and (4.31) run
from E = 0 to E → ∞. In each case, the final integration
region involves the exponentially small factor exp[−S(E0)] 

exp(−E0/T̄ ), where T̄ is a typical plasma temperature. This
is a very small factor, and hence this upper portion of the
integration region may be safely neglected to write the results
as

EI

E0
=

(
Te − TI

E0

)
G(TI,Te; E0)

+
∫ E0

0

dE

E0

TI AI(E)

〈TA(E′)〉
[

1 −
∫ ∞

E

dE′√E′ N e−S(E′)
]

=
(

Te − TI

E0

)
G(TI,Te; E0)

+
∫ E0

0

dE

E0

TI AI(E)

〈TA(E′)〉
∫ E

0
dE′√E′ N e−S(E′) (4.36)

and

Ee

E0
=

(
TI − Te

E0

)
G(TI,Te; E0)

+
∫ E0

0

dE

E0

Te Ae(E)

〈TA(E′)〉
∫ E

0
dE′√E′ N e−S(E′).

(4.37)

Here we have invoked the sum rule (4.7) to write the second
equalities above.

The work in Appendix C shows that the function G can be
approximated, with an accuracy of a few percentages, by

G(TI,Te; E0)

=
∫ E0

0
dE E

AI(E)Ae(E)

〈TA(E)〉 e−S(E)
∫ E

0

dE′

E′
e+S(E′)

〈TA(E′)〉

×
∫ E′

0
dE′′√E′′ N e−S(E′′) + AI(E0)Ae(E0)

A2(E0)
. (4.38)

Since the integration in the first line is over the finite interval
(0,E0) and since it involves only nested integrals, rather than
a three-dimensional integral with an arbitrary integrand that
involves an general function of three variables, its numerical
evaluation is not difficult.

V. SUMMARY AND CONCLUSION

We have developed a formalism that enables the calcula-
tions of the energy fractions that a fast particle deposits to the
ions and electrons when it slows down in a plasma of ions and
electrons that have different temperatures. Such calculations
have not been done previously. Our work applies to back-
ground plasmas that are weakly to moderately coupled—the
range of validity of this restriction was discussed in the

Introduction. Using the explicit forms for the A coefficients
reviewed in Appendix A, Eqs. (4.36) and (4.38) enable the
explicit computation of the energy ratios EI/E0 that are
presented in the preceding paper [2].

If the ions are not in thermal equilibrium with the electrons,
a fast particle ends in a “schizophrenic” distribution f∞(E)
which we explicitly compute in Sec. III B. As described in
Sec. III E, this final nonthermal distribution of the projectile
particles provides a mechanism to bring the differing electron
and ion temperatures to a final common temperature, a process
that now appears in addition to the usual electron-ion relaxation
interaction.

APPENDIX A: THE A COEFFICIENTS

The Fokker-Planck equation described in the text involves
two scalar coefficient functions with only one of them, the
A coefficient, entering into our problem of the partition
of the energy loss of a fast charged particle into the ions
and electrons in the plasma. The Fokker-Planck equation,
and the coefficients AI and Ae coming from the ions and
electrons that are needed for our problem, were discussed
extensively in BPS [3]. There a method (see footnote [3]) was
employed to compute theAb which enables the short-distance,
point Coulomb scattering to be joined with the long-distance,
collective force in an unambiguous fashion that has no double
counting. This method was used to evaluate the Ab both to
leading and to subleading order—roughly speaking—to order
n ln n and order n, where n is the plasma number density (made
dimensionless by the adduction of suitable parameters). For
completeness, we present here the results of BPS.

The coefficient for the interaction of a projectile particle of
energy E or velocity vp, (E = mp v2

p/2) with the species b of
the background plasma may conveniently be written as

Ab(vp) = AC
b(vp) + A�Q

b (vp), (A1)

which is the same as Eq. (10.25) of BPS, with

AC
b(vp) = AC

b,S(vp) + A<

b,R(vp), (A2)

which is the same as Eq. (9.6) of BPS. Here AC
b(vp) has two

terms. The first accounts for the hard Coulomb scattering
in the classical limit, while the second accounts for the
collective, long-distance effects, which are entirely classical.
The termA�Q

b (vp) is the quantum-mechanical correction to the
scattering that vanishes in the limit in which Planck’s constant
vanishes, h̄ → 0.

The first classical piece is given by

AC
b,S(vp)

= e2
p κ2

b

4π

(
βbmb

2π

)1/2

vp

∫ 1

0
du u1/2 exp

(
−1

2
βbmbv

2
p u

)

×
[
−ln

(
βb

epeb

4π
K

mb

mpb

u

1 − u

)
− 2γ + 2

]
, (A3)
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which is contained in Eq. (9.5) of BPS.8 The reduced mass
mpb of the projectile (p) and plasma particle (b) is defined by

1

mpb

= 1

mp

+ 1

mb

. (A4)

The long distance collective part of the classical contribution
is given by

A<

b,R(vp) = e2
p

4π

i

2π

∫ 1

−1
d cos θ cos θ

ρb(vp cos θ )

ρtotal(vp cos θ )

×F (vp cos θ ) ln

[
F (vp cos θ )

K2

]
, (A5)

which is contained in Eq. (7.26) of BPS. Here ρtotal(v) is the
spectral weight,

ρtotal(v) =
∑

b

ρb(v) , (A6)

with

ρb(v) = κ2
b

√
βbmb

2π
v exp

(
−1

2
βbmb v2

)
, (A7)

as introduced in BPS Eqs. (7.9) and (7.10). With these defi-
nitions, the sum AC

b,S
+ A<

b,R
is independent of the arbitrary9

wave number K . The function F (vp cos θ ) is related to the
classical dielectric function ε(k,kvp cos θ ) by

k2 ε(k,kvp cos θ ) = k2 + F (vp cos θ ). (A8)

Here, consistent with our leading orders evaluation, the
dielectric function corresponds to the classical limit of the

8In our notation, and in view of Eq. (2.7), the formulas given on
page 32 of the NRL Plasma Formulary [6] for the rate of energy
loss of particle p to ions b in the plasma corresponds to writing the
complete Ab(vp) coefficient as

Ab(vp) = e2
p κ2

b

4π

(
βbmb

2π

)1/2

vp ln �

∫ 1

0
du u1/2 exp

(
− 1

2
βbmbv

2
p u

)
,

where ln � is a Coulomb logarithm. This formula is the same as
Eq. (A3) except that the terms in the square brackets on the last
line in Eq. (A3) are replaced by ln �. The NRL Plasma Formulary
expression does not contain the “terms under the logarithm,” the
terms of order n that BPS computed exactly. These are terms that are
discussed in what follows.

9The wave number K , introduced by our method of dimensional
continuation, corresponds roughly to the upper limit of the long-
distance contributions and the lower limit of the short-distance
contributions. Since K can be chosen arbitrarily, the result must
be independent of its value. This is easy to prove: In view of
Eq. (A10), the K dependence of Eq. (A5) appears in a integrand
with F (vp cos θ ) ln K−2 multiplying remaining factors that are odd
in cos θ . Hence, in view of Eq. (A11), one finds that the K dependence
of Eq. (A5) is given by

e2
p

4π

∫ 1

0
d cos θ cos θ ρb(vp cos θ ) ln K2.

The variable change cos θ = u1/2 along with the definition (A7) of ρb

now easily shows that this term precisely cancels the K dependence
of Eq. (A3).

quantum ring sum. Hence, the complex-valued function F (v)
is defined by

F (v) = −
∫ ∞

−∞
du

ρtotal(u)

v − u + iη
, (A9)

with η → 0+. Note that, since (x − iη)−1 − (x + iη)−1 =
2πi δ(x), and since

ρb(−u) = −ρb(u), (A10)

we have

F (v) − F (−v) = 2πi ρtotal(v). (A11)

Equations (A8) and (A9) are the formulas (7.7) and (7.8) of
BPS.

The quantum correction is contained in Eq. (10.27) of BPS,
and it reads

A�Q
b (vp) = −e2

p κ2
b

4π

(
βbmb

2π

)1/2 1

2

∫ ∞

0
dvpb

×
[

2 Re ψ(1 + iηpb) − ln η2
pb

]

× 1

βbmbvpvpb

{
exp

[
−1

2
βbmb(vp − vpb)2

]

×
(

1− 1

βbmbvpvpb

)
+exp

[
− 1

2
βbmb(vp+vpb)2

]

×
(

1 + 1

βbmbvpvpb

) }
. (A12)

Here ψ(z) = d ln �(z)/dz and

ηpb = epeb

4πh̄vpb

(A13)

is the dimensionless quantum coupling parameter. Note
that we use the rationalized Gaussian units that were
used by BPS in which the Coulomb potential energy be-
tween charges ea and eb a distance rab apart is given by
V = eaeb/(4π rab).

The following figures illustrate the behavior of the A
coefficients for an equimolar DT plasma with an α-particle
projectile of kinetic energy E. Figures 4 and 5 plot the electron
and ion components Ae, AI and their sum A = Ae + AI for a
plasma with electron number density ne = 1.0 × 1025 cm−3,
electron temperature Te = 10 keV, and ion temperatures of
TI = 10 keV and 100 keV. Figures 6 and 7 illustrate the
number density scaling of the A coefficients by plotting
Ae(E)/ne and AI(E)/ne, as a function of the α-particle
energy E, over a wide range of electron densities: ne = 1025,
1026, and 1027 cm−3. As before, the electron temperature is
Te = 10 keV and the ion temperatures are TI = 10 keV and
TI = 100 keV.

Because the A coefficients are proportional to the Debye
wave number squared, a quantity proportional to ne, it is no
surprise that AI and Ae approximately scale with ne. The
Debye wave number also appears inside the logarithm and
the dielectric function, and for electrons this produces a much
more pronounced effect than for the much heavier ions: While
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FIG. 4. (Color online) The coefficients AI(E) (dashed), Ae(E)
(dotted), and A(E) (solid) as functions of the kinetic energy E of an
α particle projectile. The background plasma is equimolar DT with
electron density ne = 1.0 × 1025 cm−3 and electron-ion temperatures
Te = 10 keV and TI = 10 keV.

AI/ne is almost independent of ne, the electron component
Ae/ne varies by a factor of 2 over the range of ne.

APPENDIX B: ASYMPTOTIC LIMITS

We shall extract the large and small energy limits of the
Ab(vp) function for the various plasma species b from the
general expressions in BPS [3]. The energy is given by E =
mpv2

p/2, where mp and vp are the mass and speed of the
particle moving through the plasma, the projectile p. We shall
obtain the large and small limits of the projectile energy E as
compared to a typical plasma temperature T .

FIG. 5. (Color online) As in Fig. 4, except Te = 10 keV and
TI = 100 keV. The crossover energy E = EC where Ae(E) = AI(E)
is about the same in both figures; however, the peak value of the
coefficient AI is inversely proportional to TI.

FIG. 6. (Color online) The A coefficients for electrons and ions
as a function of the α particle projectile energy E in an equimolar DT
plasma with equal electron and ion temperatures, Te = TI = 10 keV.
The solid lines correspond to ne = 1.0 × 1025 cm−3, the dashed
lines to ne = 1.0 × 1026 cm−3, and the dotted lines to ne = 1.0 ×
1027 cm−3. In each case, the A coefficient has been rescaled by the
corresponding number density ne. The slowly rising curves are those
for Ae, while the sharply peaked curves are for AI.

1. E � T: Electrons and ions

In the low velocity limit, Ab(vp) vanishes linearly with vp,
and so we write

vp → 0 : Ab(vp) = e2
p κ2

b

4π

(
βbmb

2π

)1/2

vp

(
AC

b + A
�Q
b

)
,

(B1)

with two constants AC
b and A

�Q
b . These two constants arise

from the low velocity limit of the classical and quantum pieces
of Eq. (A1). The classical piece has already been calculated

FIG. 7. (Color online) As in Fig. 6, except with Te = 10 keV and
TI = 100 keV.
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by BPS, where it is contained in their Eq. (9.9), so there is no
need to do it here. The result is

AC
b = 2

3

[
ln

(
16π

epeb βbκD

mpb

mb

)
− 1

2
− 2γ

]
, (B2)

in which mpb is the reduced mass defined in Eq. (A4) in the
previous Appendix, and γ = 0.577 . . . is Euler’s constant, and

κ2
D =

∑
b

κ2
b =

∑
b

βb e2
b nb. (B3)

To bring out the size of this classical part, we define a plasma
coupling by

gpb = epebβbκD

4π
= epeb

4πλD

1

Tb

, (B4)

in which λD = 1/κD is the Debye length and Tb = 1/βb is the
temperature of plasma species b. We may then write

AC
b = 2

3

[
ln

(
4

gpb

mpb

mb

)
− 1

2
− 2γ

]
, (B5)

which shows that AC
b > 0, since gpb must be small for our

perturbative computation to hold. Note that when the electron
and ion temperatures do not vastly differ, the ions dominate in
the low velocity limit (B1) by a factor (mi/me)1/2. Moreover,
since κ2 ∼ 1/T , this ionic contribution to the A coefficient
has the temperature factor T

−3/2
I and, thus, increases as the

ion temperature is lowered. The corrections to the low energy
limit (B1) are of relative order E/T .

The low velocity limit of the quantum correction Eq. (A12)
above was not previously calculated in BPS because there
the low velocity limit of dE/dx was used only to compare
with a computer simulation involving classical dynamics,
and, therefore, the quantum correction was not needed. The
needed quantum part is contained in Eq. (10.27) of BPS which
provides the limit

vp → 0 : A
�Q
b =−1

3
βbmb

∫ ∞

0
dvpb vpb exp

(
−1

2
βbmbv

2
pb

)
× [

2 Re ψ(1 + iηpb) − ln η2
pb

]
. (B6)

To bring out the character of Eq. (B6), we introduce a thermal
velocity v̄b by

1
2 βb mbv̄

2
b = 3

2 (B7)

and a corresponding quantum parameter

η̄pb = epeb

4πh̄v̄b

. (B8)

We then change the integration variable,

vpb = epeb

4πh̄ ηpb

= epeb

4πh̄
u = η̄pb v̄b u, (B9)

to obtain

A
�Q
b = A

�Q
b (η̄pb) = −η̄2

pb

∫ ∞

0
du u exp

(
−3

2
η̄2

pb u2

)

×
[

2 Re ψ

(
1 + i

u

)
+ ln u2

]
. (B10)

If we introduce the Bohr radius a0 = 4πh̄2/e2me and use
the average squared thermal velocity definition (B7), we can
write

η̄2
pb = 1

3

(
epeb

e2

)2
mb

me

1

Tb

e2

4πa0

 1

3

(
epeb

e2

)2
mb

me

27eV

Tb

.

(B11)

Thus, for the charge and mass of a typical projectile particle
such as an α particle and for a typical hot plasma, we see that
for the electrons in the plasma η̄2

pe � 1, while for the ions in
the plasma η̄2

pi 
 1 unless the ion temperature is somewhat
larger than 10 keV.

For η̄2
pe � 1, the exponential does not rapidly damp large

u values, and so the relevant piece of the integrand is that with
u 
 1 where

ψ

(
1 + i

u

)

 ψ(1) = −γ, (B12)

leading to

A�Q
e (η̄pe) 
 −η̄2

pe

∫ ∞

0
duu exp

(
−3

2
η̄2

pe u2

)
(−2 γ + ln u2)

= 1

3
ln

(
3

2
η̄2

pe

)
+ γ. (B13)

Adding this result to the classical limit (B2) gives the complete
plasma electron contribution for a low energy projectile as
follows:

E � T η̄2
pe � 1 :

Ae(vp) = e2
p κ2

e

4π

(
βeme

2π

)1/2
vp

3

[
ln

(
8Tem

2
pe

meh̄
2 κ2

D

)
−γ −1

]
.

(B14)

For η̄2
pi 
 1, the exponential rapidly damps large u values,

and so the relevant piece of the integrand is that with u � 1
where [

2 Re ψ

(
1 + i

u

)
+ ln u2

]

 1

6
u2, (B15)

and, thus,

η̄2
pi 
 1 : A

�Q
i (η̄pi) 
 − η̄2

pi

6

∫ ∞

0
du u3 exp

(
−3

2
η̄2

pi u
2

)

= − 1

27
η̄−2

pi . (B16)

Since this is a very small correction to AC
i > 0, it may be

neglected, and we may use the pure classical limit (B2) for the
ion contribution as follows:

E � T , η̄2
pi 
 1 : Ai(vp) = e2

p κ2
i

4π

(
βimi

2π

)1/2

× 2vp

3

[
ln

(
16π

epei βiκD

mpi

mi

)
− 1

2
− 2γ

]
. (B17)
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FIG. 8. (Color online) The ion contribution AI (solid) plotted
with the corresponding low-energy approximate linear form (dashed)
which is given by Eqs. (B17) and (B18). The plasma is equimolar DT
with Te = TI = 10 keV and ne = 1.0 × 1025 cm−3, and the projectile
is an α particle. For these parameters, the plasma coupling is ge =
0.0006. Since the leading-order small-energy behavior is proportional
to vp , the graph of AI against

√
E is linear in this region.

The total contribution of the ions in the plasma in this case is
obviously

E � T , η̄2
pi 
 1 : AI(vp) =

∑
i

Ai(vp). (B18)

In Figs. 8 and 9 we plot the ion and electron A coefficients
for an equimolar DT plasma with an electron density ne =
1.0 × 1025 cm−3 and equal electron and ion temperatures Te =
TI = 10 keV against the square root of the projectile energy√

E. We make this choice because in the small-energy regime
the coefficients are linear in the projectile velocity; therefore,

FIG. 9. (Color online) The electron contribution Ae (solid)
plotted with the corresponding low-energy approximate linear form
(dashed) which is given by Eq. (B14). The plasma is the same as in
the previous figure. Note that the linear approximation holds well into
the DT fusion production energy of 3.54 MeV for the α particles.

FIG. 10. (Color online) The coefficients Ae and AI are plotted
together for three different temperatures for an equimolar DT plasma
with an electron number density ne = 1.0 × 1025 cm−3. The ion
contributions AI peak to the left in the figure. The temperatures are
(i) Te = 10 keV and TI = 10 keV (solid), (ii) Te = 10 keV and
TI = 100 keV (dashed), (iii) Te = 100 keV and TI = 10 keV (dashed-
dotted). The electron contributions Ae for cases (i) and (ii) are almost
equal, whereas for case (iii) Ae is very small.

the graphs exhibit linear behavior until they start to depart
from the low energy limit.10

In Fig. 10 the coefficients Ae and AI are plotted together
for three different temperatures.

2. E � T : Total ionic contribution

For the total ionic contribution, it is convenient to first
work out the regular part of the long-distance, dielectric
contribution because it is the same for both cases of classical
and quantum-mechanical scattering. With a trivial integration
variable change, Eq. (A5) presents this contribution as

A<

I,R(vp) = e2
p

4π

1

v2
p

i

2π

∫ +vp

−vp

dv v
ρI(v)

ρtotal(v)
F (v) ln

[
F (v)

K2

]
,

(B19)

where we now write

ρI(v) =
∑

i

ρi(v) (B20)

so

ρtotal(v) = ρe(v) + ρI(v), (B21)

10Figures 8 and 9, for ne = 1.0 × 1025 cm−3 and Te = TI = 10
keV, show that AI departs from the linear approximation at
about

√
E = 0.04

√
MeV while Ae departs from linearity at about√

E = 0.80
√

MeV. Curves for the same electron density but for
Te = 10 keV, TI = 100 keV and Te = 100 keV, TI = 10 keV have
the same general shape as the curves in Figs. 8 and 9, but the
corresponding regions of validity for the linear approximation change
to

√
E = 0.12

√
MeV,

√
E = 0.04

√
MeV for AI while for Ae

the corresponding numbers are
√

E = √
3.5

√
MeV = 1.87

√
MeV,√

E = 0.16
√

MeV.
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with the weight functions ρ given by Eq. (A7). Assuming
that the charges of the ions do not differ greatly from the
charge of the electron, then κ2

e /κ2
I 
 TI/Te and the integrand

of Eq. (B19) involves a factor that has the behavior

ρI(v)

ρtotal(v)
= 1

1 + ρe(v)/ρI(v)


 1

1 + (
meT 3

I /mIT 3
e

)1/2
exp(mIv2/2TI)

, (B22)

where mI is a typical ion mass. Thus, defining a typical ionic
thermal velocity vT by

mI v
2
T = TI, (B23)

this factor remains unity up to the critical velocity vcrit defined
by

v2
crit = v2

T ln

(
mI T

3
e

me T 3
I

)
, (B24)

after which it falls fairly rapidly to zero. The logarithmic
factor in Eq. (B24) is typically about a factor of 10. So
vcrit is somewhat larger than an ion thermal velocity yet it
is considerably smaller than the electron thermal velocity.

In this region in which the factor ρI(v)/ρtotal(v) of the
integrand is nonvanishing, the function [Eq. (A9) above]

F (v) = −
∫ +∞

−∞
du

ρtotal(u)

v − u + iη
(B25)

has the form

F (v) = F̃ (v) = κ2
e + FI(v), (B26)

where

FI(v) = −
∫ +∞

−∞
du

ρI(u)

v − u + iη
. (B27)

This is so because the velocity v, which must be less than
vcrit, is much less than the electron thermal velocity. Hence,
the electron part of F (v) takes on its low velocity limit, the
electron Debye wave number squared κ2

e . We place the form
(B26) into Eq. (B19) to obtain

A<

I,R(vp) 
 e2
p

4π

1

v2
p

i

2π

∫ +vp

−vp

dv v
ρI(v)

ρtotal(v)
F̃ (v) ln

[
F̃ (v)

κ2
e

]
.

(B28)

Here we have replaced the arbitrary intermediate wave number
K by the electron Debye wave number κe because then

v → ∞ :
F̃ (v)

κ2
e

→ 1 − ω2
I

κ2
e v2

, (B29)

where

ω2
I =

∑
i

ω2
i =

∑
i

e2
i ni

mi

, (B30)

and so ln(F̃ (v)/κ2
e ) vanishes for large v.

In order of magnitude,

ω2
I

κ2
e v2


 Te

mI v2
= Te

TI

v2
T

v2
. (B31)

Hence, since v2
T is much less than v2

crit, unless Te is considerably
larger than TI, the final factor in the integral (B28), ln(F̃ (v)/κ2

e ),
vanishes before ρI(v)/ρtotal(v) departs significantly from unity.
Hence, we simply take ρI(v)/ρtotal(v) = 1 and write

A<

I,R(Ep) 
 e2
p

4π

1

v2
p

i

2π

∫ +vp

−vp

dv v F̃ (v) ln

[
F̃ (v)

κ2
e

]
. (B32)

The discussion above shows that when vp > vcrit, the limits
of the integration may be replaced by ±∞. Recalling the
definition (B24) of the critical velocity vcrit, and assuming
that the projectile mass mp is about the same as the typical ion
mass mI in the plasma, we can now state that

E > T ln

(
mIT

3
e

meT 3
I

)
: A<

I,R(Ep)

= e2
p

4π

1

v2
p

i

2π

∫ +∞

−∞
dv v F̃ (v) ln

[
F̃ (v)

κ2
e

]
. (B33)

We should note the convergence of the integral requires that the
integration limits are to be taken in a rigorously symmetrical
fashion with the integral performed between exactly −vp and
+vp and then vp → ∞ taken. It is now a simple matter to
evaluate this limiting form. Adding a semicircle in the upper
half plane of radius vp gives a closed contour integral with
no interior singularities that accordingly vanishes. Hence, the
value of the original integral is the negative of the integral
over this large semicircle, an integral that is trivially performed
using the limiting forms listed before. Thus,

E > T ln

(
mIT

3
e

meT 3
I

)
: A<

I,R(vp) = − e2
p

4π

ω2
I

2 v2
p

. (B34)

With the long-distance, dielectric ionic contribution evalu-
ated in the projectile high energy limit, we can now compute
the complete function Ai(vp) in this limit. To do so, we
must distinguish two cases for the remaining hard scattering
contribution.

a. E � T, η2
pi � 1

As shown in detail in Sec. 10 of BPS, the classical scattering
contribution dominates when the Coulomb parameter ηpi is
large, with the first quantum-mechanical correction of relative
order

η−2
pi =

(
4πh̄vp

epei

)2

=
(

e2

epei

)2
2E

α2 mpc2
, (B35)

where α 
 1/137 is the fine structure constant. In this classical
limit, the scattering contribution is given by Eq. (A3). For the
previous evaluation of the dielectric contribution to hold, we
must choose K = κe so this formula reads

AC
i,S(vp)= e2

pκ2
i

4π

(
βimi

2π

)1/2

vp

∫ 1

0
duu1/2 exp

(
− 1

2
βimiv

2
pu

)

×
[
− ln

(
βi

epei

4π
κe

mi

mpi

u

1 − u

)
− 2γ + 2

]
.

(B36)

Since miv
2
p/2 ∼ E 
 Ti , only small u values are significant.

Hence, we can approximate 1 − u = 1 within the logarithm
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FIG. 11. (Color online) AI (solid curve) vs. its large-energy
(dashed curve) asymptotic form. The plasma is equimolar DT with
ne = 1.0 × 1025 cm−3 and Te = TI = 10 keV.

and extend the integration limit to u → ∞. With the variable
change (βimiv

2
p/2) u = s2, we obtain the high energy limit

AC
i,S(vp) = e2

p

4π

ω2
i

v2
p

4√
π

∫ ∞

0
ds s2 exp(−s2)

×
[

ln

(
4π

epeiκe

mpiv
2
p

2

)
− ln s2 − 2γ + 2

]
,

(B37)

where we have used κ2
i /βimi = ω2

i . Here we have the integrals

4√
π

∫ ∞

0
ds s2 exp(−s2) = 1 (B38)

and

4√
π

∫ ∞

0
ds s2 exp(−s2) ln s2

= 2√
π

�

(
3

2

)
ψ

(
3

2

)
= ψ

(
3

2

)
= 2 − γ − ln 4. (B39)

Whence,

AC
i,S(vp) = e2

p

4π

ω2
i

v2
p

[
ln

(
16π

epeiκe

mpiv
2
p

2

)
− γ

]
, (B40)

which, summed over all the ions in the plasma and combined
with the previous long-distance result, (B34) yields the total
contribution from the ions in the plasma:

E 
 T , η2
pi 
 1 :

AI(vp) =
∑

i

Ai(vp) =
∑

i

[
AC

i,S(vp) + A<

i,R(vp)
]

= e2
p

4π

1

v2
p

∑
i

ω2
i

[
ln

(
16π

epeiκe

mpiv
2
p

2

)
− γ − 1

2

]
.

(B41)

See Fig. 11 for a comparison of AI with its asymptotic form at
large energy.

b. E � T, η2
pi � 1

In this case, we have the limit

vp → ∞ : AC
i,S(vp) + A�Q

i (vp)

= e2
p

4π

1

v2
p

∑
i

ω2
i ln

(
2mpivp

h̄κe

)
, (B42)

which is contained in Eq. (10.42) of BPS. Adding this result
to Eq. (B34) now provides the complete vp → ∞ limit for the
ion part of the AI coefficient:

E 
 T , η2
pi � 1 : AI(vp)

= e2
p

4π

1

v2
p

∑
i

ω2
i

[
ln

(
2mpivp

h̄κe

)
− 1

2

]
. (B43)

3. T � E � m pT/me: Electronic contribution

There is an intermediate range of projectile energies in
which the projectile energy is much larger that the temperature,
E 
 T , but yet not so large that we have E � (mp/me) T ∼
104 T . We examine this range here.

We again need to work out its long-distance, dielectric
contribution, and its short-distance scattering contribution.

a. Dielectric part

In the energy range specified, the typical velocity in the
dielectric function is small in comparison with the electron
average thermal velocity and large in comparison with an ion
average thermal velocity. Hence, in this range,

F (v) 
 κ2
e − ω2

I

v2
+ πi ρtotal(v). (B44)

Here, in the dominant integration range,

ω2
I

κ2
e v2


 T

mI v2
� 1, (B45)

and so we may simply write

F (v) 
 κ2
e + πi ρtotal(v). (B46)

Moreover, in the dominant integration range, the imaginary
part π ρtotal(v) is small in comparison to κ2

e . Writing Eq. (A5)
as

A<

e,R(vp) 
 e2
p

4π

i

2π

∫ 1

0
d cos θ cos θ

ρe(vp cos θ )

ρtotal(vp cos θ )

× 1

2

{
[F (vp cos θ ) − F (−vp cos θ )]

× ln

[
F (vp cos θ )F (−vp cos θ )

K4

]
+ [F (vp cos θ ) + F (−vp cos θ )]

× ln

[
F (vp cos θ )

F (−vp cos θ )

]}
, (B47)
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and using Eq. (B46) with the imaginary part treated to first
order,

A<

e,R(vp)


 − e2
p

4π

∫ 1

0
d cos θ cos θ ρe(vp cos θ )

[
ln

(
κ2

e

K2

)
+ 1

]
.

(B48)

In our energy range Eq. (A7) becomes

ρe(v) = κ2
e

√
βeme

2π
v, (B49)

and so

A<

e,R(vp) 
 − e2
p

4π
κ2

e

√
βeme

2π
vp

1

3

[
ln

(
κ2

e

K2

)
+ 1

]
. (B50)

b. Scattering part

The electrons in the hot plasmas that we consider have
such large velocities that their scattering off the projectiles is
quantum mechanical. This is described by Eq. (10.41) of BPS
which gives

ηpe → 0 : AC
e,S(vp) + A�Q

e (vp)

= e2
p κ2

e

4π

(
βeme

2π

)1/2

vp

∫ 1

0
du u1/2 exp

(
−1

2
βemev

2
p u

)

×1

2

[
− ln

(
βeh̄

2K2

2mpe

me

mpe

u

1 − u

)
− γ + 2

]
.

(B51)

With E = 1
2 mpv2

p � mpT/me, the damping constant in the
exponent βemev

2
p/2 is now small, not large as it was before.

Hence, the exponential may simply be replaced by unity, and
we encounter the integrals∫ 1

0
du u1/2 = 2

3
, (B52)

and ∫ 1

0
du u1/2 ln

(
u

1 − u

)
= 2

3
(2 − ln 4) . (B53)

Hence,

AC
e,S(vp) + A�Q

e (vp)

= e2
p κ2

e

4π

(
βeme

2π

)1/2

vp

1

3

[
ln

(
8Tem

2
pe

meh̄
2K2

)
− γ

]
. (B54)

c. The sum

The sum of the dielectric part (B50) and the scattering part
(B54) gives

E 
 T , meE/mp � T : or T � E � mp

me

T :

Ae(vp) 
 e2
p κ2

e

4π

(
βeme

2π

)1/2
vp

3

[
ln

(
8Tem

2
pe

meh̄
2κ2

e

)
− γ − 1

]
.

(B55)

FIG. 12. (Color online) The coefficient Ae (solid curve) com-
pared with the high-energy (dashed curve) approximation (B55). The
plasma is equimolar DT with ne = 1.0 × 1025 cm−3 and Te = TI =
10 keV.

Figure 12 compares this high-energy approximation with the
exact result. Figure 13 shows that the high- and low-energy
approximations are quite similar.

4. E � m pT/me: Electronic contribution

The high velocity limit in this case has already been
calculated by BPS in Eq. (10.43), which we simply quote
here,

vp → ∞ : Ae(vp) = e2
p

4π

ω2
e

v2
p

ln

(
2mpev

2
p

h̄ωe

)
. (B56)

This limit is mostly academic, since the system enters the
relativistic regime at these high velocities.

FIG. 13. (Color online) An α-particle projectile moving in an
equimolar DT plasma with Te = TI = 10 keV and ne = 1.0 × 1025

cm−3. The low-energy approximation (B14) (short-dashed curve)
lies above the exact result (solid curve) while the high-energy
approximation (B55) (long-dashed curve) lies below the exact result
(solid curve). Because κ2

D = 2κ2
e for our equimolar DT plasma, the

two approximate forms (B14) and (B55) differ only by a factor of 2
inside the logarithm, and this leads to only slightly different slopes.
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5. Energy crossover

As we have made explicit, the energy loss to the ions in
the plasma dominates at low projectile energies while the loss
is to the electrons at high projectile energies. Here we shall
estimate the crossover point, the projectile energy at which the
two types of loss mechanisms are comparable. We shall find
that this occurs at a projectile energy that is much greater than
a typical plasma temperature T , and so we will assume the
limit E 
 T in estimating the crossover point.

For the ions, the E 
 T result (B41) reads

AI(vp) = e2
p

4π

∑
i

ω2
i

v2
p

[
ln

(
16π

epeiκe

mpiv
2
p

2

)
− γ − 1

2

]
.

(B57)

This holds provided that

η−2
pi =

(
4πh̄vp

epei

)2

=
(

e2

epei

)2
2E

α2 mpc2
� 1. (B58)

To put the total ion contribution in a convenient form, replace
the ion charge ei inside the logarithm of Eq. (B57) by a typical
value eI , approximate mpi ≈ mp/2, and define∑

i

ω2
i = ω2

I , (B59)

where we replace the ion charge ei inside the logarithm by
a typical value eI and write mpi 
 mp/2 to approximate the
total ion contribution by

AI(vp) 
 e2
p

4π

ω2
I

v2
p

[
ln

(
8π

epeIκe

E

)
− γ − 1

2

]
. (B60)

Note that the only temperature dependence in this result is
within the electron Debye wave number inside the logarithm.
Hence, the result only weakly depends on the plasma temper-
atures.

A reasonably good approximation for the crossover pro-
jectile speed vp = vC should be obtained by equating the ion
result (B60) to the electronic result (B55) which we repeat
here using κ2

e = βeme ω2
e :

Ae(vp) = e2
p

4π

ω2
e

3

(
2

π

)1/2 (
me

Te

)3/2

× vp

[
ln

(√
8Teme

h̄κe

)
− 1

2

(
γ + 1

)]
. (B61)

In equating the ion and electron approximations (B60) and
(B61) we use the crossover energy defined by

EC = 1
2mpv2

C (B62)

to obtain

E3/2
C

[
ln

(√
8Teme

h̄ κe

)
− 1

2
(γ + 1)

]

= T 3/2
e

(
9π

16

)3/2(
mp

me

)3/2
ω2

I

ω2
e

[
ln

(
8π EC

epeIκe

)
− γ − 1

2

]
.

(B63)

It is important to note that this crossover point only depends
on the electron temperature Te. The ion temperature TI is of no
relevance here.

Note that the results that we have obtained provide an
approximate form for the total A coefficient as a function
of the energy E = mpv2

p/2, A(E) = Ae(E) + AI(E), namely

A(E) = λE1/2

[
1 +

(
EC

E

)3/2]
, (B64)

where

λ = e2
p

4π

ω2
e

3

(
1

π

)1/2 (
me

TC

)3/2 2

m
1/2
p

×
[

ln

(√
8Teme

h̄κe

)
− 1

2
(γ + 1)

]
. (B65)

To return to assess the validity of our approximation for the
crossover energy, we examine equimolar DT plasmas traversed
by α particles of mass mp = mα , charge ep = 2e, and initial
energy E0 = 3.54 MeV produced by DT fusion. In numerical
terms for this case with the electron temperature Te and the
crossover energy EC measured in keV, and the electron number
density ne measured in cm−3, the crossover relation (B63)
appears as

E3/2
C

[
ln

(
5.796 × 1027 T 2

e

ne

)
− 1.577

]

= 188.1 T 3/2
e

[
ln

(
2.66 × 1028 Te

ne

E2
C

)
− 2.154

]
.

(B66)

FIG. 14. (Color online) Solutions (dots) of the crossover condi-
tion (B66) as a function of the electron temperature for an electron
number density ne = 1.0 × 1025 cm−3. The straight line is a fit to
these points, with EC = 51 Te. Similar results obtain for the other
densities, with the results presented in Eq. (B67).
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FIG. 15. (Color online) This figure displays the lower temperature
region of the previous Fig. 14. Here the linear relation can deviate
from the points which are solutions of the crossover relation (B66)
with an error on the order of 10%.

We find that the crossover energies for different electron
densities ne are nearly linear functions of Te given by

EC 
 Te

⎧⎨
⎩

48 , ne = 1.0 × 1024 cm−3,

51 , ne = 1.0 × 1025 cm−3,

53 , ne = 1.0 × 1026 cm−3.

(B67)

The linear fit for ne = 1.0 × 1025 cm−3 is displayed in Fig. 14.
Figure 15 shows that for energies below 10 keV or so, these
linear relations break down by about 10%.

APPENDIX C: THE G FUNCTION SIMPLIFIED

Here we turn to the definition (4.29) of G(TI,Te; E0) in order
to reduce it to a more manageable form. For convenience, we
repeat this definition here11 as follows:

G(TI,Te; E0) =
∫ ∞

0
dE F (E) e−S(E)

∫ E

0

dE′

E′
e+S(E′)

〈TA(E′)〉
×

[
θ (E0 − E′) −

∫ ∞

E′
dE′′√E′′N e−S(E′′)

]
,

(C1)

11We recall that G gives a contribution

�EI

E0
=

(
Te − TI

E0

)
G(TI,Te; E0).

Since the prefactor multiplying G involves a temperature difference
that is at most 300 keV and the energy E0 is typically 3.5 MeV, this
prefactor is less than about 9%. Hence, to within an accuracy of a few
tenths of a percentage, we need only compute the pure number G to
an absolute precision of 0.1.

where

N −1 =
∫ ∞

0
dE′ √E′ e−S(E′), (C2)

and

F (E) = E
AI(E)Ae(E)

〈TA(E)〉 . (C3)

First, we note that if E′ < E0, the θ function in the square
brackets is unity. Hence, we can make use of the sum rule (4.7)
to write

G(TI,Te; E0)

= G1(TI,Te; E0) + G2(TI,Te; E0) + G3(TI,Te; E0), (C4)

where

G1(TI,Te; E0) =
∫ E0

0
dE F (E) e−S(E)

∫ E

0

dE′

E′
e+S(E′)

〈TA(E′)〉

×
∫ E′

0
dE′′√E′′ N e−S(E′′), (C5)

G2(TI,Te; E0) =
∫ ∞

E0

dE F (E) e−S(E)
∫ E0

0

dE′

E′
e+S(E′)

〈TA(E′)〉

×
∫ E′

0
dE′′√E′′ N e−S(E′′), (C6)

and

G3(TI,Te; E0) = −
∫ ∞

E0

dE F (E) e−S(E)
∫ E

E0

dE′

E′
e+S(E′)

〈TA(E′)〉
×

∫ ∞

E′
dE′′√E′′ N e−S(E′′). (C7)

First, we show that G3 may be neglected. For the very last
pair of integrals in G3, since the energies E′ and E′′ are larger
than E0 
 Te , TI, the electron contribution to theAb functions
dominate, and so

S(E′′) − S(E′) = 1

Te

(E′′ − E′). (C8)

This is a very large number unless E′′ is near E′. Hence, with
corrections that will be of the very small order Te/E0, we have∫ E

E0

dE′

E′
e+S(E′)

〈TA(E′)〉
∫ ∞

E′
dE′′√E′′ N e−S(E′′)



∫ E

E0

dE′

E′
1

TeAe(E′)

√
E′ N

∫ ∞

E′
dE′′

× exp

[
− 1

Te

(
E′′ − E′)] = N

∫ E

E0

dE′
√

E
′

1

Ae(E′)
,

(C9)

and so, again, since the electrons dominate the Ab functions
in the high-energy regions that appear here,

G3(TI,Te; E0)


 −
∫ ∞

E0

dE
E

Te

AI(E) e−S(E) N
∫ E

E0

dE′
√

E
′

1

Ae(E′)
.

(C10)
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There is really no need to go any further in the evaluation of G3(TI,Te; E0) since it has the exponentially small factor exp[−S(E)],
with E � E0. In this region, as we have noted, the electrons dominate and so exp[−S(E)] 
 exp(−E/Te). Even for an electron
temperature as high as 35 keV and for a DT fusion α particle with E0 = 3.54 MeV, this factor is exp(−100) 
 4 × 10−44.

For the evaluation of G2, it is convenient to define

H (E′) =
∫ E′

0
dE′′√E′′ N e−S(E′′). (C11)

To isolate the leading pieces, we shall write

e±S(E) = ±〈TA(E)〉
A(E)

d

dE
e±S(E) (C12)

and integrate by parts. This will provide an extra explicit factor of a plasma temperature T in the numerator, thereby yielding a small
quantity.

The final double integral in the triple integral (C6) defining G2 now appears as

∫ E0

0

dE′

E′
e+S(E′)

〈TA(E′)〉
∫ E′

0
dE′′√E′′ N e−S(E′′) =

∫ E0

0
dE′ H (E′)

E′ A(E′)
d

dE′ e+S(E′)


 H (E0)

E0 A(E0)
e+S(E0) −

∫ E0

0
dE′ e+S(E′) d

dE′

[
H (E′)

E′ A(E′)

]


 H (E0)

E0 A(E0)
e+S(E0) − 〈TA(E0)〉

A(E0)
e+S(E0) d

dE

[
H (E)

E A(E)

]∣∣∣∣
E0

+ · · · , (C13)

where the ellipsis represents the series resulting by further partial integrations. As we shall see, the second term in the last line
of Eq. (C13) is already negligible and so are these omitted terms. The approximate equalities in Eq. (C13) neglect lower limit
terms since they result in exponentially small quantities from the remaining integration over E in Eq. (C6) because of the factor
exp[−S(E)] with E > E0. Here, to very good accuracy,

H (E0) = 1, (C14)

since the integral defining H (E) has long since converged to its limiting value at E = E0. Hence,

∫ E0

0

dE′

E′
e+S(E′)

〈TA(E′)〉
∫ E′

0
dE′′√E′′ N e−S(E′′) 
 1

E0 A(E0)
e+S(E0)

{
1 − 〈TA(E)〉 E

d

dE

[
1

E A(E)

]∣∣∣∣
E0

}
. (C15)

Here, since at large energies the rate of energy variation is of order 1/E,

〈TA(E)〉 E
d

dE

[
1

E A(E)

]∣∣∣∣
E0

∼ 〈TA(E0)〉
E0 A(E0)

∼ T

E0
, (C16)

in which T is a typical plasma temperature. The ratio T/E0 is at most a few percentages for the plasma param-
eters that we consider, and, thus, it is a good approximation to replace the curly braces in Eq. (C15) by unity.

Recalling the definition (C3) of F (E) and then using the relation (C12), we obtain

G2(TI,Te; E0) 
 1

E0 A(E0)

∫ ∞

E0

dE

{
E

AI(E)Ae(E)

〈TA(E)〉
}

exp{−[S(E) − S(E0)]}

= − 1

E0 A(E0)

∫ ∞

E0

dE E
AI(E)Ae(E)

A(E)

d

dE
exp{−[S(E) − S(E0)]}

= AI(E0)Ae(E0)

A2(E0)
+ 1

E0 A(E0)

∫ ∞

E0

dE exp{−[S(E) − S(E0)]} d

dE

[
E

AI(E)Ae(E)

A(E)

]
. (C17)

As before, we have the estimate

d

dE

[
E

AI(E)Ae(E)

A(E)

]
∼ AI(E)Ae(E)

A(E)
= 〈TA(E)〉

E A(E)

[
E

AI(E)Ae(E)

〈TA(E)〉
]

∼ T

E

[
E

AI(E)Ae(E)

〈TA(E)〉
]

. (C18)

Here again T represents a typical plasma temperature, and since the integration region starts at E = E0, we have T/E � T/E0.
Since the factor in the square brackets in the last line in Eq. (C18) is just the factor in the curly braces in the first line in Eq. (C17),
we see that the last line in Eq. (C17) is of order T/E0 times the first line and, thus, gives a correction on the order of a few
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percentages. We have found that, to within corrections of a few percentages,

G2(TI,Te; E0) 
 AI(E0)Ae(E0)

A2(E0)
. (C19)

The accuracy of the analytical approximation (C19) for G2 has been confirmed to this precision by direct numerical evaluation
of its definition (C6).

In summary, Eq. (C4) expresses the G function in three parts. The first part G1 involves a triple integral that must be evaluated
by numerical computation. This evaluation is simplified because, with the partition that we have made, the regions of integration
that appear in G1 are restricted to the finite interval 0 < E < E0. For the second part G2, the approximation (C19) is sufficiently
accurate for our purposes. The remainder G3 is very small and we may simply set

G3(TI,Te; E0) = 0. (C20)
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