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Experimental study of spatiotemporally localized surface gravity water waves
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We present experimental results on the study of spatiotemporally localized surface wave events on deep water
that can be modeled using the Peregrine breather solution of the nonlinear Schrödinger equation. These are often
considered as prototypes of oceanic rogue waves that can focus wave energy into a single wave packet. For small
steepness values of the carrier gravity waves the Peregrine breathers are relatively wide, thus providing an excellent
agreement between the theory and experimental results. For larger steepnesses the focusing leads to temporally
and spatially shorter events. Nevertheless, agreement between measurements and the Peregrine breather theory
remains reasonably good, with discrepancies of modulation gradients and spatiotemporal symmetries being
tolerable. Lifetimes and travel distances of the spatiotemporally localized wave events determined from the
experiment are in good agreement with the theory.
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I. INTRODUCTION

Several mechanisms for the formation of giant waves in
the ocean, known as rogue waves, are presently under intense
discussion [1–4]. One of the explanations is based on the linear
theory of wave evolution. According to this approach, high-
amplitude waves appear as a result of constructive interference
of many smaller-amplitude waves. The main deficiency of this
approach is that when increasing the amplitude, the waves
inevitably have to follow the laws of nonlinear dynamics.
Indeed, one of the solid proofs of necessity of using nonlinear
equations for surface gravity wave propagation was the exper-
imental observation of modulation instability by Benjamin
and Feir [5]. The most common approach to model the
nonlinear dynamics of gravity waves in certain approximations
is the nonlinear Schrödinger equation (NLS). Being relatively
simple, it takes into account nonlinearity and linear dispersion.
Despite relative simplicity, it describes well the phenomenon
of Benjamin-Feir instability and highly nontrivial subsequent
nonlinear wave dynamics [6–8]. Several experimental works
confirmed validity of NLS for deep water waves [9–11]. In
particular, Lake et al. [9] have shown that a wave with unstable
periodic modulation evolves to near recurrence just like the
NLS predicts.

One of the clear advantages of using the NLS is its integra-
bility [12]. Having solutions in analytic form is attractive when
comparing experimental results with theory. Indeed, the well-
known solution in the form of a traveling envelope soliton has
been investigated in detail experimentally in Refs. [8,11,13].
Another class of solutions is breathers. One of the forms of
breathers is solitary waves on finite amplitude background
[1,14,15]. Due to nonlinear interference of the soliton with
the finite background these solitons are pulsating. Surprising
results of the theory are the breathers that pulsate only once.
Among them is the Peregrine soliton [16] that is localized both
in time and space. It is given by a rational expression and can
be considered as the limiting case of either the space periodic
breathers [17,18] or the time periodic breathers [19,20]. Being
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doubly localized, the Peregrine breather describes a unique
wave event in which the waves of large amplitude seem to
appear from nowhere and disappear without a trace [21]. As
such, it has long been speculated to play a key role in rogue
wave formation in the open ocean [22].

In contrast to solitons, experimental studies of breather
solutions started only in recent years. After the first successful
observation in nonlinear optics [23], the Peregrine breather has
been observed in a water wave tank [24], in the case of surface
gravity waves and later on for waves in multicomponent
plasma [25]. In each case, remarkable agreement between the
experiment and the Peregrine solution of the NLS has been
found. The objective of the present work is to provide a detailed
study of the rogue wave phenomenon based on breather theory.
Here, we use a wide range of parameters of the background
carrier wave and estimate the limits of applicability of breather
theory. The paper is organized as follows: First, we discuss the
Peregrine soliton solution of the NLS. Second, we describe the
experimental approach on exciting and measuring wave states
in the water wave tank. Then, we present the experimental
results for various parameters of the background carrier wave.
Additionally, we measured the lifetimes and travel distances
of the spatiotemporally localized wave states and compared
them with predictions of the NLS model.

II. MATHEMATICAL APPROACH AND EXPERIMENTAL
SETUP

Weakly nonlinear deep water waves can be described by
the NLS [7]:
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where t and x are time and space coordinates, while k0 and
ω0 = ω(k0) denote the wave number and the angular frequency
of the carrier wave, respectively. The frequency ω0 and the
wave number k0 are linked by the dispersion relation of linear
deep water wave theory, ω0 = √
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speed of the carrier. The surface elevation η(x,t) of the sea
surface is then, to lowest order, given by

η(x,t) = Re(a(x,t) exp[i(k0x − ω0t)]). (2)

A rescaled form of the NLS [12],

iqT + qXX + 2|q|2q = 0, (3)

is obtained from (1) using the variables

T = − ω0

8k2
0

t, X = x − cgt = x − ω0

2k0
t, q =

√
2k2

0a

Here, X is the coordinate in the frame moving with the
wave group velocity and T is the rescaled time. A family
of space-periodic solutions of (3), which starts from a plane
wave at T → −∞ and returns back to the plane wave when
T → +∞, has been found in Refs. [17,18]:

qA(X,T ) = cosh(�T − 2iϕ) − cos(ϕ) cos(pX)

cosh(�T ) − cos(ϕ) cos(pX)
e2iT . (4)

Here � = 2 sin(2ϕ), p = 2 sin(ϕ), and ϕ ∈ R. It can be shown
[18] that Eq. (4) is an exact solution of the NLS that represents
growth-return cycles of modulation instability.

A solution describing a soliton on a background, which
is periodic in time and tends to the plane wave solution as
X → ±∞, has been derived in Refs. [19,20]

qM (X,T ) = cos(�T − 2iϕ) − cosh(ϕ) cosh(pX)

cos(�T ) − cosh(ϕ) cosh(pX)
e2iT , (5)

with � = 2 sinh(2ϕ), p = 2 sinh(ϕ), and ϕ ∈ R.
The solution first presented by Peregrine [16] can be

understood as a limiting case of either of the above solutions
when ϕ → 0, i.e., when the spatial or the temporal period
becomes infinite. The solution then takes rational form as a
fraction of two polynomials:

qP (X,T ) =
(

1 − 4(1 + 4iT )

1 + 4X2 + 16T 2

)
e2iT .

Thus

qP (X,T ) = lim
ϕ→0

qA(X,T ) = lim
ϕ→0

qM (X,T ). (6)

The Peregrine solution breathes only once as it is localized in
both space and time as shown in Fig. 1. The fact that makes
this particular solution a prototype of a rogue wave is that the
maximum amplification at the point of highest amplitude is
three.

The experiments have been performed in a 15 × 1.6 ×
1.5 m water wave tank with 1 m water depth. A single vertical
flap activated by a hydraulic cylinder is located at one end
of the tank and an absorbing beach is installed at the other
end to avoid wave reflections. The surface height of the water
at a given position is measured by a capacitance wave gauge
with a sensitivity of 1.06 V/cm which allows us to make
measurements with an accuracy of up to three significant digits.
The sampling frequency is 500 Hz. The wave gauge is shown
in Fig. 2, slightly to the left from the center of the tank.

In order to generate a Peregrine soliton solution of the NLS
in the water wave tank, we first have to represent its analytical

FIG. 1. (Color online) Contours of equal modulus of the Peregrine
breather solution (6). The maximum amplitude occurs at X = T = 0
and is exactly three times the amplitude of the background carrier
wave.

expression in dimensional form relevant to Eq. (1):
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and take into account the fact that to lowest order the surface
elevation is then given by

η(x,t) = Re{qP (x,t) exp[i(k0x − ω0t)]}. (8)

In this approximation, we are ignoring the bounded waves.
Equation (8) is used to determine the initial conditions for the
flap motion and to compare subsequent measured data with
NLS-based theoretical prediction.

The range of parameters for the carrier wave is limited in
the experiment by a number of factors. First of all, due to
the limited length of the tank, wavelength has to be chosen
sufficiently short to observe both growth and decay processes.
Conversely, the wavelength needs to be large enough to ignore
the effects of surface tension. When the tank size is given, the
wavelength should also satisfy the conditions of deep water.
Namely, the depth d and the wave number k0 should satisfy
the condition k0d � 1 [26]. When taking into account all these
requirements, the range of wavelengths that can be excited in
the tank is becoming very narrow. The actual numbers used in
the experiments are given below.

FIG. 2. (Color online) Schematic illustration (side view) of the
water wave tank. The beach is shown at the left, the paddle at the
right. The capacitance wave gauge is movable along the tank.
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Thus, before starting the experiment, we determine the
initial amplitude and the frequency of the carrier in order
to satisfy deep water conditions. As a preliminary exercise,
we generate the harmonic wave with the specific constant
amplitude along the tank in centimeter scale. Once generated,
the amplitude is almost constant along the whole tank, except
for the small region near the flap. They are nearly constant
up to the beach, which is a signature of small dissipation in
the experiment. By generating waves with various amplitudes,
we established that within the small range we are using the
wave amplitudes are linearly proportional to the signal which
determines the flap motion. The coefficient of proportionality
is adjusted empirically. This preliminary procedure allows us
to determine the scaling factor to a chosen amplitude a0 in
the above equations. The wave number k0 is derived from
the linear dispersion relation. After these preparations, we are
ready to use more complicated initial conditions. In particular,
a simple negative translation of Eqs. (8) and (7) along the x axis
provides us with the initial condition that should be applied to
the flap in order to observe the Peregrine soliton.

III. EXPERIMENTAL RESULTS

A. Spatiotemporal growth and decay

In order to demonstrate the existence of Peregrine solitons,
we performed a number of experiments with different wave
numbers and amplitudes of the carrier wave. An illustrative
example is shown in Fig. 3. Here, the amplitude of the
background is chosen to be a0 = 0.005 m, the carrier fre-
quency f0 = 2.40 Hz, or ω0 = 15.1 s−1, the wave number
k0 = 23.2 m−1, and the wavelength λ0 = 0.270 m. Thus, the
steepness of this carrier wave becomes ε := a0k0 = 0.116.
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FIG. 3. (Color online) Illustration of the spatiotemporal evolution
of the water surface height at various distances from the wave
maker. The curves are measured at distances from the wave maker
shown in the vertical axis on the left. Surface elevation for each
curve is measured in centimeters, as shown in the vertical axis on
the right. Parameters chosen for the experiment are a0 = 0.005 m,
k0 = 23.2 m−1; consequently, ε := a0k0 = 0.116.

The flap motion was programmed to generate a wave with
the maximum breather amplitude at a distance 4.60 m along
the tank. Water surface elevation measurements have been
collected at nine positions, with equal separations of 1 m
along the direction of wave propagation. These data show
that the carrier wave that is slightly modulated near the flap
propagates along the tank with the group velocity. Small
perturbation of the carrier wave grows such that at about 4.60 m
along the tank the amplitude reaches its maximum with an
amplification factor of three. In good agreement with the NLS
theory, afterward the amplitude decays. Thus, if we forget for
a moment that initial conditions are created by ourselves, the
rogue wave on top of the carrier wave appears seemingly out
of nowhere.

In the sections that follow, we first explore the influence
of carrier parameters on wave evolution. This allows us to
evaluate the extent of agreement between measurements and
theoretical predictions of the NLS as well as its limitations.
Then, we give further quantitative evaluation of the spatiotem-
poral properties of Peregrine breathers in terms of lifetimes
and travel distances.

B. The influence of carrier wave steepness

The analytical expression of the Peregrine breather in
dimensional form [Eqs. (7) and (8)] suggests that at the position
where the maximum wave amplitude is achieved, for a given
wave frequency ω0, the time evolution depends, apart from
an amplitude scaling, only on the steepness ε = a0k0 of the
carrier wave. We therefore performed a number of experiments
to study to what extent this parameter influences the measured
data.

Figure 4 shows the results for three different amplitudes
of the carrier: 0.010, 0.020, and 0.030 m. The wavelength of
the carrier has been adapted for each measurement to yield a
wave steepness ε = 0.116. The point of wave maximum has
been chosen 9 m away from the wave maker. We can see,
from Fig. 4, that within the amplitude range considered, the
resulting time series do scale quite well. The noticeable phase
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FIG. 4. (Color online) Comparison of measured (solid line) wave
heights at the position of maximum wave amplitude with Peregrine
solution (dashed line) evaluated at X = 0.
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FIG. 5. (Color online) Comparison of measured (solid line) wave
profiles at the position of maximum wave amplitude with theoretical
Peregrine soliton solution (dashed line) evaluated at X = 0 for
steepness 0.087, 0.058, and 0.029 by varying the amplitude. The
wave number k0 = 11.6 m−1.

shift to the right of the maximum amplitude may be related
to higher steepness in the middle of the wave train and the
corresponding influence of higher Stokes harmonics, which
we ignored in Eq. (8).

Figures 5 and 6 show the influence of the wave steepness
of the carrier wave on the resulting surface elevation at the
point of maximum amplitude. To vary the steepness, we can
alter either carrier amplitude or carrier wave number, or both
simultaneously. First, we fix the the value of k0 = 11.6 m−1

while the amplitudes are varied in order to obtain the steepness
values of 0.087, 0.058, and 0.029, respectively. The results
for the three cases are shown in Fig. 5. In another set of
experiments we fixed the amplitude at the level a0 = 0.010 m
while the wavelength of the carrier is varied in a way to obtain
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FIG. 6. (Color online) Comparison of measured surface heights at
the position of maximum wave amplitude (solid line) with Peregrine
soliton solution (dashed line) evaluated at X = 0 for steepness 0.087,
0.058, and 0.029 by varying the wave number. The scaling parameter
a0 = 0.010 m.

the same steepness values as before. The results of this set are
shown in Fig. 6. For all measurements, the experimental data
are compared to the analytical Peregrine solution.

A few important conclusions can be drawn from the above
results. First, in all measurements, the maximum amplitude
amplification of three is reached in perfect accordance with
the theoretical prediction. Second, the number of waves within
the wave packet increases strongly with decreasing steepness
ε. This fact is also in very good agreement with NLS-based
prediction. Third, the agreement between the measurement
and the NLS theory is higher for smaller steepness values.
This is consistent with the assumption of a weakly nonlinear
nature of the NLS theory, which is valid for small steepness
values. For larger steepness values, discrepancies between the
theory and the experiment start to appear. To some extent,
these discrepancies have been noticed in Ref. [24]. We can
also notice here that the gradients in amplitude modulation are
smaller in theory than in experiment. There is also a noticeable
asymmetry in the wave evolution when comparing the wave
profile before and after the point of maximum amplitude. In
addition to these discrepancies, our measurements confirm
that the wave steepness of the carrier is one of the decisive
parameters in the experiment.

In order to understand the increased number of waves within
the packet, we recall some results known from Benjamin-Feir
instability and Akhmediev breathers. The band of unstable
wave numbers K according to Benjamin-Feir is

0 < K < 2
√

2k2
0a0 (9)

(see, e.g., [15] or [8]). The theory allows us to connect the
amplitude amplification of Akhmediev breathers to the steep-
ness and number of waves under the resulting modulations
[15,27,28]:

amax

a0
= 1 + 2

√√√√1 −
(

K

2
√

2k2
0a0

)2

= 1 + 2

√
1 −

(
1

2
√

2Nxε

)2

, (10)

where Nx := λmod
λ0

= k0
K

is the number of waves in one period
of modulation in the space series and ε = a0k0 is the steepness
of the carrier. According to the linear dispersion relation, we
have

Nt = 2Nx, (11)

where Nt denotes the number of modulated waves in a
corresponding time series. Thus, Eq. (10) becomes

amax

a0
= 1 + 2

√
1 −

(
1√

2Ntε

)2

. (12)

For each Akhmediev breather (4) determined by a fixed
value of the parameter ϕ, there is a direct connection between
the number of modulated waves in time series Nt and the
steepness of the carrier wave. Only the product of Nt and ε

enters the above equation, and for given amplification factors,
large steepness leads to a small number of waves and vice
versa. The Peregrine breather, considered in the present study,

016311-4



EXPERIMENTAL STUDY OF SPATIOTEMPORALLY . . . PHYSICAL REVIEW E 86, 016311 (2012)

0 0.05 0.1 0.15
0

50

100

150

200

250

300

Steepness ε

N
u
m

b
er

of
m

od
u
la

te
d

w
av

es
N

t

FIG. 7. (Color online) The number of modulated waves in time Nt

vs steepness ε. The value of Nt calculated for the Peregrine breather
when the threshold amplitude is 0.99 (solid line) or 0.75 (dashed line).
Crosses × represent the experimental values obtained for a threshold
amplitude of 0.75.

has a maximum amplification of exactly three and can be
obtained from the Akhmediev breather family by taking the
limit K → 0 within the Benjamin-Feir instability band.

The analytical formulas above do not provide the functional
relationship between Nt and ε. Nevertheless, such a relation-
ship can be found numerically. We calculated the dependance
of Nt = Tmod

T0
on ε for the Peregrine breather, where Tmod and

T0 denote the period of the modulation and the period of the
carrier, respectively. For this calculation, we chose a threshold
value of 0.99 times the wave amplitude to define the points
where modulation appears or disappears. This choice resulted
in reasonable agreement with the asymptotic behavior. On the
other hand, in order to compare the theoretical predictions
with experimental data, which always contain noise, we chose
a more robust threshold of 0.75 times the wave amplitude.
Figure 7 shows each of these results. As can be seen from the
figure, for the Peregrine breather, the number of modulated
waves is roughly inversely proportional to the wave steepness.
A similar result has been found by [16] and [29]. We can also
see that our experiments (crosses ×) show good agreement
with the predictions of the NLS theory.

IV. LIFETIMES AND TRAVEL DISTANCES

The major feature of the Peregrine breather is its maximum
surface elevation reached at a single point. In contrast to
other solitonlike solutions which decay exponentially out of
the region of localization, the Peregrine breather experiences
a growth-decay cycle described by rational functions. This
means that this formation has weaker spatial and temporal
localization. In order to describe quantitatively the degree of
localization, we can introduce the breather’s “lifetime” and
“travel distance.” These quantities can be defined in various
ways. The idea is to introduce certain temporal and spatial
intervals where the amplitude has significant deviation from

the homogeneous background. One of the possibilities is to
define the time or space intervals such that at the edges of these
intervals the wave has a fixed threshold amplitude, which is
a specified fraction of the maximum amplitude value. Below,
we calculated these intervals based on the analytical solution
and also compared the results with measurements.

A. Laboratory scale

As the threshold amplitude is somewhat arbitrary, we used
three different values in order to see if it is crucial for
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FIG. 8. (Color online) Lifetimes of Peregrine breather vs steep-
ness, calculated for the amplitude thresholds of 1.25 (crosses), 1.50
(circles), and 1.75 (stars). Four cases correspond to the following
choice of parameters: (top panel) k0 = 23.2 m−1; (second panel)
k0 = 11.6 m−1; (third panel) a0 = 0.005 m; and (bottom panel) a0 =
0.010 m. Crosses × denote experimental results for the amplitude
threshold of 1.75 [(a) and (c)] and 1.25 [(b) and (d)].
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FIG. 9. (Color online) Travel distances of Peregrine breather vs
steepness, calculated for the amplitude thresholds of 1.25 (crosses),
1.50 (circles), and 1.75 (stars). Four cases correspond to the following
choice of parameters: (top panel) k0 = 23.2 m−1; (second panel)
k0 = 11.6 m−1; (third panel) a0 = 0.005 m; and (bottom panel) a0 =
0.010 m. Crosses × denote experimental results for the amplitude
threshold of 1.75 [(a) and (c)] and 1.25 [(b) and (d)].

our definitions. Namely, we used the thresholds 1.25, 1.50,
and 1.75 for exceeding the envelope over the background
at the edges of the intervals. We recall that at the point of
maximum, the envelope exceeds three times the background.
Figures 8 and 9 show the results of calculations as well
as experimental results (crosses ×). In dimensional units,
there are a few parameters that influence the lifetime and
the travel distance. These are the amplitude, wave number,
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FIG. 10. (Color online) Lifetimes (a) and travel distances (b) of
Peregrine-type wave structures vs steepness for λ = 100 m, defined
by amplification factors of 1.25 (dash-dotted), 1.50 (dashed), 1.75
(dotted), and 2.20 (solid).

frequency, and steepness. The plots show the lifetime vs wave
steepness presented for several values of the wave number
and frequency. As before, to vary the steepness, we either
changed the wave number keeping the amplitude fixed, or we
varied the amplitude keeping the wave number fixed. Direct
measurement of lifetimes and travel distances is difficult since
the length of the wave tank is limited. These data have to
be calculated from the measurements of the wave profiles.
This way, two data points have been produced, one based
on the results shown in Fig. 3 above (k0 = 23.2 m−1) and
the other point based on the results obtained in Ref. [24]
(k0 = 11.6 m−1).

As expected, travel distances and lifetimes of the Peregrine
soliton decrease quickly with the increase of the wave steep-
ness. The experimentally obtained values shown by crosses
× fit well to the NLS-based predictions for corresponding
threshold values 1.75 (shown by stars) or 1.25 (shown
by crosses), respectively. We assume that dissipation can
be ignored within the growth-decay cycle of the Peregrine
breather.

B. Ocean scale

For illustration purposes we calculated lifetimes and travel
distances for the case of ocean waves with a wavelength of
λ0 = 100 m. In addition to the threshold amplification factors
given above, we also used the amplification factor of 2.2, which
is still smaller than the maximum amplification of three. This
factor is justified if we recall that the ocean waves exceeding
the background wave height (roughly speaking, the significant
wave height) by a factor of 2.2 are already rogue waves. Thus,
the Peregrine breather can be a considered as an ocean rogue
wave within extended intervals in time and space.

Figure 10 shows the results. We can see, from this figure,
that for particular wave steepness values of the order 0.100,
the lifetime of a Peregrine breather would be of the order of a
few minutes, while its travel distance is of the order of a few
kilometers. Although being very short in the scale of the world
ocean, these numbers are still sufficiently long if we intend to
develop early warning systems directly installed on ships.
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V. CONCLUSIONS AND FUTURE DIRECTIONS

Our study shows that the Peregrine solution of the NLS
equation which models regular deep water surface gravity
waves can be observed experimentally in a water wave tank.
It can be generated directly by applying initial-boundary
conditions derived from the exact solution of the NLS. In the
weakly nonlinear regime, when the steepness of the underlying
background carrier wave is small, the agreement between
experimental results and the Peregrine solution of the NLS
is very good. Discrepancies start to grow with increasing the
steepness values. The carrier wave steepness is also a key
parameter with respect to the spatiotemporal wave shape. At
higher steepnesses the resulting wave packets become very
narrow in space and time. Consequently, the lifetime and travel
distance of the spatiotemporally localized wave structures
decrease.

Although our results demonstrate reasonably good correla-
tion between the wave tank measurements and the dynamics
of the NLS solution, they also clearly show limitations of
the NLS in the present context. When nonlinearity becomes

stronger, i.e. steepness increases, the measured waves become
asymmetric. The modulation gradients also become larger
than those suggested by NLS theory. The origin of these
discrepancies deserves further study. One way to improve the
modeling is to use higher-order envelope equations offered,
e.g., by Dysthe [30] or Slunyaev [31]. Wave breaking that
can be observed for even higher carrier steepness is another
limitation that needs attention. In addition, for ocean waves,
the background wave state is irregular. The role of Peregrine
breathers in such a natural sea state has to be studied separately.
Work in this direction has already started.
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