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We study the renormalization group flow of the average action of the stochastic Navier-Stokes equation with
power-law forcing. Using Galilean invariance, we introduce a nonperturbative approximation adapted to the
zero-frequency sector of the theory in the parametric range of the Hölder exponent 4 − 2 ε of the forcing where
real-space local interactions are relevant. In any spatial dimension d , we observe the convergence of the resulting
renormalization group flow to a unique fixed point which yields a kinetic energy spectrum scaling in agreement
with canonical dimension analysis. Kolmogorov’s −5/3 law is, thus, recovered for ε = 2 as also predicted by
perturbative renormalization. At variance with the perturbative prediction, the −5/3 law emerges in the presence
of a saturation in the ε dependence of the scaling dimension of the eddy diffusivity at ε = 3/2 when, according
to perturbative renormalization, the velocity field becomes infrared relevant.
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I. INTRODUCTION

Kolmogorov’s K41 theory [1,2] is the cornerstone of current
understanding of fully developed turbulence in Newtonian
fluids. A modern formulation of the theory [3] is based on the
asymptotic solution of the Kármán-Howarth-Monin equation,
expressing energy balance, for the stochastic incompressible
Navier-Stokes equation(

∂t + v · ∂x − κ∂2
x

)
v = f − ∂xP, (1)

with f Gaussian, incompressible, zero average time decorre-
lated with correlation

≺ f (x1,t1) ⊗ f (x2,t2) �= δ(t12) F(x12). (2)

Here ≺ � denotes the ensemble average, ⊗ the tensor
product, xij := xi − xj , tij := ti − tj , and P is a pressure
term enforcing incompressibility: ∂x · v = 0. The solution of
the Kármán-Howarth-Monin equation predicts in any spatial
dimension strictly larger than 2 that the energy injected by
the external stirring ( f ) around a typical spatial scale L is
conserved across an inertial range of scales through a constant-
flux transfer mechanism, the “energy cascade,” before being
dissipated by molecular viscosity. In two dimensions, energy
and enstrophy conservation across the inertial range calls for
a distinct analysis of the Kármán-Howarth-Monin equation
[4–6] formalizing the ideas introduced by Kraichnan in
Ref. [7]. The solution predicts a constant flux inverse energy
cascade from the injection scale toward the fluid integral scale.
Below the injection scale a constant flux enstrophy cascade
toward the dissipative scale may take place (see, e.g., Ref. [8]).
The very existence and properties of the enstrophy cascade are,
however, sensitive to the boundary conditions imposed on (1)
and the eventual presence and shape of large-scale friction
mechanisms [4,9,10]. Dimensional considerations based on
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the solution of the Kármán-Howarth-Monin equation lead
then to scaling predictions for statistical indicators of the
flow, including the −5/3 exponent for the 3d kinetic energy
spectrum. These predictions convincingly account for a wide
range of experimental and numerical observations (see, e.g.,
Refs. [3,11] and references therein). Their first-principles
derivation is, therefore, a well-grounded research question. A
useful tool to pursue this goal is offered by the renormalization
group, although its application to the inquiry of Navier-Stokes
turbulence is ridden by challenges. Renormalization group
analysis [12–14] can be applied only far from the turbulent
regime and for a very special choice of the random Gaussian
field f . The latter needs to have in any spatial dimension d a
power-law spectrum with Hölder exponent 4 − 2 ε,

F(x12; m,M) =
∫
Rd

ddp

(2 π )d
eı p·x12 T( p)

d − 1
F̌ ( p; m,M),

(3a)

F̌ (λ p; λ m ,λ M) = λ4−d−2εF̌ ( p; m,M), (3b)

with T( p) = I − p ⊗ p/p2 the transverse projector, p :=
‖ p‖, and m � M , respectively, the inverse integral and
ultraviolet scales of the forcing. The rationale for the choice
is that for vanishing ε the canonical scaling dimensions of
the convective (i.e., ∂tv, and v · ∂xv) and dissipative (i.e.,
∂2

xv) terms in the Navier-Stokes equation tend to the same
value. This fact suggests that for ε equal zero canonical scaling
dimensions may coincide with the exact scaling dimensions.
In this sense, the vanishing ε case defines a marginal scaling
limit around which it may be possible to determine scaling
dimensions by means of a perturbative expansion in ε in
analogy to what is done for critical phenomena described by
a Boltzmann equilibrium (see, e.g., Refs. [15,16]). For the
stochastic Navier-Stokes equation the situation is, however,
not conclusive. Renormalization group yields in any spatial
dimension a kinetic energy spectrum

E(p) ∝ pη2:0 , η2:0 = 1 − 4ε/3 (4)
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[14] (see also Ref. [17] for an exhaustive review). In (4) the
exponent labeling emphasizes the possibility of subleading
corrections. Fully developed turbulence in 3d should corre-
spond to an infrared dominated spectrum of the stirring force
as it occurs for ε � 2. Interestingly, (4) recovers Kolmogorov’s
result for ε equal to 2. Consistence with Kolmogorov theory
then requires the exponent in (4) to freeze for ε larger than
2 to the value −5/3. Within the perturbative renormalization
group framework, the occurrence of such nonanalytic behavior
can only be argued [18]. Direct numerical simulations [19,20]
exhibited, within a 5123-lattice accuracy, a transition in the
ε dependence of η2 which is consistent with the freezing
scenario. However, the situation completely differs in two
dimensions [21,22]. On the one hand, perturbative renor-
malization group analysis [23] upholds the validity of (4)
for any ε. On the other hand, the asymptotic solution of
the Kármán-Howarth-Monin equation [22] shows that (4)
is always subdominant with respect to the inverse energy
cascade spectrum E(p) ∝ p−5/3, for ε � 2, i.e., even in the
regime where renormalization group analysis should apply.
Direct numerical simulations up to 20482 resolution give clear
evidence of the inverse cascade [21,22]. A scenario reconciling
these findings may be that the Kraichnan-Kolmogorov inverse
cascade corresponds to a renormalization group nonperturba-
tive fixed point which does not bifurcate from the Gaussian
fixed point at marginality. Evidence of the occurrence of such
an “exotic” phenomenon has been given in models of wetting
transitions by “nonperturbative approximations” of the Wilso-
nian renormalization group [24,25]. More recently, similar
methods gave evidence of the existence of a strong coupling
fixed point in the Kardar-Parisi-Zhang model of interfacial
growth [26], yielding scaling predictions favorably comparing
with direct numerical simulations. Motivated by these results,
in the present contribution we derive the exact renormalization
group equations for the stochastic Navier-Stokes equation. We
then investigate them using a “nonperturbative approxima-
tions” similar to the one used in Ref. [26]. By this we mean,
as often done in nonperturbative renormalization [27,28],
truncations of the flow equations based on some assumption
on the physical properties of the inquired system. Specifically,
we investigate the consequences of the simplest closure
compatible with Galilean invariance and with the number of
relevant interactions identified by perturbative renormalization
at small ε. The second requirement guarantees the existence
of a limit where the closure becomes exact in the sense that
it recovers the perturbative renormalization group fixed point.
As in Refs. [26,29], we focus on the exact renormalization
group equations for the average action or thermodynamic
potential defined by the stochastic Navier-Stokes equations.
In striking contrast with the compressible stochastic dynamics
studied in Ref. [26], we found no evidence of a nonperturbative
fixed point which may be associated to constant flux solutions
in general and to the two-dimensional inverse cascade in
particular. The truncation we consider reproduces instead the
expected correct scaling behavior in the regime dominated
by real-space local interactions, i.e., d = 3 and ε � 3/2.
Interestingly, we observe in any dimension a transition at ε =
3/2 in the scaling behavior of the eddy diffusivity. This latter
deviates from the renormalization group scaling prediction by
freezing from there on in ε to its ε = 3/2 value. This result

was previously derived by different methods in Ref. [30].
It is worth noting that ε = 3/2 is the threshold value after
which the critical dimension of the stochastic Navier-Stokes
velocity predicted by perturbative renormalization becomes
negative or, in other words, infrared relevant. In spite of
the eddy-diffusivity saturation, we obtain a kinetic energy
spectrum scaling in agreement to (4) with no saturation for
ε > 2. This latter fact is not entirely surprising since the
particle irreducible vertices contributing to the approximated
renormalization group flow are only a subset of those needed
to fully reconstruct the flux, i.e., the chief statistical indicator
in Kolmogorov’s theory.

The structure of the paper is as follows. In Sec. II we
briefly recall the Kármán-Howarth-Monin equation and its
predictions for power-law forcing. In Sec. III we derive the
exact renormalization group average action for the model.
The scope of these sections is to provide basic background
on turbulence and functional renormalization to facilitate the
reading by researchers familiar with one of these subjects
but not the other. Using the Ward identities imposed by
Galilean and translational invariance in Sec. IV we introduce
our approximations of the exact flow. We write the resulting
equations in Sec. V where we also outline their qualitative
analysis. To simplify the discussion we detail auxiliary
formulas in Appendix C. An advantage of our formalism is that
by preserving the structure of the exact renormalization group
flow it guarantees the “realizability” of the “closure” that we
impose [31]. In Sec. VI we describe the analytic solution of our
equations in a simplified limit. Section VII reports the result of
the numerical integration of our equations respectively in the
three- and two-dimensional cases. Finally, we turn in Sec. VIII
to discussion and conclusions.

II. SCALING PREDICTIONS BASED ON THE
KÁRMÁN-HOWARTH-MONIN EQUATION

The Kármán-Howarth-Monin equation describes the en-
ergy balance in the putative unique steady state to which
Galilean-invariant statistical indicators are expected to con-
verge. Specifically, if we consider the two-point equal time
correlation tensor

C2(x12,t) =≺ v(x1,t) ⊗ v(x2,t) � , (5)

and the three-point equal time structure tensor

S3(x12,t) =≺ δv (x12,t) ⊗ δv (x12) ⊗ δv (x12) � , (6)

δv (x12) := v(x1,t) − v(x2,t), (7)

a straightforward calculation using incompressibility and the
inertial range translational and parity invariance yields

∂tC + 1
2∂x · S − 2 κ ∂2

xC = F (8)

for C := tr C2, F := tr F, and Sα := Sαα1
3 α1

and Einstein
convention on repeated indices. In any spatial dimension
strictly larger than 2, (8) admits an asymptotic solution under
the hypotheses (see, e.g., Ref. [3] for a detailed discussion)
that (i-1) statistical indicators attain a unique steady state and,
hence, ∂tC = 0, (ii-1) they are smooth for any finite molecular
viscosity but (iii-1) the inviscid limit of the energy dissipation
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exhibits a dissipative anomaly,

0 < −2 lim
κ↓0

lim
‖x‖↓0

κ ∂2
xC 	= −2 lim

‖x‖↓0
lim
κ↓0

κ ∂2
xC = 0. (9)

Under these hypotheses, if the dominant contribution to the
forcing correlation comes from wave numbers of the order m,
Kolmogorov’s classical result [1],

lim
‖x‖↓0

lim
κ↓0

∂xβ Sα1α2α3
3 (x) = − 2 Ē

d (d + 2)
Pα{δβα1δα2α3}, (10)

holds true for m‖x‖ � 1, Pα being the index cyclical
permutation operation over α = (α1,α2,α3) and, in accordance
with Kolmogorov’s notation [1,2], Ē = F (0)/2 the mean
dissipation of energy. In other words, the leading scaling
exponent of (6) is

ζ3:0 = 1. (11)

Dimensional considerations then yield, for the kinetic energy
spectrum scaling exponent, the Kolmogorov’s scaling law

η2:0 = −5/3. (12)

If instead the forcing correlation is a power law within the
range of scales M−1 � ‖x‖ � m−1 with Hölder exponent
4 − 2 ε, we should distinguish between the two situations. If
ε < 2, the forcing correlation (3) remains well defined in the
limit of infinite integral scale m−1. In such a case (10) holds
for M−1 � ‖x‖ � �, where we introduced � = κ /

√
F (0),

the typical scale below which molecular dissipation dominates.
Under the present hypotheses � ∝ κ Mε−2, the omitted propor-
tionality factor being a dimensional constant independent of κ

and M . This range of scales is not accessible by perturbative
ultraviolet renormalization group methods. These latter may
describe instead the range ‖x‖ � M−1, where the asymptotic
solution of (8) states that the leading scaling exponent
of (6) is

ζ3:0 = −3 + 2ε. (13)

Dimensional analysis based on (13) then recovers the renor-
malization group prediction (4) for the kinetic energy spec-
trum. A different scenario occurs for ε > 2: The forcing
correlation has a finite limit if the ultraviolet scale M tends
to infinity for any finite value of the inverse integral scale m.
In the range m−1 � ‖x‖ � �, � ∝ κ mε−2, (10) holds with
possible sub-dominant terms with scaling dimension (13). To
summarize, the hint coming from the Kármán-Howarth-Monin
equation for spatial dimensions d > 2 is that the −5/3
exponent stems from the dominance for ε > 2 of the constant
flux over the dimensional scaling asymptotic solution of (8).
This result can be justified within perturbative renormalization
theory using an argument proposed by Fournier and Frisch
in Ref. [18] (see also Ref. [17]). It is worthwhile here to
briefly recall this argument in order to evince the assumptions
on which it relies. Let Č( p) be the Fourier transform of
the trace of the two-point equal time correlation tensor (5).
Renormalization group analysis upholds that the expansion in
powers of ε can be resummed in the form

Č(p)
M↑∞→ ν2(p) p2−d c

(
m

p
,ε

)
. (14)

Here, c is a function independent of M which can be
determined order by order in a regular expansion around the
renormalized theory (the “renormalized perturbation theory”).
The ν(p) in the prefactor is the running viscosity, the explicit
form whereof within all orders in ε is the main achievement
of renormalization group analysis,

ν(p) =
[
F (0) m2 ε−4

�

p2 ε

]1/3

. (15)

A crucial role here is played by the mass scale m�. Since
for ε < 2 the theory is well defined in the limit of infinite
integral scale, m� in this range must have a finite limit as m,
the inverse integral scale, tends to zero. For ε > 2, on the
contrary, the energy input becomes infrared dominated and,
as a consequence, m� ∝ m. Finally, let us observe, following
Refs. [17,18], that comparison with Kolmogorov theory should
be done by holding fixed the energy input while taking the limit
of infinite integral scale. Let us assume the following: A the
resummation (14) holds for any finite ε and B (14) admits a
finite limit as the integral scale m−1 tends to infinity. Under
these hypotheses it follows immediately that

lim
m ↓ 0

F (0) = constant

lim
M↑∞

C(p) ∼
{

p2−4ε/3−d ε < 2

p2−8/3−d ε > 2
. (16)

Note that (16) is equivalent to say that c is finite in the limits
for ε < 2 and divergent for ε > 2. Two mechanisms may
obviously invalidate this result. Assumption A breaks down if,
for some finite ε, a new fixed point of the renormalization group
transformation appears. This may lead to a different result for
the running viscosity (15) marking the onset of a different
critical regime. Glazek and Wilson gave in Ref. [32] an
analytically tractable example of a nonperturbative bifurcation
of renormalization group flow fixed point. Scenarios for the
breakdown of A were discussed in Ref. [14]. Checking the
validity of assumption B requires controlling the function c

in (14) in the limit of vanishing m. The needed technical tool is
the so-called operator product expansion [15,16]. In particular,
c may become divergent for m ↓ 0 above some threshold value
ε� < 2 as some irrelevant composite operator contributing to
Č turns relevant. Examples of such operators are known [17]:
The velocity field and its integer powers become relevant at
ε = 3/2 and the energy dissipation at ε = 2. In summary,
the domain of validity in 3d of the renormalization group
predictions and, even more, the exponent “freezing” needed to
recover Kolmogorov theory are open research questions which
we set out explore in the present contribution.

The asymptotic analysis of (8) in 2d must be treated
separately in order to take into account enstrophy conservation.
In particular [4,5], Kraichnan’s theory [7] is epitomized by a
more restrictive version of (i-1), which we will refer to as (i-2),
requiring only Galilean-invariant quantities to reach a steady
state. In other words, ∂tC does not vanish. Furthermore, (iii-1)
is replaced by a new hypothesis (iii-2) ruling out the occurrence
of dissipative anomaly for the kinetic energy dissipation,

lim
κ↓0

lim
‖x‖↓0

κ ∂2
xC = lim

‖x‖↓0
lim
κ↓0

κ ∂2
xC = 0. (17)

It is worth noting that (iii-2) can be rigorously proved to hold
true in some setup for the deterministic Navier-Stokes equation
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[10] (see also the discussion in Ref. [33]). We refer the reader
to Ref. [22] for a detailed analysis of the two-dimensional
Kármán-Howarth-Monin equation in the power-law case also
corroborated by direct numerical simulations of (1). Here we
only summarize the results. In the range of scales which can be
investigated by perturbative ultraviolet renormalization group
methods, three distinct regimes may set in depending on the
value of ε. For ε < 2, the ultraviolet cutoff gives the dominant
contribution to the total energy F (0) ∝ M4−2 ε and enstrophy
−(∂2

xF )(0) ∝ M6−2 ε. Correspondingly, the inviscid limit in
the range M ‖x‖ � 1 predicts, for the leading and subleading
scaling exponents of (6),

ζ3:0 = 1 and ζ3:1 = −3 + 2 ε. (18)

This is in agreement with Kraichnan’s theory, which predicts
the onset of an inverse energy cascade for wave numbers
smaller than the one characteristic of the (total) input. The
ensuing dimensional prediction for the kinetic energy spectrum
scaling exponent is (12) while η2:1 = 1 − 4/3ε describes
only a subleading correction. For 2 < ε < 3, F (0) ∝ m4−2 ε

and −(∂2
xF )(0) ∝ M6−2 ε indicate that in the region m−1 �

‖x‖ � M−1 the third-order structure tensor is sustained by
an input of enstrophy from larger wave numbers and an
input of energy from smaller wave numbers. As a result, the
flux balances locally in real space with the forcing so (13)
holds true. Finally, for ε > 3 and in the presence of a
large-scale hypofriction [22] both energy F (0) ∝ m4−2 ε and
enstrophy−(∂2

xF )(0) ∝ m6−2 ε inputs are dominated by the
infrared mass scale m. As a consequence, a direct enstrophy
cascade sets in for m‖x‖ � 1 and

ζ3:0 = 3 and ζ3:1 = −3 + 2 ε. (19)

Again, dimensional analysis based on (19) predicts

η2:0 = −3 and η2:1 = 1 − 4/3 ε, (20)

with the leading scaling exponent “freezing” at the threshold
value attained at ε = 3. With these results in mind, we turn
now to the formulation of a nonperturbative renormalization
group theory with the aim of collating scaling predictions for
the energy spectrum.

III. RENORMALIZATION GROUP FLOW FOR THE
AVERAGE ACTION

A. Thermodynamic formalism

For finite infrared m and ultraviolet M cutoffs of the
Gaussian forcing (2) it is reasonable to assume that the
generating function

Z(j ,j̄ ) :=≺ ej�v(; f +j̄ ) � (21)

is well defined. The average in (21) is over the Gaussian
statistics of the forcing, v(; f + j̄ ) is the solution of (1) for
any fixed realization of f shifted by an arbitrary source field
j̄ , and � denotes the L2(Rd × R) scalar product

j � v(; j̄ ) :=
∫
Rd×R

ddx dt j (x,t) · v (x,t ; j̄ ) . (22)

Functional derivatives at zero external sources (j ,j̄ ) of (21)
yield the expressions of the correlation and response (to
variations of v with respect to f ) tensors of any order. The

generating function of connected correlations

W(j ,j̄ ) := lnZ(j ,j̄ ) (23)

is equal to minus the free energy of the field theory. In
particular, with these conventions we have

Cα1α2 (x12,t12) ≡ [W(2,0)]α1α2 (x12,t12)

:= δ2W(j ,j̄ )

δjα1 (x1,t1)δjα2 (x1,t2)

∣∣∣∣
j=j̄=0

. (24)

Analogously, the second-order response function is

≺ δvα1 (x1,t1)

δf α2 (x2,t2)
� ≡ [W(1,1)]α1

α2
(x12,t12)

:= δ2W(j ,j̄ )

δjα1 (x1,t1)δj̄ α2 (x2,t2)

∣∣∣∣
j=j̄=0

. (25)

The Legendre transform of the free energy (23) specifies the
average action or the thermodynamic potential of the statistical
field theory,

U(u,ū) := sup
(j ,j̄ )

{j � u + j̄ � ū − W(j ,j̄ )}. (26)

The Legendre antitransform of (26) reconstruct the convex
envelope of the free energy (23). In this sense, the average
action may be interpreted as an ultraviolet regularization of
the theory. The average action is a functional of the fields
(u,ū), which are Legendre conjugate to the external sources
(j ,j̄ ) and which as customary will be referred to as “classical
fields.” As extensively discussed in Refs. [27,34] the average
action provides a convenient starting point for nonperturbative
renormalization. Dealing with it is conceptually equivalent
to working with the Wilsonian effective action as done by
Polchinski in Ref. [35]. Namely the corresponding equations
can, in principle, be converted into each other by a Legendre
transform if one identifies the running cutoff. The average
action offers, as we will see below, some technical advantages
[28] which significantly simplify the formalism.

B. Flow equations

A stationary phase approximation to (21) in the weak
stirring limit F ↓ 0 (see Appendix B) yields, with logarithmic
accuracy,

UM ∼ ū �
[(

∂t − κ ∂2
x

)
u + T(u · ∂x u)

] − ū � F � ū
2

,

(27a)

∂x · u = ∂x · ū = 0. (27b)

The limit F = 0 describes the trivial steady state of the
decaying Navier-Stokes equation. We posit that (27) provides
the initial condition for the renormalization group flow of the
running average actionUmr

. This flow describes the building up
of the exact average actionU of (21) as a function of an infrared
cutoff suppressing any interaction above an infrared scale mr

and recoveringU in the limit of vanishing mr . These conditions
can be matched [27,36] if we replace the molecular viscosity
in (1) with a “hyperviscous” term, local in wave-number space,

κ �→ κ̃ := κ + κmr
Ř

(
p

mr

)
, (28)
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with Ř a function rapidly decaying for large values of
its argument and diverging at the origin. A convenient choice
[26] is

Ř(p) = 1

ep2 − 1
. (29)

In (28) we also introduced the “running” viscosity κmr
. We

will use this extra degree of freedom to constrain the flow
to satisfy a renormalization condition on the eddy diffusivity.
As for the viscosity, we then apply a high-pass filter to the
Gaussian forcing

f �→ f̃ , (30)

such that

≺ f̃ 1 ⊗ f̃ 2 �= δ(t12)
1∑

i=0

F(i) (x12; mr ) , (31)

where we defined

F(0) (x12; mr ) = F (x12; mr,∞) , (32a)

tr F̌(0) ( p; mr ) = Fo m4−d−2 ε
r (d − 1) χ(0)

(
p

mr

)
, (32b)

and

F̌(1) ( p; mr ) = Fmr
χ(1)(p; mr ) T( p), (33a)

χ(1)(p; mr ) := p2 e− p2

mr . (33b)

This latter term describes a local [in the infrared or for mr =
O(M)] perturbation of the measure progressively suppressed
as mr decreases. Locality entitles us to interpret this term
as a renormalization counterterm in the sense of Refs. [23,
37,38]. Again, we will use the extra freedom introduced by
Fmr

to impose a renormalization condition on the flow. The
replacements (28) and (30) turn (21) into a family of generating
functions differentiable with respect to the parameter mr . A
straightforward calculation (see Appendix A 1) yields

mr∂mr
Z(j ,j̄ ) =

∫
Rd×Rd×R

ddx1d
dx2dt

×
{

(mr∂mr
F̃)α1α2 (x12)

2

δ2Z(j ,j̄ )

δj̄ α1 (x1,t)δj̄ α2 (x2,t)

+ (mr∂mr
κmr

R)(x12)∂2
x2

δ2Z(j ,j̄ )

δj̄ α1 (x1,t)δjα1 (x2,t)

}
.

(34)

On defining

R(x12,t12) := δ(t12)

[
0 κmr

R(x12) ∂2
x1

κmr
R(x12)†

←
∂2

x1
F̃(x12),

]
(35)

and

W (2)
(j ,j̄ )(x1,x2,t1,t2) :=

[
W (2,0)

(j ,j̄ ) W (1,1)
(j ,j̄ )

W (1,1)†
(j ,j̄ ) W (0,2)

(j ,j̄ )

]
◦ (x1,x2,t1,t2),

(36)

we can recast (34) into the form of an equation for the free
energy which, in compact form, reads

mr∂mr
W(j ,j̄ ) = 1

2 tr
{
(mr∂mr

R) �
(
W (2)

(j ,j̄ ) − W (1)
(j ,j̄ )W

(1)
(j ,j̄ )

)}
.

(37)

Functional derivatives at zero sources of (37) spawn a
hierarchy of equations satisfied by the full set of connected
correlation of the theory. From (37) we derive the average
action flow using the following two observations. First, the
very definition of Legendre transform (26) implies

mr∂mr
W(j ,j̄ ) = −mr∂mr

U(u,ū). (38)

Second, the evaluation of (36) at zero sources restores
translational invariance as follows:

W(2)(x12,t12) :=
[

W(2,0) W(1,1)

W(1,1)† 0

]
◦ (x12,t12). (39)

The matrix elements of (39) are specified by the second-order
correlation and response functions (24) and (25). We may refer
to them as indicators of the “Gaussian” part of the statistics
of (1). We can use (39) and the general relation

I = W (2)
(j ,j̄ ) � U (2)

(u,ū), (40)

following from the Legendre transform (26), to decouple the
average action into a Gaussian and an interaction part [39],

I := W (2)
(j ,j̄ ) �

[
W(2)−1 + U (2) int

(u,ū)

]
. (41)

Solving this latter relation for W (2)
(j ,j̄ ),

W (2)
(j ,j̄ ) = [

I + W(2) � U (2)int
(u,ū)

]−1
� W(2) (42)

allows us to finally derive the equation for the average action:

mr∂mr

{
U(u,ū) − 1

2
[u ,ū] � (mr∂mr

R) �

[
u
ū

]}
= −tr

(mr∂mr
R)

2
�

[ ∞∑
n=0

(−W(2) � U (2)int
(u,ū)

)n

]
� W(2). (43)

Some observations are in order. First, the flow equation (43) is
effectively an equation for the reduced average action obtained
by subtracting the quadratic counterterms associated to the
running infrared cutoff. This is desirable because all physical
information is indeed contained in the reduced average action.
Second, the flow in (43) does not depend on the theory under
consideration, which, instead, specifies the initial conditions
for the evolution. This is a formalization of Wilson’s idea of
renormalization group as a flow in the space of the probability
measures. The fixed point of the flow does not depend on
the details of the microscopic theory used as initial condition
for mr = M . It depends, instead, on the basin of attraction
to which the initial condition belongs. Finally, solving (43)
exactly is equivalent to solving an infinite nonclose hierarchy
of equations. Perturbative renormalization tells us, however,
that there are only a finite number of relevant couplings, at most
two for ε � 1 and d � 2 [17,37,38], determining the scaling
properties of the stochastic Navier-Stokes (1). Based on this
observation, we now turn to the derivation of a truncation of
the right-hand side of (43) in order to derive explicit scaling
predictions.
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IV. GALILEAN INVARIANCE AND APPROXIMATION

Perturbative renormalization identifies the number of rel-
evant couplings by diagram power counting in the unit of
the ultraviolet cutoff [15]. Relevant couplings correspond to
proper vertices U(i,j ) proportional to powers of M � 0. For the
stochastic Navier-Stokes equations only U(1,1) for any d and
U(0,2) for d � 2 have non-negative ultraviolet degree. We can
use this information to hypothesize that (43) converges toward
an average action of the form

U(u,ū) = u � U(1,1) � ū + 1
2 U(0,2)(�ū)2 + 1

2 (u�)2U(2,1) � ū.

(44)

Clearly, the ansatz closes the hierarchy of equations spawned
by (43) since it is straightforward to verify that

U (2)int
(u,ū) =

[
U(2,1) � ū u � U(2,1)

(u � U(2,1))† 0

]
, (45)

and by (26)

W(1,1) = U(1,1)†−1, (46a)

W(2,0) = −W(1,1) � U(0,2) � W(1,1)†. (46b)

Note that

Z (0,1)
(j ,j̄ )(x,t) =≺ ej�v( f +j̄ )j �

δv( f + j̄ )

δ j̄ (x,t)
� , (47)

implies that W(0,i) = U(i,0) = 0 for any integer i. To further
evince the rationale behind (44), we observe that

Ǔ(1,1)( p1,ω1| p2,ω2)

= (2 π )d+1 δ(d)

(
2∑

i=1

pi

)
δ

(
2∑

i=1

ωi

)
× [

ı ω1 + κ p2
1 g(1,1)(p1,ω1)

]
T( p1) (48)

corresponds to a “dressing” of the quadratic coupling in (27).
Differentiating with respect to p2

1 at zero wave number and
frequency, the translational invariant part of (48) provides a
convenient nonperturbative definition of the eddy diffusivity.
We will, therefore, refer to (48) as the “eddy-diffusivity”
vertex. In addition, the “interaction” vertex

Ǔ( p1,ω1, p2,ω2| p3,ω3)

= (2 π )d+1 δ(d)

(
3∑

i=1

pi

)
δ

(
3∑

i=1

ωi

)
ı g(2,1)(p1,ω1,p2,ω2)

×P( p1, p2){T( p1) · T( p3) ⊗ T( p2) · p3} (49)

admits a similar direct interpretation from (27)). Finally,
comparison with (27) evinces that the “force” vertex

Ǔ(0,2)( p1,ω1, p2,ω2) = −(2 π )d+1 δ(d)

(
2∑

i=1

pi

)
δ

(
2∑

i=1

ωi

)
× g(0,2)(p1,ω1) T( p1), (50a)

g(0,2)(p1,ω1) := 1

d − 1

1∑
i=0

tr F̌(i)(p1,mr )

+ g̃(0,2)(p1,ω1), (50b)

describes (minus) the effective forcing correlation. The three
vertices are, however, not completely independent. Galilean
invariance constrains the average action to satisfy the Ward
identity (see, e.g., Refs. [40–42] and (A 2) in Appendix A)

0 = r̈ � ū + δ U
δu

� (r · ∂u − ṙ) + δ U
δū

� r · ∂ ū, (51)

whence it follows, after standard manipulations [15], that

Ǔ(2,1)( p1,ω1,0,0| p3,ω3) = p1∂ω1Ǔ
(1,1)( p1,ω1| p3,ω3). (52)

In the context of perturbative renormalization, (52) is used
to show that if a parameter fine-tuning ensures that Ǔ(1,1) is
finite in the limit M tending to infinity so must be Ǔ(2,1).
In general (52) is not sufficient to fully specify the form of
the interaction vertex in terms of U(1,1). If we, furthermore,
hypothesize

g(2,1) = 1, (53)

then (52) implies

g(1,1)(p1,ω) = g(1,1)(p). (54)

Such an approximation is too rough to give a self-consistent
model for the full second-order statistics. Our goal here is
more restrictive as it is only to derive self-consistent scaling
predictions at scales much larger than the dissipative. We
therefore posit that (44) and (53) may serve for a self-closure
able to capture the scaling behavior of the zero-frequency
sector of the theory. We also notice that a consequence of
imposing (53) is that a generalized Taylor hypothesis [3] is
verified by the two-point correlation function for which the
dispersion relation

ω = ı κ p2 g(1,1)(p) (55)

holds true. As a final step in the derivation of our approximation
we rewrite the vertices (48) and (50a) to decouple explicitly
the functional dependence on the cutoff. Thus, we couch the
eddy-diffusivity vertex into the form

g(1,1)(p; mr ) := κmr

κ

[
γ (1,1) (p; mr ) + Ř

(
p

mr

)]
, (56)

where now γ (1,1) is an unknown nondimensional function
which our renormalization group equation will determine.
Similarly, we write

g̃(0,2)(p; mr ) :=[
λ(0) m

2−d−2 ε
r +|,λ(1)

]
p2 γ (0,2)(p; mr ), (57)

where we defined the Grashof numbers

λ(0) := �d

(2 π )d
Fo

κ3
mr

m2 ε
r

, (58a)

λ(1) := �d

(2 π )d
Fmr

κ3
mr

m2−d
r

, (58b)

measuring the intensity of the nonlocal and local components
of the stochastic forcing. In the context of perturbative
renormalization the pair (58) specifies the running coupling
constant of the model [17,37,38]. In (58) we denoted

�d = 2 πd/2

�
(

d
2

) . (59)
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V. APPROXIMATED RENORMALIZATION GROUP FLOW

The ansatz

U(u,ū) = u � U(1,1) � ū + 1
2 U(0,2)(�ū)2+(Tū) · [(Tu) · ∂](Tu),

(60)

with T the transverse projector and (48) and (50a) specifying
the Fourier representation of the order-2 vertices, summa-
rizes the approximations described in the previous section.
The insertion of (60) into the exact renormalization group
equation (43) yields the equations

mr∂mr
{(d − 1) κmr

p2 γ (1,1)(p; mr )}

= −1

2
tr

{
W̃(2) �

δU (2)int
(u,ū)

δūα1

� W(2) �
δU (2)int

(u,ū)

δuα2

}
ω=0

− 1

2
tr

{
W(2) �

δU (2)int
(u,ū)

δūα1

� W̃(2) �
δU (2)int

(u,ū)

δuα2

}
ω=0

, (61a)

mr∂mr
{(d − 1) g̃(0,2)(p; mr )}

= −1

2
tr

{
W̃(2) �

δU (2)int
(u,ū)

δūα1

� W(2) �
δU (2)int

(u,ū)

δūα2

}
ω=0

− 1

2
tr

{
W (2) �

δU (2)int
(u,ū)

δūα1

� W̃(2) �
δU (2)int

(u,ū)

δūα2

}
ω=0

, (61b)

where we defined

W̃(2) := W(2) � (mr∂mr
R) � W(2). (62)

These equations, the explicit expression of which is given
in Appendix C, admit a simple diagrammatic interpretation.
Namely if we adopt the symbolic representation

W(2,0) ≡ −W(1,1) � U(0,2) � [W(1,1)]† = , (63a)

W(1,1) ≡ [U(1,1)]†−1 = , (63b)

U(2,1) = , (63c)

then we can couch equations (61) into the form

mr∂mr
{κmr

γ (1,1)(p; mr )}

= 1

(d − 1) p2
mr∂mr

tr
ω=0

∣∣∣∣
ω=0

, (64a)

mr∂mr

{[
λ(0) m

2−d−2 ε
r + λ(1)

]
γ (0,2)(p; mr )

}
= − 1

2 (d − 1) p2
mr∂mr

tr
ω=0

∣∣∣∣
ω=0

,

(64b)

if we evaluate the variations of the response (63a) and
correlation (63b) lines within the loops according to the

rules

mr∂mr
κ g(1,1)(p; mr )

≈ ηκ κmr
Ř

(
p

mr

)
+ κmr

mr∂mr
Ř

(
p

mr

)
, (65a)

mr∂mr
g(0,2)(p; mr )

≈ ηF F (1) χ1(p,mr ) −
1∑

i=0

F (i) ( p · ∂ p − dFi
)χ(i) (p,mr ) ,

(65b)

where there appear the scaling exponents

ηκ := mr

d

dmr

ln κmr
and ηF := mr

d

dmr

ln Fmr
, (66)

determined by the fixed point of the renormalization group
flow and the canonical dimensions

dF0 = 4 − d − 2 ε and dF1 = 2. (67)

In other words, (61) imply that the functional vector field
driving the renormalization group flow with our approximation
is obtained by taking the variation of the mode coupling
equations in a way adapted to (35). We summarize this
calculation in Appendix C. Here, we notice, instead, that
after turning to nondimensional variables ( p �→ p/mr ) we
can rewrite (61) as

[mr∂mr
− p · ∂ p + ηκ ]γ (1,1)(p)

= ηF G
(1,1)
F (p) − ηκ G(1,1)

κ (p) − G(1,1)
o (p), (68a)[

mr∂mr
− p · ∂ p + η̃F

]
γ (0,2)(p)

= ηF G
(0,2)
F (p) − ηκ G(0,2)

κ (p) − G(0,2)
o (p), (68b)

where

η̃F = (2 − d − 2 ε)λ(0) + ηF λ(1)

[λ(0) + λ(1)]
. (69)

The set of the G
(i,j )
k ’s are nonlinear convolutions of the

unknown functions γ (1,1), γ (0,2) with certain integral kernels
specified by the dynamics. We detail the form of these
convolutions in (C 1) and (C 2) in Appendix C. In order to
fully specify the dynamics we need to associate to (68) two
renormalization conditions specifying the coefficients (66).
We require

γ (1,1)(po) = γ (0,2)(po) = 1, (70)

where po is the renormalization scale, i.e., the reference
infrared scale where we suppose to measure the eddy dif-
fusivity and the force amplitude. Solving the renormalization
condition (70) for ηF , ηκ we obtain

ηκ =
G

(1,1)
�F G̃

(0,2)
� +

[
λ(1)

λ(0)+λ(1)
− G

(0,2)
�F

]
G̃

(1,1)
�

G
(1,1)
�F G

(0,2)
�κ +

[
λ(1)

λ(0)+λ(1)
− G

(0,2)
�F

][
1 + G

(1,1)
�κ

] , (71a)

ηF = 1 + G
(1,1)
�κ

G
(1,1)
�F

ηκ − G̃
(1,1)
�

G
(1,1)
�F

, (71b)
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where G
(i,j )
� k ≡ G

(i,j )
k (po) for all i,j,k and

G̃(1,1)
� := ( p · ∂ pγ

(1,1))( po) − G(1,1)
o (po), (72a)

G̃(0,2)
� := ( p · ∂ pγ

(0,2))( po)

− (2 − d − 2 ε) λ(0)

λ(0) + λ(1)
− G(0,2)

o (po). (72b)

The physical motivation behind the renormalization condi-
tions (70) is the following. When the running cutoff mr is of
the order of the ultraviolet cutoff M the average action tends to
the limit (26) with forcing correlation dominated by the local
component. In such a case we can choose

γ (1,1)(p) = γ (0,2)(p) = 1, (73)

for any p: (73) indeed specifies the initial condition for (68).
Irrespectively of mr , we also expect at scales comparable with
the integral scale m−1 the bulk statistics to be approximately
Gaussian, with parameters specified by the eddy diffusivity
and the renormalized forcing amplitude. In between, as mr

decreases toward m, we expect the onset of a nontrivial
scaling range in γ (1,1), γ (0,2) specified by the solution of (68)
and (71). The initial value of the Grashof numbers λ(i),
i = 0,1 parametrize the basins of attraction of the truncated
renormalization group flow. The invariant sets of the planar
dynamics

mr∂mr
λ(0) = −λ(0) (3 ηk + 2 ε), (74a)

mr∂mr
λ(1) = −λ(1) (3 ηk + 2 − d − ηF ), (74b)

characterize the possible scaling regimes that our approxima-
tions can capture. A priori we can distinguish four cases.

A. Fixed point for λ(0) = λ(1) = 0

This is the trivial fixed point. It corresponds to decaying
solutions of the Navier-Stokes equation.

B. Fixed point for λ(0) > 0, λ(1) �= 0

In such a case the fixed point condition is

ηκ = −2 ε

3
and ηF = 2 − d − 2 ε, (75)

as predicted by perturbative renormalization [17,23]. Note that
negative values of λ1 are admissible if the overall “force”
vertex remains positive definite. If the correlation functions
also admit a limit as the integral scale m tends to zero, we
must observe in the scaling range

γ (1,1)(p) ∼ p− 2 ε
3 (76)

and

γ (0,2)(p) ∼ p2−d−2 ε. (77)

We expect this behavior to be the physically correct for
0 < ε � 1 and d > 2. Perturbative renormalization in two
dimensions [23,38] also predicts the attainment of this fixed
point.

C. Fixed point for λ(0) > 0, λ(1) = 0

The approximated renormalization group flow equations
remain well defined in the limit λ(1) → 0. In such a case

G
(i,j )
F (p) = 0 and (68a) decouples from (68b). Furthermore,

the renormalization conditions yield, self-consistently,

ηF = 0. (78)

In other words, the renormalization group equation has
only one relevant coupling, the eddy diffusivity. This is the
situation usually faced in perturbative renormalization under
the assumption that the spatial dimension is bounded away
from 2. In such a case only U(1,1) has non-negative ultraviolet
degree. This implies that there is no need to introduce a
local counterterm in U(0,2) so Fmr

is set to zero a priori. The
approximated, nonperturbative flow here devised reproduces
these features. It is readily seen that the scaling predictions are
then the same as in case V B.

D. Fixed point for λ(0) = 0, λ(1) > 0

A similar fixed point, if attained, describes an energy input
dominated by its ultraviolet component independently of ε. It
is tempting to associate a similar scenario with the 2d inverse
cascade. The attainment of such fixed point implies

ηF = 2 − d + 3 ηκ . (79)

The value of ηκ here needs to be determined dynamically.
In order to check the realizability of the aforementioned

scenarios, we resorted to the numerical solution of the coupled
set of equations (68), (71), and (74).

VI. A SIMPLIFIED MODEL

Before turning to the numerical solution of (68), it is
expedient to analyze a simplified version of the flow. We
therefore set

Fmr
= λ(1) = R = 0 (80)

and hypothesize a sharp infrared cutoff for the power-law
forcing

F (p; mr ) = H (p − mr ) Fo p4−d−2 ε, (81)

where H (x) is the Heaviside step function. Since perturba-
tive ultraviolet renormalization forbids nonlocal counterterms
[37,38], these approximations are adapted only to the case
d > 2. As a consequence, we expect (68) to converge to the
fixed point of Sec. V C,(

p · ∂ p + 2 ε

3

)
γ (1,1)

� (p) = G(1,1)
o (p)

λ(0)
, (82a)

[ p · ∂ p − (2 − d − ε)]γ (0,2)
� (p) = G(0,2)

o (p)

λ(0)
, (82b)

with G(1,1)
o , G(0,2)

o , respectively, specified by

G(1,1)
o (p)

λ(0)
= Cd

2 p2

∫ 1

−1
dφ

(1 − φ2)
d−1

2

P 2

× [(d − 1) p3(p − 2 φ) + (d − 3) p2 + 2 φ p]

g(1,1)(1) [g(1,1)(1) + P 2 g(1,1)(P )]
(83)
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and

G(0,2)
o (p)

λ(0)
= Cd

2

∫ 1

−1
dφ

(1 − φ2)
d−1

2 g(0,2)(P )

P 4

× [(d − 1)p2 − 2dpkφ+2k2(d + 2 φ2 − 2)]

g(1,1)(1)g(1,1)(P )[g(1,1)(1) + P 2 g(1,1)(P )]
.

(84)

In (83) and (84) we used the notation

P :=
√

1 + p2 + 2 φ p. (85)

In the limit p � 1 we can approximate (82a) as(
p∂p + 2ε

3

)
γ (1,1)

� (p) ≈ (d − 1)

2 d p2 γ
(1,1)
� (p)γ (1,1)

� (1)
, (86)

whence we infer the leading scaling behavior

γ (1,1)
� (p)

p↑∞∼
{

p− 2 ε
3 0 < ε < 3

2

p−1 3
2 < ε

, (87)

under the self-consistence condition

p �
∣∣∣∣∣ (d − 1)

2 d c+γ
(1,1)
� (1)

(
1 − 2 ε

3

) ∣∣∣∣∣
3

6−4 ε

� 1. (88)

Logarithmic corrections may be possible at ε = 3/2. Similarly,
we can approximate (82b) as(

p∂p + d + 2 ε − 2
)
γ (0,2)

� (p)

≈ p2−d−2 ε + γ
(0,2)
� (p)

γ
(1,1)
� (p)

(
p∂p + 2ε

3

)
γ (1,1)

� (p), (89)

in the nondimensional wave-number range defined by (88).
The corresponding scaling prediction is

γ (0,2)
� (p)

p � 1∼
{

p2−d−2ε 0 < ε < 3
2

p2−d−2ε+( 2 ε
3 −1) 3

2 < ε
. (90)

The conclusion is that the model problem kinetic energy
spectrum should scale in agreement with the prediction of
the perturbative renormalization group,

E (p) ∼ pd−1 p2−d−2 ε + γ
(0,2)
� (p)

γ
(1,1)
� (p)

∼ p1− 4ε
3 . (91)

The eddy diffusivity and the force vertices, however,
individually deviate from the perturbative renormalization
group prediction. In particular, the eddy diffusivity as observed
first in Ref. [30] saturates to an ε-independent value for
ε > 3/2. In Fig. 5 we show that the above predictions
compare favorably with the numerical integration of (82). For
0 < ε < 2, these results are also consistent with the direct
numerical simulations of Refs. [19,20].

VII. NUMERICS

We integrated numerically the set of equations (68) for the
eddy diffusivity and the renormalized forcing amplitude, and
equations (74) for the coupling constants, together with the
renormalization conditions (71).

We proceeded by discretizing the momentum space on a
logarithmic mesh for p and a linear mesh for φ. The domain

of p considered extends from 10−4 to 104 and was covered by
200 points, corresponding to a logarithmic spacing of ≈0.092.
The angular domain [−1,1] was covered by 100 points.
Moreover, in order to improve accuracy in the scaling range
we modeled wave-number logarithmic derivatives p · ∂ p using
5-point finite-difference expressions. For the mass differential
mr∂mr

we, instead, used 2-point finite-difference expressions.
This mesh was fine enough to observe good continuous
convergence of the flow equations.

We integrated the flow equations with initial condi-
tions (73), over mr from 10 down to 10−9, using a simple
Euler explicit method with logarithmic integration steps.
Finally, we estimated integrals using a trapezoidal rule on
the linear and the logarithmic mesh. The initial values of the
Grashof numbers λ(0) and λ(1) were randomly sampled in the
domain 0.01 < λ(i) < 10. The nonlocal force χ(0) appearing in
Eq. (32b), and, consequently, in the convolutions of Eqs. (C14)
and (C17), was chosen as

χ(0)(p) = p2(
p2 + μ2

0

)(d−2+2ε)/2 , (92)

with μ0 = 0.1.
As an example of the numerical integration scheme that

we have used we show in Fig. 1 the results for γ (1,1)(p) and
γ (0,2)(p) for d = 3 and ε = 2. Both functions satisfy smoothly
the renormalization condition at the infrared limit po = 10−4

while exhibiting a power-law decay in the ultraviolet. We
observed the same qualitative behavior for any values of
d = 2,3 and 0 < ε � 4. In the inset of Fig. 1 we show the
regular convergence of the eddy diffusivity toward its final
value.

We first discuss our numerical results in three dimensions.

A. 3d

For each fixed value of ε in (0,4], we used the numerical
scheme described above to integrate the equations (68) and
obtained, for any initial value of the Grashof numbers for
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) (p
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-16
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γ(1,1)

γ(0,2)

FIG. 1. (Color online) Result of the numerical integration of
the dimensionless renormalized functions γ (1,1)(p) and γ (0,2)(p) for
d = 3 and ε = 2. The dashed line indicates the value 1. (Inset)
Convergence of γ (1,1)(p) from its initial (unforced limit) value
γ (1,1)(p) = 1 toward stationarity (as indicated by the arrow).
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FIG. 2. (Color online) Dependence of the fixed point (λ0,λ1) (blue
dots) on ε and d = 3. The fixed point tends toward (0,0) as ε → 0.

which we found convergence, a single stationary solution. This
means that for each value of ε there exists only one single
fixed point [λ(0),λ(1)]. In Fig. 2, we show the dependence of
the fixed point on ε. We have noted a slower convergence
toward the solution as ε → 0, making it difficult to explore the
perturbative regime ε � 1. Nevertheless, our results suggest
that the trivial fixed point of Sec. V A is reached in the limit
of vanishing ε. Surprisingly, for small values of ε, λ(1) < 0
and becomes positive for a value of ε between 1 and 1.25.
For ε > 2, λ(0) decreases exponentially, but we always find a
positive value.

To determine the ultraviolet scaling law as a function of ε,
we computed

�(x,y) ≡ lim
p→∞

log γ (x,y)

log p
, (93)

for (x,y) = (1,1) or (0,2), which defines the scaling exponent
of the respective function. We denote with �(E) the analogous
measure for the energy spectrum.

In Fig. 3 we show the scaling exponents ηκ (red open
squares in the upper panel) and ηF (red open squares in the
middle panel) as a function of ε. Our numerical results are
in excellent agreement with the theoretical predictions (75)
(solid lines), meaning that our closure yields the perturbative
renormalization scaling. In the same figure we also show the
scaling exponent of the dimensionless renormalized functions
γ (1.1) (upper panel) and γ (0,2) (middle panel) and of the energy
spectrum (lower panel), as a function of ε.

We observe two different regimes. In the first regime,
for ε < 3/2, the eddy diffusivity and the forcing amplitude
scale in agreement with perturbative renormalization, as
obtained in (76) and (77). Instead, for ε > 3/2, both fields
deviate individually from the perturbative renormalization
prediction. In particular, in this regime the eddy diffusivity
scales as γ (1,1) ∼ p−1 independently of ε. This saturation was
predicted first in Ref. [30]. More interestingly, the deviation
of the forcing amplitude is such that the energy spectrum
scaling is in agreement with perturbative renormalization,
i.e., E ∼ p1−4ε/3, for all ε. Moreover, the deviations of
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FIG. 3. (Color online) Scaling exponents � in Eq. (93) of the
dimensionless renormalized functions γ (1,1)(p) and γ (0,2)(p) and of
the energy spectrum E as a function of ε (blue solid circles) and
d = 3. We also show in red open squares the dependence of the
scaling exponents ηκ (upper panel) and ηF (middle panel) on ε. The
solid lines correspond to the respective renormalization group scaling
of Eqs. (75) and to p−4ε/3 for the energy spectrum. The dashed lines in
the upper and middle panels stand for the scalings p−1 and p1−d−4ε/3,
respectively.

the eddy diffusivity and the forcing amplitude from the
perturbative renormalization coincide with those predicted by
our simplified model, Eqs. (87) and (90).

Finally, we would like to remark on some properties of the
convergence of the numerical scheme that we have used. As
mentioned above, the initial seed for the integration scheme
comprises the initial value of the Grashof numbers. We have
chosen this initial numbers by drawing λ(0) and λ(1) as random
values in the domain [0.01,10]. By doing this, we found that
the solution of our numerical scheme always converged to the
fixed point when ε < 3. However, for larger ε, we noted that
this was no longer the case. For ε > 3 some of the initial
conditions failed to converge. This can be seen in Fig. 4
in which we show as yellow (light gray) dots, those initial
conditions that converged to the fixed point. We note that
the basin of attraction, limited to the [0.01,10] × [0.01,10]
domain, shrinks as ε grows. While we have no ultimate
explanation for this behavior, it may be due either to the very
small values that λ(0) attain for ε > 3 or, more trivially, to the
fact that our numerical scheme fails to converge to the fixed
point [shown as the blue (dark gray) circle], when the initial
condition is too far from it.
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FIG. 4. (Color online) Basin of attraction of the fixed point in
three dimensions for different values of ε. Each yellow (light gray)
dot denotes an initial condition of [λ(0),λ(1)] for which convergence
was reached. The square with dashed sides indicates the domain in
which random initial conditions were drawn. The light gray solid
circles denote the trajectory of the fixed point in the λ(0)-λ(1) plane
and the blue (dark gray) circle denotes the fixed point for the specific
value of ε.

B. Single renormalization condition

We have solved the simplified model of Sec. VI simply
by setting ηF = 0 and using the numerical scheme described
above by integrating Eqs. (68), (74a), and (71a). In Fig. 5 we
show the results that corroborate the predicted behavior of
Eqs. (87), (90), and (91).

In summary, we have obtained that the stationary solution
to Eqs. (68) is described by Eqs. (87), (90), and (91),
irrespectively, if we impose the system to either one or two
renormalization conditions.

C. 2d

In two dimensions the results are in perfect agreement
with the predictions of Eqs. (87), (90), and (91), meaning
that the fixed point found is consistent with the perturbative
renormalization prediction. To start the discussion we show
in Fig. 6 the fixed point for several values of ε. The behavior
of the fixed point in two dimensions is qualitatively the same
as in three dimensions, namely the fixed point (λ0,λ1) tends
to (0,0) as ε tends to zero; for ε � 1, λ(1) < 0 and becomes
positive for a value of ε between 1 and 1.25; for ε > 2, λ(0)

decreases exponentially.
In Fig. 7 we show the scaling exponent ηκ (red open

squares in the upper panel) as a function of ε, in agreement
with the prediction (75). Moreover, we also show the scaling
exponent of the dimensionless renormalized functions γ (1.1)

(upper panel) and γ (0,2) (middle panel) and of the energy
spectrum (lower panel), exhibiting the same behavior as in
three dimensions, described by Eqs. (87), (90), and (91).

0 1 2 3 4
ε

-2.5

-2

-1.5

-1

-0.5

0

Λ
(1

,1
)

0 1 2 3 4
ε

-8

-6

-4

-2

Λ
(0

,2
)

0 1 2 3 4
ε

-4

-3

-2

-1

0

1

Λ
 (ε

)

FIG. 5. (Color online) Scaling exponents � in Eq. (93) of the
dimensionless renormalized functions γ (1,1)

� (p) and γ (0,2)
� (p) and of

the energy spectrum E as a function of ε (blue solid circles) for the
simplified model discussed in Sec. VI and for d = 3. The red open
squares in the upper panel correspond to ηκ . The solid and dashed
lines correspond to the predicted scaling of Eqs. (87), (90), and (91)
for ε < 3/2 and ε > 3/2, respectively.

Finally, as it was the case in three dimensions, in two
dimensions we also observed that the basin of attraction
shrinks for ε � 3, as is seen in Fig. 8.
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FIG. 6. (Color online) Dependence of the fixed point (λ0,λ1) (blue
dots) on ε and d = 2. The fixed point tends toward (0,0) as ε → 0.
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FIG. 7. (Color online) Scaling exponents � in Eq. (93) of the
dimensionless renormalized functions γ (1,1)(p) and γ (0,2)(p) and of
the energy spectrum E as a function of ε (blue solid circles) and d = 2.
We also show in red open squares the dependence of the scaling
exponents ηκ (upper panel) and ηF (middle panel) on ε. The solid and
dashed lines correspond to the predicted scaling of Eqs. (87), (90),
and (91) for ε < 3/2 and ε > 3/2, respectively.

VIII. CONCLUSIONS

Power-law forcing provides us with a control parameter,
ε, continuously changing the energy input from ultraviolet,
as if due to thermal stirring, to infrared as it is needed to
interpret the stochastic Navier-Stokes as a model of fully
developed Newtonian turbulence. The limit of vanishing ε

can be systematically investigated using the general principles
of perturbative ultraviolet renormalization. These principles
yield in three spatial dimensions the expression of the critical,
fixed point, theory for vanishing ε. For fully developed
turbulence the critical theory is not known, and only some
extrapolations can be made from the perturbative limit. The
validity of these extrapolations is an important open question
since they are based on the assumptions of the absence of
any nonperturbative renormalization group fixed point and,
provided this assumption holds, require controlling the limit
of infinite integral scale of any statistical indicator of the theory
after their perturbative expressions are resummed for finite ε.
The inquire of the Kraichnan model passive advection (see,
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FIG. 8. (Color online) Basin of attraction of the fixed point in
two dimensions for different values of ε. Each yellow (light gray) dot
denotes an initial condition of [λ(0),λ(1)] for which convergence was
reached. The square with dashed sides indicates the domain in which
random initial conditions were drawn. The light gray solid circles
stand for the trajectory of the fixed point in the λ(0)-λ(1) plane and the
blue (dark gray) circle denotes the fixed point for the specific value
of ε.

e.g., Ref. [43] and references therein for review) has in recent
years shed much light on how the limit of infinite integral scale
can be investigated in a field-theory model of fully developed
turbulence. Namely, in the context of the Kraichnan model,
ultraviolet renormalization reduces to a trivial operation while
the scaling properties of relevant physical indicators such
as structure functions are fully specified by the analysis of
composite operators (see, e.g., Ref. [44] and result discussion
in Ref. [45]).

In this paper, we devise the simplest possible model
of nonperturbative renormalization group flow complying
with the requirements imposed by the general principles of
ultraviolet renormalization as well as verify the symmetries
enjoyed by the stochastic Navier-Stokes equation. Specifically,
these requirements translate into two classes of constraints.
Vertices of the effective action must satisfy the Ward identities
stemming from Galilean symmetry and space translational
invariance. Furthermore, we adhere to the postulate of ultra-
violet renormalization that no counterterm can be consistently
associated to nonlocal coupling. In other words, no indepen-
dent renormalization constant can be associated either to the
nonlocal forcing or to pressure. It is worth repeating here
that an explicit check shows that nonlocal renormalization
conditions yield inconsistencies already at second order in the
perturbative expansion in powers of ε (see, e.g., Ref. [38]).

The intrinsic limitation of state-of-the art nonperturbative
renormalization methods is that they allow us to derive
explicit expressions only if we take into account a finite
number of vertices in the renormalization group flow. As
a guideline to operate this otherwise unjustified truncation,
we restrict ourselves to interactions which can be assessed
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as relevant under renormalization at the perturbative level.
This is, of course, a dramatic approximation. We were
encouraged in taking this step by the results, to some extent
surprising, of Ref. [26], where it was shown that similar
approximations appear to be able to capture the existence
of a nonperturbative fixed point for the Kardar-Parisi-Zhang
stochastic partial differential equation. This latter model
shares with the stochastic Navier-Stokes equation invariance
under Galilean transformations and convergence toward a
non-Boltzmann steady state. An important difference between
these two models resides, however, in the nonlocality of
the interactions that the incompressibility condition brings
forth for Navier- Stokes. In our average action ansatz (44)
incompressibility simply appears in the form of transversal
projectors acting on the classical field. In spite of this simple
expression, the consequences of incompressibility are evident.
The nonperturbative fixed point of the Kardar-Parisi-Zhang
equation is suppressed. We also observe saturation to an
ε-independent value of the scaling dimension of the eddy
diffusivity at ε = 3/2. Perturbative renormalization attributes
the scaling dimension n (1 − 2 ε/3) to any integer power
n of the velocity field. This means that the saturation we
observe occurs exactly at the value of ε when the velocity
field (as well as all its integer powers) becomes an infrared-
relevant operator. This fact may well be the indication of a
change of critical behavior toward a regime not captured by
our truncation. We observe no saturation for ε > 2 of the
energy spectrum to the Kolmogorov value −5/3 for d = 3
and nor for the inverse cascade −5/3 energy spectrum for
0 < ε < 2 and d = 2. If we identify the universality of
the −5/3 energy spectrum in the above ε domain with the
presence of a scaling regime characterized by a constant energy
flux, the inference is that it is not possible to describe a
constant flux scaling regime in terms of an effective action
comprising the vertices relevant under renormalization at the
perturbative level. Conversely, the average action ansatz (44)
yields scaling predictions in agreement with direct numerical
simulations whenever the energy input at phenomenological
level is not expected to sustain a constant flux solution of the
Navier-Stokes equation (0 < ε < 2 for d = 3 and 2 < ε <

3 in d = 2). Phenomenological reasoning suggests (see the
discussion in Refs. [3,46]) that the scaling properties of the
constant flux solution are the consequence of the “localness”
of the interactions within the turbulent fluid. This means
that, after isolating transport, “sweeping,” terms, the critical
theory should be described only by couplings involving local
interactions in wave-number space. If this phenomenological
reasoning is correct, constructing a renormalization group flow
in the universality class of the constant flux solution poses a
severe difficulty. On the one hand, our present results indicate
that the flow should encompass in the ansatz average action at
least the set of proper vertices contributing to the flux. On the
other, it is not a priori evident how to reconcile these couplings
with the requirement of localness.

As a conclusive remark we observe that renormalization
methods may also have spin-offs for engineering applications.
Obtaining, for example, a priori estimates for the eddy
diffusivity and the Kolmogorov constant is very important for
devising reliable large eddy simulations of turbulent flows [47].
In Ref. [48] it was suggested that renormalized perturbation

theory could be used to obtain quantitative predictions for the
Kolmogorov constant. While the treatment of the problem
in Ref. [48] can be considered only phenomenologically
correct (see the discussion in Ref. [49] and especially that
in section 2.10 of Ref. [17]), a controlled calculation of
the Kolmogorov constant up to O(ε3) in the renormalized
perturbation theory evaluated for ε = 2 in the limit of large
spatial dimension can be found in Ref. [50]. The result
CK ∼ 1.5 + O(ε3,1/d) of Ref. [50] is in reasonable agreement
with experimental and numerical measurements [51,52]. The
nonperturbative renormalization flow devised in this paper
cannot be used in the present form to give predictions for
indicators beyond the scaling exponent. The reason is that
the finite renormalization conditions we imposed only fix the
ratio Fo/κ

3 between the “bare” parameters of the stochastic
Navier-Stokes equation. In other words, we did not specify
(nor did we have the need to specify) the units in which
the energy input is measured. Such a way of proceeding
is perfectly in line with the general renormalization group
ideology which aims at determining scaling exponents as only
indicators of universality classes. It is possible, however, to
envisage imposing different renormalization conditions that
fully specify the values of the “bare” parameters Fo and κ .
This is an issue which we leave for future work.
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APPENDIX A: VARIATIONS OF THE GENERATING
OF FUNCTION

1. Renormalization group flow

Let us consider the deformation of (1) induced by the
replacements κ �→ κ + κmr

R and f �→ f ′ + j̄ . We suppose
that f ′ is obtained by applying a high-pass filter with infrared
cutoff mr to f . We have, then,

mr∂mr
Z(j ,j̄ ) =≺ ej�vj � (mr∂mr

v) � , (A1)

with

mr∂mr
v(x,t ; j̄ + f )

= δv(x,t ; j̄ + f )

δj̄
� {(mr∂mr

κmr
R) � ∂2v + (mr∂mr

f ′)}.
(A2)

In (A2) the fluctuating response function satisfies

δv(x1,t1)

δj̄ (x2,t2)
= 0 ∀ t2 � t1. (A3)

016315-13
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We furthermore interpret the product of the time δ-correlated
Gaussian field f ′ with other functionals in (A1) according
to the Stratonovich convention in order to preserve ordinary
calculus. Using (A3) we can write

≺ ej�v δ(j � v)

δj̄
� (mr∂mr

κmr
R) � ∂2v �

=≺ δ ej�v

δj̄
� (mr∂mr

κmr
R) � ∂2v � (A4)

= tr(mr∂mr
κmr

R) � ∂2Z (1,1)
(j ,j̄ ).

Furthermore, a functional integration by parts yields

≺ ej�v δ(j � v)

δj̄
� (mr∂mr

f ′) �

= 1

2
≺ (mr∂mr

F′) �
δ2 ej�v

δj̄δj̄
� , (A5)

the factor 1/2 being a consequence of the Stratonovich
convention.

2. Ward identity

Let r t : R → Rd be a smooth path. The generalized
Galilean transformation

x̃ = x + ε r t , (A6a)

ṽ = v + ε ṙ t , (A6b)

leaves (1) invariant in form when accompanied by the
redefinition of the forcing f̃ = f + ε r̈ t . We must have,
therefore,

Z (ε)
(j ,j̄ ) = Z(j ,j̄ ). (A7)

When we differentiate this equality at ε equal zero and
use (A2), we obtain, after standard manipulations (see, e.g.,
Refs. [15]),

0 = r̈ �

(
δW(j ,j̄ )

δj̄

)
+ j �

(
r · ∂

δW(j ,j̄ )

δj
− ṙ

)
+ j̄ �

(
r · ∂

δW(j ,j̄ )

δj̄

)
. (A8)

An alternative way to derive the results of this appendix is
based on the Janssen–De Dominicis [53,54] path integral
representation of (21). We refer to Ref. [42] for a detailed
presentation.

APPENDIX B: JANSSEN–DE DOMINICIS PATH INTEGRAL
AND OPTIMAL FLUCTUATION

The Janssen–De Dominicis [53,54] representation is the
formal measure on path space obtained by requiring, through
an infinite dimensional product of Dirac δ functions, that at
any space-time point (1) be satisfied. The resulting expression
is then averaged over the realizations of the stochastic forcing.
We obtain

Z(j ,j̄ ) =
∫

D[v]D[v̄]e−A, (B1a)

A = v̄ � F � v̄

2
− j � v − ıv̄ �

[(
∂t − κ∂2

x

)
v

+ T(v · ∂xv) − j̄
]
. (B1b)

A precise meaning to (B1) can be given on a space-
time lattice using a prepoint discretization dt (v̄ · ∂tv) ∼
v̄(ti) · [v(ti+1) − v(ti)], dt f [v̄(t),v(t)] ∼ dt f [v̄(ti),v(ti)], for
all other terms in (B1b). Note that in the limit of vanishing
stirring F ↓ 0, (B1) recovers the Fourier representation of a
product of Dirac δ functions localizing the measure over the
deterministic decaying dynamics. In this sense, (B1) remains
meaningful also as a formal measure inclusive of compressible
fluctuations. From (B1b) a stationary phase approximation
yields the weak noise limit of the free energy W(j ,j̄ ) around an
optimal fluctuation v∗. As usual [55], the stationary phase
condition is derived by closing a contour in the complex
variables

v̄ = v̄Re + ıv̄Im, (B2)

which decomposes (B1b) into the real and imaginary parts,

ReA(j ,j̄ ) = v̄Re � F � v̄Re

2
− j � v + v̄Im �

{(
∂t − κ∂2

x

)
v

+ T(v · ∂xv) − 1

2
F � v̄Im − j̄

}
, (B3a)

ImA(j ,j̄ ) = −v̄Re �
{(

∂t − κ∂2
x

)
v + T(v · ∂xv) − F � v̄Im − j̄

}
.

(B3b)

The stationary phase condition ImA(j ,j̄ ) = 0 then can be
solved for v̄Im and leaves a convex functional of the principal
field v. Assuming that we can minimize such a functional for
some assigned boundary condition, we find, within logarithmic
accuracy,

W(j , j̄ ) ∼ j � v∗ −
∥∥(

∂t − κ∂2
x

)
v∗ + T(v · ∂xv)∗ − j̄

∥∥2
F

2
,

(B4)

where ‖v‖2
F stands for ‖v‖2

F = v � F−1 � v. The Legendre
transform gives the conditions

u = v∗, (B5a)

ū = T � F−1 �
{(

∂t − κ∂2
x

)
v∗ + T(v · ∂xv)∗ − j̄

}
, (B5b)

whence we finally obtain (27). It must be stressed here
that the “measure” D[v]D[v̄] in (B1) does not exist in any
rigorous mathematical sense. Thus, the above calculation is
only formal. We give it a meaning in the following sense.
A Gaussian measure is fully specified by its first and second
moments. Since F is an incompressible correlation function,
it is consistent to consider the fields v̄,j̄ incompressible by
definition. The field v∗ is also incompressible because it
is a solution of the classical Navier-Stokes equation with a
vanishing initial condition at time t = −∞ and sustained by
an incompressible forcing. Finally, the inversion operation
in (B5b) makes sense only away from the kernel of the
transverse correlation F, which, therefore, implies that ū is
also incompressible.

APPENDIX C: EXPLICIT EXPRESSION
OF THE CONVOLUTIONS

An alternative derivation of the renormalization group
equations is obtained if we observe that we may interpret the
free energy defined by the ansatz for the average action (60)
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as solution of a formal Janssen–De Dominicis [53,54] path
integral

W(j ,j̄ ) = lim
ε↘0

ε ln
∫

D[u]D[ū] e
j�u+j̄�ū−U(u ,ū)

ε . (C1)

Computing the right-hand side in a perturbative expansion in
powers of the interaction vertex of (49) and (53) we obtain, by
use of standard diagrammatic techniques,

κmr
p2 γ (1,1)(p/mr )

=
∫

ddk

(2 π )d
(1 − φ2) N (1,1)(p,k,φ) g(0,2)(k)

2 g(1,1)(k) D1(p,k,φ)
(C2)

and[
λ(0)m

2−d−2 ε
r + λ(1)

]
p2γ (0,2)(p/mr )

=
∫

ddk

(2 π )d
(1 − φ2) N (0,2)(p,k,φ) g(0,2)(Q) g(0,2)(k)

4 g(1,1)(k) g(1,1)(Q) D1(p,k,φ)
.

(C3)

We recover equations (68) by taking the logarithmic derivative
mr∂mr

of both sides of (C2) and (C3). Note that in (C2)
and (C3) we denoted

Q := p − k, (C4)

and φ the cosine between the external p and the integration k
wave numbers:

φ := p · k
p k

. (C5)

We also defined the auxiliary integrand factors

D1(p,k,φ) = k2 g(1,1)(k) + Q2 g(1,1)(Q), (C6)

D2(p,k,φ) = 2 k2 g(1,1)(k) + Q2 g(1,1)(Q), (C7)

and the constants

C−1
d = (d − 1)

∫ 1

−1
dφ (1 − φ2)

d−3
2 . (C8)

Finally, the convolutions depends on certain integral kernels
which stem from the expansion up to one loop accuracy of the
ansatz average action (60). These are

N (1,1)(p,k,φ)

:= (d − 1) p3 (p − 2 φ k) + k2 p [(d − 3) p + 2 φ k]

k2 (p2 + k2 − 2 k p φ)
,

(C9a)

Ñ (1,1)(p,k,φ)

:= p k [(d − 1) p k − 2 (p2 + k2 − 2 p k φ) φ]

k2 (p2 + k2 − 2 k p φ)
, (C9b)

for the eddy-diffusivity vertex [(C9b) will be needed below]
and

N (0,2)(p,k,φ)

:= p2 [(d − 1) p2 − 2 d p k φ + 2 k2(d + 2 φ2 − 2)]

k2 (p2 + k2 − 2 k p φ)2

(C10)

for the force vertex. Finally, in (68), there appear terms of the
form

G
(i,j )
l (p)

:= Cd

2 p2

∫ ∞

0

dk

k
kd

∫ 1

−1
dφ (1 − φ2)

d−1
2 V

(i,j )
l (p,k,φ),

(C11)

with l taking values {F,κ,o} and V
(i,j )
l (p,k,φ), with the

nonlinear convolutions specified below.

1. Equation for the eddy-diffusivity vertex

The following three nonlinear convolutions enter (68a):

V
(1,1)
F (p,k,φ) := N (1,1)(p,k,φ) λ(1)χ(1)(k)

g(1,1)(k) D1(p,k,φ)
, (C12)

with coefficient ηF ,

V (1,1)
κ (p,k,φ)

:= Ř(k)

[D1(p,k,φ)]2

{
D2(p,k,φ) N (1,1)(p,k,φ) g(0,2)(k)

[g(1,1)(k)]2

+k4 Ñ (1,1)(p,k,φ) g(0,2)(Q)

Q2g(1,1)(Q)

}
, (C13)

with coefficient ηκ , and

V (1,1)
o (p,k,φ)

= N (1,1)(p,k,φ)
∑1

i=0 λ(i) (k · ∂k − dF(i) )χ(i)(k)

g(1,1)(k) D1(p,k,φ)

− (k · ∂kŘ)(k)

[D1(p,k,φ)]2

[
D2(p,k,φ) N (1,1)(p,k,φ) g(0,2)(k)

g(1,1)(k)

+ k4 Ñ (1,1)(p,k,φ) g(0,2)(Q)

Q2 g(1,1)(Q)

]
, (C14)

with coefficient equal to the unity.

2. Equation for the force vertex

The following three nonlinear convolutions enter (68b):

V
(0,2)
F (p,k,φ) := N (0,2)(p,k,φ) g(0,2)(Q) χ(1)(k)

g(1,1)(Q) g(1,1)(k) D1(p,k,φ)
, (C15)

with coefficient ηF ,

V (0,2)
κ (p,k,φ) := N (0,2)(p,k,φ)

×g(0,2)(Q) g(0,2)(k) Ř(k)D2(p,k,φ)

g(1,1)(Q) [g(1,1)(k)]2[D1(p,k,φ)]2
, (C16)

with coefficient ηκ , and

V (0,2)
o (p,k,φ) := N (0,2)(p,k,φ) g(0,2)(Q)

g(1,1)(Q) g(1,1)(k) D1(p,k,φ)

×
{

1∑
i=0

λ(i)
(
k · ∂k − dF(i)

)
χ(i)(k,μ)

− (k · ∂kŘ)(k) g(0,2)(k)

g(1,1)(k)

D2(p,k,φ)

D1(p,k,φ)

}
,

(C17)

with coefficient equal to the unity.
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MEJÍA-MONASTERIO AND MURATORE-GINANNESCHI PHYSICAL REVIEW E 86, 016315 (2012)

[1] A. N. Kolmogorov, Akademiia Nauk SSSR Doklady 30, 301
(1941).

[2] A. N. Kolmogorov, Proc. R. Soc. Lond. Ser. A 434, 15 (1991).
[3] U. Frisch, Turbulence: The Legacy of A. N. Kolmogorov

(Cambridge University Press, New York, 1995).
[4] D. Bernard, Phys. Rev. E 60, 6184 (1999).
[5] D. Bernard, Europhys. Lett. 50, 333 (2000).
[6] E. Lindborg, J. Fluid Mech. 326, 343 (1996).
[7] R. H. Kraichnan, Phys. Fluids 10, 1417 (1967).
[8] G. Boffetta, J. Fluid Mech. 589, 253 (2007).
[9] K. Nam, T. M. Antonsen, P. N. Guzdar, and E. Ott, Phys. Rev.

Lett. 83, 3426 (1999).
[10] P. Constantin and F. Ramos, Commun. Math. Phys. 275, 529

(2007).
[11] G. Falkovich, Fluid Mechanics: A Short Course for Physicists

(Cambridge University Press, New York, 2011).
[12] D. Forster, D. R. Nelson, and M. J. Stephen, Phys. Rev. Lett. 36,

867 (1976).
[13] D. Forster, D. R. Nelson, and M. J. Stephen, Phys. Rev. A 16,

732 (1977).
[14] C. De Dominicis and P. C. Martin, Phys. Rev. A 19, 419 (1979).
[15] J. Zinn-Justin, Quantum Field Theory and Critical Phenomena,

4th ed. (Oxford University Press, Oxford, 2002).
[16] J. L. Cardy, Scaling and Renormalization in Statistical Physics,

Cambridge Lecture Notes in Physics, Vol. 5 (Cambridge
University Press, New York, 1996).

[17] L. T. Adzhemyan, N. V. Antonov, and A. N. Vasil’ev, The
Field Theoretic Renormalization Group in Fully Developed
Turbulence (Gordon and Breach, London, 1999).

[18] J.-D. Fournier and U. Frisch, Phys. Rev. A 28, 1000 (1983).
[19] A. Sain, Manu, and R. Pandit, Phys. Rev. Lett. 81, 4377 (1998).
[20] L. Biferale, M. Cencini, A. S. Lanotte, M. Sbragaglia, and

F. Toschi, New J. Phys. 6, 37 (2004).
[21] A. Mazzino, P. Muratore-Ginanneschi, and S. Musacchio, Phys.

Rev. Lett. 99, 144502 (2007).
[22] A. Mazzino, P. Muratore-Ginanneschi, and S. Musacchio, J. Stat.

Mech. Theory E. 2009, 10012 (2009).
[23] J. Honkonen, Phys. Rev. E 58, 4532 (1998).
[24] R. Lipowsky and M. E. Fisher, Phys. Rev. Lett. 57, 2411 (1986).
[25] R. Lipowsky and M. E. Fisher, Phys. Rev. B 36, 2126 (1987).
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