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We investigate stimulated scattering instabilities of coherent circularly polarized electromagnetic (CPEM)
waves carrying orbital angular momentum (OAM) in dense quantum plasmas with degenerate electrons and
nondegenerate ions. For this purpose, we employ the coupled equations for the CPEM wave vector potential
and the driven (by the ponderomotive force of the CPEM waves) equations for the electron and ion plasma
oscillations. The electrons are significantly affected by the quantum forces (viz., the quantum statistical pressure,
the quantum Bohm potential, as well as the electron exchange and electron correlations due to electron spin),
which are included in the framework of the quantum hydrodynamical description of the electrons. Furthermore,
our investigation of the stimulated Brillouin instability of coherent CPEM waves uses the generalized ion
momentum equation that includes strong ion coupling effects. The nonlinear equations for the coupled CPEM
and quantum plasma waves are then analyzed to obtain nonlinear dispersion relations which exhibit stimulated
Raman, stimulated Brillouin, and modulational instabilities of CPEM waves carrying OAM. The present results
are useful for understanding the origin of scattered light off low-frequency density fluctuations in high-energy
density plasmas where quantum effects are eminent.

DOI: 10.1103/PhysRevE.86.016403 PACS number(s): 52.35.Fp, 52.35.Mw

I. INTRODUCTION

Recently, there has been growing interest in investigat-
ing collective nonlinear processes [1–4] in dense quantum
plasmas, which are ubiquitous in a variety of physical
environments (e.g., the cores of Jupiter and white dwarf stars
[5–9], neutron and quark stars [7], warm dense matter [10]), in
compressed plasmas produced by intense laser beams [11], in
pulsed thermonuclear fusion devices, as well as in processing
devices for modern high-technology (e.g., semiconductors
[12], in thin films and nanometallic structures [13], etc.). In
fact, due to superdensity plasmas in the crust of dense neutron
stars and in the cores of white dwarf stars, one [14] encounters
the formation of ionic crystals (fully ionized carbon, oxygen,
iron, etc.) embedded into a sea of degenerate Fermi gas of
electrons (here the electron Fermi temperature exceeds the
plasma electron and ion temperatures). There have also been
suggestions [15,16] that strongly coupled quantum plasmas
can be produced in laboratory devices by using laser cooling
methods, so that the plasma electron temperature could be
comparable with the electron Fermi temperature so that the
quantum effects become significant at high plasma number
densities. In quantum plasmas, degenerate electrons obey the
Fermi-Dirac statistics.

Theoretical investigations [17–21] of nonlinear phenomena
associated with both electrostatic and electromagnetic waves
in quantum plasma fluids have been carried out previously.
These nonlinear studies were based on the generalized
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quantum hydrodynamical (GQHD) equations [22–25] for
nonrelativistic degenerate electron fluids supplemented by
Poisson’s and Maxwell’s equations. The generalized elec-
tron momentum equation in the GQHD model includes the
quantum statistical pressure [26,27] and quantum forces due
to electron tunneling through the quantum Bohm potential
[22,24,25,28,29], spin magnetization of Bohr electrons [30],
as well as the electron exchange and correlation effects [31,32]
due to the electron spin [33]. Quantum mechanical effects
are relevant for solid density plasmas, where the interelectron
distance is of the order of the atomic dimensions. Here overlap-
ping of electron wave functions occurs due to the Heisenberg
uncertainty and Pauli’s exclusion principles [27]. Accordingly,
one encounters novel nonlinear high-frequency (hf) dispersive
wave phenomena [2] at nanoscales. Furthermore, in quantum
plasmas, the electron and ion coupling parameters are �e =
e2/aekBTF and �i = Z2

i e
2/aikBTi , respectively, where e is

the magnitude of the electron charge, ae ∼ ai = (3/4πn0)1/3

the Wigner-Seitz radius, n0 the unperturbed electron number
density, kB the Boltzmann constant, Zi the ion charge state, Ti

the ion temperature, TF = (h̄2/2m0kB)(3π2n0)2/3 the electron
Fermi temperature in the nonrelativistic and zero-temperature
limits, and m0 the electron rest mass. It turns out that
�i/�e = Z2

i TF /Ti � 1, since in quantum plasmas we usually
have TF > Ti . Recently, Glenzer et al. [34] have reported
observations of enhanced electron plasma waves (plasmons) in
solid density plasmas. Their measurements involved collective
x-ray scattering techniques that are capable of measuring the
high-frequency plasma wave spectra, revealing a signature
of quantum effects associated with the quantum statistical
electron pressure and the quantum recoil of electrons, at
electron number densities ∼(1.5–4.5) × 1023 cm−3 and at
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electron temperatures below 25 eV (typically the electron
temperature Te was 12 eV in the experiments). The plasmon
spectrum provides a sensitive measure of the electron number
densities.

Large amplitude high-frequency electromagnetic (EM)
waves are used for heating inertially confined fusion plasmas
[35], as well as for diagnostic purposes [34] in solid density
plasmas that are created by intense laser and charged particle
beams. The hf EM pulses also appear as localized bursts
of x rays and γ rays from compact astrophysical objects.
Furthermore, the generation of coherent hf EM waves is
of great importance in the context of free-electron lasers
involving EM wigglers [36,37]. Therefore, studies of nonlinear
phenomena (e.g., parametric instabilities [17] and hf EM
wave localizations [19]) associated with large amplitude
hf EM waves in dense quantum plasmas are of practical
interest.

In this paper, we present an investigation of stimulated
scattering instabilities of coherent circularly polarized electro-
magnetic (CPEM) waves carrying orbital angular momentum
(OAM) in an unmagnetized dense quantum plasma composed
of nonrelativistic degenerate electron fluids and mildly coupled
nondegenerate ion fluids. It should be noted that a recent
work [38] has proposed a scheme to generate intense coherent
light that carries OAM at the fundamental wavelength of an
x-ray free-electron laser (FEL). Our results reveal that quantum
forces acting on degenerate electrons in quantum plasmas
greatly modify the frequency spectra of both the electron and
ion plasma oscillations that are driven at nonthermal levels
by the CPEM wave pressure. Accordingly, the growth rates
of stimulated Raman, stimulated Brillouin, and modulational
instabilities are significantly affected when a large amplitude
CPEM pump wave carrying OAM is present in an unmagne-
tized quantum plasma.

II. FORMULATION

The nonlinear interactions between the CPEM wave and
the background dense quantum plasma are governed by the
EM wave equation [17,39]

(
∂2

∂t2
− c2∇2 + ω2

p

)
A + ω2

pNA = 0, (1)

which is derived from the Maxwell equation and the elec-
tron equation of motion with the electromagnetic fields
E = −c−1∂A/∂t and B = ∇ × A, with the Coulomb gauge
∇ · A = 0. Here A is the vector potential, c the speed of
light in vacuum, ωp = (4πn0e

2/m0)1/2 the electron plasma
frequency, N = ne1/n0 � 1, and ne1 the electron number
density perturbation associated with low-frequency electro-
static plasma oscillations (EPOs) that are reinforced by the
ponderomotive force of the CPEM waves. In the absence of
nonlinear couplings between the latter and the EPOs, the
paraxial EM wave solution A(r,z) exp(−iωt + ikz), where
ω = (k2c2 + ω2

p)1/2 and k are the frequency and the wave

number, respectively, of Eq. (1) is [40,41]

A(r,z) = AFp,l(r,z) exp(ilϕ). (2)

Here we have denoted

Fp,l(r,z) = 1

2
√

π

[
(l + p)!

p!

]1/2

X|l|L|l|
p (X) exp(−X/2), (3)

where X = r2/w2(z), w(z) is the beam waist, and the
associated Laguerre polynomials L

|l|
p (X) are defined by the

Rodriguez formula L
|l|
p (X) = (Xlp!)−1 exp(X)dp[X(l+p)

exp(−X)]/dXp, p and l are the radial and angular mode
numbers of the photon orbital angular momentum states,
respectively, ϕ is the azimuthal angle, and r = (x2 + y2)1/2 is
the radial of the cylindrical coordinates (r,ϕ,z), so that ∇2 =
∇2

⊥ + ∂2
z , where ∇2

⊥ = (1/r)(∂/∂r)(r∂/∂r) + (1/r2)∂2/∂ϕ2.
The Laguerre-Gauss (LG) solutions (2) describe CPEM waves
with a finite OAM.

The dynamics of low-frequency (in comparison with the
CPEM wave frequency ω) plasma oscillations involving
degenerate electron and nondegenerate ion fluids is governed
by a set of equations composed of the electron continuity
equation

∂ne

∂t
+ ∇ · (neue) = 0, (4)

the electron momentum equation [13,32]

m0ne

due

dt
− ene∇(φ − φp) + ∇Pe − ne∇Vxc − ne∇VB = 0,

(5)

and Poisson’s equation

∇2φ = 4πρ, (6)

together with the ion continuity equation and the generalized
viscoelastic ion momentum equation [2]. Here ne (ni) is
the electron number density, ue the electron fluid velocity,
d/dt = ∂/∂t + ue · ∇, ρ = e(ne − ni), φ the electric poten-
tial, and φp = e|A|2/m0c

2 the ponderomotive potential of
the CPEM waves. The light ponderomotive force [35,39]
−e∇φp comes from the averaging (over the light wave period)
of the advection and nonlinear Lorentz force involving the
electron quiver velocity and the laser wave magnetic field. We
have denoted the quantum statistical electron pressure [27]
Pe = (n0m0V

2
∗ /5)(ne/n0)5/3, where V∗ = h̄(3π2)1/3/m0r0 is

the electron Fermi speed and r0 = n
−1/3
0 represents the Wigner-

Seitz radius, and the sum of the electron exchange and elec-
tron correlation potential is [31,32] Vxc = −0.985e2n

1/3
e [1 +

(0.034/aBn
1/3
e )ln(1 + 18.37aBn

1/3
e )], where aB = h̄2/m0e

2

represents the Bohr radius. The quantum Bohm potential is
[2,22] VB = (h̄2/2m0)(1/

√
ne)∇2√ne. We have thus retained

the desired quantum forces that act on degenerate electrons
in a nonrelativistic quantum plasma. Equation (5) is valid
[2–4,23] if the plasmonic energy density h̄ωpe is smaller than
or comparable to the electron Fermi energy kBTF , and the
electron-ion collision relaxation time is larger than the electron
plasma period.
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The ion number density perturbation ni1 is obtained from
the ion continuity equation

∂ni

∂t
+ ∇ · (niui) = 0, (7)

where the ion fluid velocity ui is determined from the
generalized viscoelastic ion momentum equation [2]

(
1 + τm

D

Dt

)[
mini

Dui

Dt
+ ∇Pi + Zieni∇φ

]

− η∇ · ∇ui −
(

ξ + η

3

)
∇(∇ · ui) = 0, (8)

where D/Dt = ∂/∂t + ui · ∇, τm is the viscoelastic re-
laxation time for ion correlations, Pi = μikBTini the ion
thermal pressure involving strong ion coupling effects, mi

the ion mass, μi[= (1/kBTi)(∂Pi/∂ni)kBTi
] ≡ 1 + U (�i)/3 +

(�i/9)∂U (�i)/∂�i the isothermal compressibility factor for
nondegenerate ion fluids [42], and the function U (�i) a
measure of the excess internal energy of the system, which
is related to the correlation energy Ec by U (�i) = Ec/nikBTi

(≡�i(0.9 + 1.5r2
i /a2

i ), where ri is the ion core radius which
depends on the degree of ion stripping [43]). For a one-
component plasma model, one usually adopts [44,45] U (γi) ≈
−0.9�i for �i � 1. Furthermore, the coefficients of the
shear and bulk ion fluid viscosities are denoted by η and
ξ , respectively. Thus, Eq. (8) is similar to that used by
Frenkel [46] and Ichimaru and co-workers [44,45] in the
context of ordinary fluids and one-component strongly coupled
plasmas, respectively. Kaw and Sen [47] adopted a generalized
viscoelastic dust momentum equation for studying the prop-
erties of dust acoustic waves [48] in multicomponent dusty
plasmas with highly correlated coupled charged dust grains.
Furthermore, we note that the low-frequency ponderomotive
force (i.e., the gradient of the ion ponderomotive potential)
of the high-frequency CPEM waves acting on the ion fluid is
smaller by a factor m0/mi as compared to −∇φp, and therefore
it has been neglected in Eq. (8).

Let us now derive the governing equations for the electron
and ion plasma oscillations in the presence of the pondero-
motive force of the CPEM wave in a quantum plasma. First,
we consider the driven electron plasma oscillations on the time
scale of the electron plasma period, so that the ions do not have
time to respond and the ion density perturbation is zero. Letting
ne = n0 + ne1, where ne1 � n0, we linearize Eqs. (4)–(6) and
combine the resultant equations to obtain the electron plasma
wave equation

(
∂2

∂t2
+ ω2

p − U 2
∗ ∇2 + h̄2

4m2
0

∇4

)
N = e2

2m2
0c

2
∇2|A|2, (9)

where we have denoted U∗ = (V 2
∗ /3 + C2

xc)1/2, with Cxc =
(0.328e2/m0r0)1/2[1 + 0.62/(1 + 18.36aBn

1/3
0 )]1/2.

Second, we consider driven ion oscillations by supposing
that |∂2N/∂t2| � |U 2

∗ ∇2N − (h̄2/4m0)∇4N |. Here, one can
neglect the right-hand side in Eq. (5), and use the resultant
equation to eliminate the electric field −∇φ from Eq. (8)
to obtain, after linearization of the resultant equation under
the quasineutral approximation ne1 = ni1, the driven ion

oscillation equation(
1 + τm

∂

∂t

)(
∂2

∂t2
− C2

s ∇2 + h̄2

4m0mi

∇4

)
N

− η

min0
∇ · ∇ ∂N

∂t
−

(
ξ + η

3

)
min0

∇2 ∂N

∂t

=
(

1 + τm

∂

∂t

)
Z2

i e
2

2m0mic2
∇2|A|2, (10)

where we have used Eq. (7) to eliminate ∇ · ui and introduced
C2

s = (V 2
T i + U 2

∗ )1/2, with VT i = (μikBTi/mi)1/2.
Equations (1), (9), and (10) are the desired equations for

studying the generation of wakefields [49] and nonlinear
effects (viz., parametric instabilities [35] and localization of
light pulses [39]) associated with LG CPEM beams in quantum
plasmas at nanoscales.

III. NONLINEAR DISPERSION RELATIONS AND
THEIR ANALYSES

In the following, we present an investigation of stimulated
Raman, stimulated Brillouin, and modulational instabilities
[50] of LG CPEM waves. Accordingly, we decompose the
vector potential as

A = A0+ exp(−iω0t + ik0 · r) + A0− exp(iω0t − ik0 · r)

+
∑
+,−

A± exp(−iω±t + ik± · r), (11)

where the subscripts 0 and ± denote the CPEM pump and
CPEM sidebands, respectively, and ω± =  ± ω0 and k± =
K ± k0 are the frequency and wave vectors of the CPEM
sidebands that are created by the beating of the pump (ω0,k0)
and electrostatic oscillations (,K).

Inserting (11) into (1), (9), and (10), and supposing that N

is proportional to exp(−it + iK · r), we Fourier decompose
the resultant equations to obtain the nonlinear dispersion
relations

SR = ω2
pe2K2

2m2
0c

2

∑
+,−

|A0Fp,l|2
D±

, (12)

and

SB = ω2
pZ2

i e
2K2

2m0mic2

∑
+,−

|A0Fp,l|2
D±

. (13)

Here we have denoted SR = 2 − ω2
p − K2U 2

∗ − h̄2K4/4m2
0

and SB = 2 − K2C2
s − h̄2K4/4m0mi + i(ξ + 4η/3)K2/

min0(1 − iτm), and D± = ω2
± − k2

±c2 − ω2
p ≈ ±2ω0( −

K · Vg ∓ δ), where Vg = c2k0/ω0 is the group velocity of
the CPEM pump, ω0 = (ω2

p + k2
0c

2)1/2 the pump frequency,
and δ = K2c2/2ω0 the small frequency shift arising from
the nonlinear interaction between the CPEM pump and the
electrostatic plasma oscillations in a quantum plasma. In the
absence of the pump, we have from (12) and (13) SR = 0 and
SB = 0, which give the frequencies of the electron and ion
plasma oscillations in quantum plasmas. We have

(K) =
(

ω2
p + K2U 2

∗ + h̄2K4

4m2
0

)1/2

≡ L (14)
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for the electron plasma oscillations, and

2 + i
v

(1 − iτm)
− K2C2

s − h̄2K4

4m0mi

= 0 (15)

for the ion plasma oscillations. Here we have denoted v =
(ξ + 4η/3)K2/min0. In the hydrodynamic limit, viz., τm �
1, we have viscous damping of the quantum ion mode. The
real and imaginary parts of the frequencies ( = r + ii)
are, respectively,

r (K) =
[
K2C2

s + h̄2K4

4m0mi

− 2
i

]1/2

(16)

and

i = −v

2
. (17)

Furthermore, in the kinetic regime characterized by ωτm � 1,
we have from (15)

(K) =
(

v

τm

+ K2C2
s + h̄2K4

4m0mi

)1/2

≡ I (K). (18)

Generally, τm = τ0YG(K), where τ0 = 1/v[1 − μi +
4U (�i)/15] and YG(K) = exp(−K/KG) for a Gaussian
distribution, and YG(k) = (1 + K2/K2

L)−1 for a Lorentzian
distribution. Here KG and KL are the scale factors [45].

We now present a summary of formulas for the growth
rates of stimulated Raman (SR) and stimulated Brillouin (SB)
scattering instabilities, as well as of modulational instabilities
of a constant amplitude pump that is scattered off a quantum
electron plasma wave, a quantum ion mode, and a spectrum of
nonresonant electron and ion density perturbations. For three-
wave decay interactions, one assumes that D− = 0 and D+ �=
0. Thus, one ignores D+ from Eqs. (12) and (13). Letting  =
K · Vg − δ + iγR,B , and  = L + iγR and  = r (I ) +
iγB in the resultant equations, we obtain the growth rates for
Raman and Brillouin backscattering (|K| = 2k0) instabilities,
respectively,

γR = ωpk0e|A0Fp,l|√
2ω0Rm0c

, (19)

and

γB = ωpk0Zie|A0Fp,l |√
2ω0Bm0mic

, (20)

where R = L(K = 2k0), B = r,I (K = 2k0), and
|2k0 · Vg − δ| ∼ R,B . Since the growth rates of SR and
SB scattering instabilities, given by Eqs. (19) and (20),
respectively, are proportional to R and B , one notices
that quantum and strong ion correlation effects significantly
affect the e-folding time of the instabilities. Furthermore, the
growth rates, which are proportional to Fp,l , are minimum at
the center of the vortex pump wave with OAM.

Next, for the modulational instabilities, we have D± �= 0
and SR,B �= 0. Here, we have to retain both upper and lower
CPEM sidebands on an equal footing in (12) and (13), and

write them as

SR[( − K · Vg)2 − δ2] = δω2
pe2K2|A0Fp(p,l)|2

2ω0m
2
0c

2
(21)

and

SB[( − K · Vg)2 − δ2] = δω2
pZ2

i e
2K2|A0Fp(p,l)|2

2ω0m0mic2
. (22)

Equations (21) and (22) can be analyzed numerically to obtain
the growth rates of the modulational instabilities. However,
some analytical results follow for K · Vg = 0, in which case
we have from (21) and (22), respectively,

2 = 1

2

(
2

L + δ2
)

± 1

2

[(
2

L − δ2
)2 + 2δω2

pe2K2|A0Fp(p,l)|2
ω0m

2
0c

2

]1/2

(23)

and

2 = 1

2

(
2

r,I + δ2
)

± 1

2

[(
2

r,I − δ2
)2 + 2δω2

pZ2
i e

2K2|A0Fp(p,l)|2
ω0m0mic2

]1/2

,

(24)

which exhibit oscillatory modulational instabilities.

IV. SUMMARY AND CONCLUSIONS

In summary, we have considered nonlinear interactions of
large amplitude CPEM waves carrying OAM with electron
and ion plasma modes in an unmagnetized quantum plasma,
accounting for quantum forces that act on a degenerate
electron fluid. On the time scale of the electron plasma
period, the ions do not respond to electrostatic electron plasma
waves that are driven by the CPEM wave pressure. It is
shown that the electron plasma wave spectrum is significantly
modified by the inclusion of the quantum statistical electron
pressure, perturbations of quantum forces associated with the
electron exchange and electron-correlation potentials due to
spin effects, as well as that of the quantum Bohm potential
through which electrons tunnel at nanoscales. Furthermore,
inclusion of the dynamics of strongly correlated nondegenerate
ions provides the possibility of low-frequency electrostatic
oscillations that are supported by restoring forces coming from
gradients of the quantum statistical electron pressure as well as
electron-exchange and electron correlations potentials, and the
quantum electron Bohm potential, while the ion mass provides
the inertia to sustain the wave. The viscoelastic relaxation
of ion correlations and ion fluid shear and bulk viscosities
introduce the damping of low-frequency electrostatic ion
oscillations. Both electron and ion plasma oscillations are
excited by large amplitude CPEM waves due to stimulated
Raman and Brillouin scattering instabilities. We also have the
possibility of modulational instabilities of the CPEM waves
via which nonresonant electron density perturbations are
created. Hence, there are enhanced electrostatic fluctuations
at nanoscales in dense quantum plasmas. In conclusion, we
stress that the results of the present investigation are useful for
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understanding the salient features of enhanced density fluctu-
ations and inhomogeneities which are nonlinearily created by
large amplitude CPEM waves with OAM in laser created solid
density compressed plasmas and in compact astrophysical
objects.
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