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Fluid mechanics in fluids at rest
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Using readily available experimental thermophoretic particle-velocity data it is shown, contrary to current
teachings, that for the case of compressible flows independent dye- and particle-tracer velocity measurements of
the local fluid velocity at a point in a flowing fluid do not generally result in the same fluid velocity measure. Rather,
tracer-velocity equality holds only for incompressible flows. For compressible fluids, each type of tracer is shown
to monitor a fundamentally different fluid velocity, with (i) a dye (or any other such molecular-tagging scheme)
measuring the fluid’s mass velocity v appearing in the continuity equation and (ii) a small, physicochemically
and thermally inert, macroscopic (i.e., non-Brownian), solid particle measuring the fluid’s volume velocity vv .
The term “compressibility” as used here includes not only pressure effects on density, but also temperature
effects thereon. (For example, owing to a liquid’s generally nonzero isobaric coefficient of thermal expansion,
nonisothermal liquid flows are to be regarded as compressible despite the general perception of liquids as being
incompressible.) Recognition of the fact that two independent fluid velocities, mass- and volume-based, are
formally required to model continuum fluid behavior impacts on the foundations of contemporary (monovelocity)
fluid mechanics. Included therein are the Navier-Stokes-Fourier equations, which are now seen to apply only
to incompressible fluids (a fact well-known, empirically, to experimental gas kineticists). The findings of a
difference in tracer velocities heralds the introduction into fluid mechanics of a general bipartite theory of fluid
mechanics, bivelocity hydrodynamics [Brenner, Int. J. Eng. Sci. 54, 67 (2012)], differing from conventional
hydrodynamics in situations entailing compressible flows and reducing to conventional hydrodynamics when the
flow is incompressible, while being applicable to both liquids and gases.
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I. INTRODUCTION

A. Background

Eight years ago we published a paper in this journal [1]
whose title was posed in the form of a question: “Is the tracer
velocity of a fluid continuum equal to its mass velocity?”
At the time, lacking the theoretical tools, and in the face
of experimental data insufficient to furnish a convincing and
unequivocal answer, we gave a tentative response of “no” when
the flow is compressible and “yes” for incompressible flows.
It has taken since then to make these assertions ironclad by
furnishing theoretical proofs thereof, as well as to accumulate
additional evidence in support of these answers. Developing
a theoretical proof required evolving a bipartite theory of
continuum fluid mechanics, “bivelocity hydrodynamics,” a
new branch of continuum mechanics, whose major findings
were recently summarized elsewhere [2]. That publication
should be viewed as a companion paper to what is written
here, although it does not, itself, touch upon any aspect of
the subject of tracers, the principal focus of the current paper.
Freed by the companion paper of the need here to substantiate
the lengthy physicomathematical arguments underlying our
answers, we concentrate in what follows on providing the
reader with a straightforward account of the reasoning behind
our tracer-related conclusions.

The seemingly oxymoronic, but nevertheless wholly ap-
propriate title of our present paper, “Fluid mechanics in fluids
at rest,” was deliberately chosen to be provocative in order
to advance a second, broader theme, for which the tracer
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question constitutes but a special case. This refers to the
existence of the heretofore unrecognized theoretical limits of
applicability of the Navier-Stokes-Fourier (NSF) paradigm to
incompressible flows, while advancing arguments in favor of
the more generally applicable bivelocity paradigm [2], valid
for both compressible and incompressible flows.

Despite the fluid being at rest—referring to the absence of
macroscopic mass motion of the fluid—the fundamental mass,
momentum, and energy conservation laws [3] underlying
single-component hydrodynamics in quiescent fluids will
nevertheless be seen to remain as relevant here as they are when
the fluid is flowing. We focus on the quiescent case because
the analysis is then especially transparent. Despite this focus
on fluids at rest, the main conclusions issuing therefrom will
be seen to apply irrespective of whether the fluid is flowing or
at rest. The greater transparency arising for quiescent fluids
stems from the fact that the slower the fluid moves, the
greater is the magnitude of the extent by which predictions
emanating from the bivelocity paradigm deviate from their
traditional NSF counterparts. Furthermore, the smallness of
the Reynolds numbers encountered when addressing quiescent
fluids furnishes additional simplifications in the subsequent
calculations, enabling, for example, transient phenomena to
be viewed asymptotically as quasistatic.

B. Compressible flows

The major conclusion of bivelocity theory is that for fluids
displaying linear rheological and thermal constitutive behavior
the NSF paradigm is applicable only to incompressible flows.
For compressible flows (of both gases and liquids) the NSF
equations should be replaced by the more comprehensive
bivelocity paradigm summarized here. The bivelocity model
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reduces to the NSF model in the incompressible limit. Other,
less well-documented conclusions, pertinent, for example, to
key aspects of hydrodynamics beyond the linear constitutive
range, are briefly cited at the end of the paper.

The basic ideas underlying bivelocity hydrodynamics have
existed for almost a decade [1,4–6], albeit being incomplete
until now [2]). Its completion was based upon recognizing
the need to prescribe the requirement that the constitutive
equations entering into the theory satisfy a condition of
mechanical equilibrium (see Eq. (6.16) of Ref. [2]), namely
∇ · P − ρ f̂ = 0, where P is the pressure tensor, ρ the mass
density, and f̂ the specific body force. The basis for this
requirement follows the arguments of Prigogine, as set forth
in De Groot and Mazur [7, pp. 43–44] in recognizing that
mechanical equilibrium in fluids occurs well before that of
thermodynamic equilibrium and hence necessarily underlies
any theory of transport phenomena [3]. The companion paper
shows, unequivocally, that the classical NSF paradigm [8]
is intrinsically restricted to incompressible flows. In place
of the latter model of fluid-mechanical behavior, bivelocity
hydrodynamics poses a new paradigm in its stead, one equally
valid for both compressible and incompressible flows. The
theory of tracer behavior will be seen as intimately linked to
the distinction between these two classes of flows.

Owing to the well-documented disparity of theoretical
NSF-based predictions with experiments performed upon
compressible gases, gas kineticists [9] have long known, em-
pirically, that the NSF equations were inaccurate when applied
to compressible flows of fluid continua. Our analysis goes
one step further, showing that this “inaccuracy” stems from
the intrinsic inapplicability to compressible flows of the NSF
paradigm itself. Reasons offered by gas kineticists for the em-
pirically observed breakdown in the reliability of the paradigm
are based upon invoking the Boltzmann equation [10,11], a
molecular theory, resulting in more-or-less ad hoc explanations
of the transition phenomenon owing to their inability to
solve this intractable equation. In contrast, our bivelocity
explanation of the breakdown is strictly continuum in nature.

At least for the case where only modest departures
from local near-equilibrium conditions prevail, and hence
for which circumstances the principles of linear irreversible
thermodynamics (LIT) [7] can confidently be assumed to
apply, bivelocity hydrodynamics will be seen to provide a
unifying theme, one that removes the artificial distinction
currently existing between compressible and incompressible
hydrodynamics. This is accomplished by the introduction into
hydrodynamics of a second, independent velocity—the fluid’s
volume velocity vv—above and beyond that of the fluid’s mass
velocity v appearing in the continuity equation. The difference
between the two velocities at a point in the fluid is found
to be quantified by and (because of constitutive linearity)
proportional to the local mass density gradient ∇ρ, assuring
thereby that bivelocity theory merges smoothly into NSF
theory in the limiting case where the flow is incompressible,
such that ρ = const.

C. The fluid’s mass velocity v

In Newtonian mechanics the notion of the velocity of an
object at a point in space is a strictly kinematical concept,

wholly divorced from any aspect of the object’s mass. For
example, in focusing on the velocity of a just-launched
rocket whose thrusters are releasing combustion gases to their
surroundings as it makes its way through the atmosphere,
one identifies the velocity of the rocket (relative to, say,
Earth), independently of the unburned mass of fuel and oxidant
remaining on board.

Standing in marked contrast to the independence of the
Newtonian concept of velocity from any linkage to mass is the
fact that in theoretical fluid mechanics the notion of the fluid’s
velocity at a point in space is inseparably linked to the concept
of mass. This is so because in fluid mechanics the theoretical
concept of velocity at a point in a fluid continuum draws upon
use of the law of conservation of mass,

∂ρ

∂t
+ ∇ · nm = 0, (1.1)

in order to constitutively define the fluid’s velocity,

v := nm

ρ
, (1.2)

to which we henceforth refer as the fluid’s mass velocity. It is
this strictly formal, abstract definition of the fluid’s velocity,
intimately tied to mass-related physical concepts involving the
fluid’s density ρ and its mass-flux nm, that enables (1.1) to be
rewritten in its more usual continuity-equation form:

∂ρ

∂t
+ ∇ · (ρv) = 0. (1.3)

It is on this strictly mass-based foundation that the kinemat-
ical concept of the fluid’s velocity at a point in the continuum
emerges.

The mass flux density nm appearing in Eq. (1.1) is defined
such that with dS a directed element of surface area situated
at a fixed point x of the fluid, the scalar dS · nm gives the
temporal rate at which mass is flowing across that surface.
That the vector nm is a field variable at point x, independent
of the orientation of the surface element, is proved by the
so-called “tetrahedron argument” [8].

The argument here is that in theoretical fluid mechanics
the velocity symbol v does not pertain to the movement of
an object, since neither the mass flux nor the mass density in
Eq. (1.2) is an “object,” namely an extensive material entity
consisting of a permanent collection of matter, and composed
for all time of exactly the same molecules. (For example, with
regard to the rocket, the object whose velocity was sought was
the rocket casing.) It is only in connection with experimental
fluid mechanics, where a tracer is inserted into the fluid in an
attempt to monitor the attribute termed the fluid’s “velocity”
v as defined by Eq. (1.2), that the word velocity is used in the
same purely kinematical sense as it is in Newtonian mechanics.

In what follows we deal only with single-component fluids,
although key elements of multicomponent bivelocity theory
are already available [12].

II. TRACER MEASUREMENTS OF FLUID VELOCITY

Tracers are used in experimental fluid mechanics to measure
the velocity v of a flowing fluid by monitoring the tracer’s
spatiotemporal movement through space and assuming that the
tracer is entrained in the fluid’s mass flow. Tracer velocities are
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interpreted by use of the fundamental kinematical operational
definition

v(x,t) =
(

∂x
∂t

)
x0

(2.1)

of the velocity of an object, where x denotes the object’s
(i.e., tracer’s) position at time t following its initial in-
troduction at time t = 0 into the fluid at some arbitrary
point x0. Explicitly, the goal of a tracer is to relate the
experimentally defined tracer’s velocity as determined by use
of (2.1) to the theoretically defined mass-velocity symbol
v appearing in Eq. (1.2). It is this search that, for us,
provides the motivating entry into the subject of bivelocity
hydrodynamics.

Two elementary classes of tracers are commonly used
to measure the fluid’s velocity. These are typified by (i) a
colored soluble dye, whose tracer velocity as defined by (2.1)
henceforth is denoted as v′, and (ii) a small, physicochemically
and thermally inert, macroscopic (i.e., non-Brownian) solid
particle, whose tracer velocity is denoted by v′′. Were the
flowing, single-component fluid to be, say, photochromic
[13], the actual introduction of a dye into the fluid in
connection with item (i) would prove unnecessary, since the
tracer (now constituting a collection of the photochromic
fluid’s molecules) could itself be initially colorized in the
neighborhood of some fluid point by use of lasers, which would
not introduce the addition to the fluid of a foreign substance in
order to introduce the color to be tracked. It is to this general
type of “molecular tagging” [14] to which we later refer when
speaking of a dye tracer.

During tracer experiments one directly measures the veloc-
ity v′ of the dye tracer or the velocity v′′ of the particle tracer.
However, one cannot directly measure the fluid’s mass velocity
v itself, the latter as defined constitutively by Eq. (1.2). As such,
how does one know that either v′ or v′′, if indeed either, is the
physical realization of the abstract symbol v appearing in the
continuity equation (1.3)?

Ever since Euler’s [15] founding of theoretical fluid
mechanics as a rational scientific discipline in 1755 it has been
implicitly assumed by fluid mechanicians that both types of
tracer velocity measurements, dye and particle, necessarily
yield the same outcome, namely that v′ = v′′ irrespective
of specific circumstances (i.e., whether, for example, the
flow occurs isothermally or nonisothermally, compressibly,
or incompressibly, etc.). Furthermore, when interpreting the
outcome of those tracer experiments, both tracers are invari-
ably assumed to be the physical realization of the fluid’s mass
velocity v, such that

v′ = v′′ = v. (2.2)

Our perspective with respect to this relation is to insist
that if it is indeed true, then the two independent claims
implicit therein, say v′ = v′′ and v′′ = v, need to be proved
theoretically, rather than being taken for granted. Pursuit
of the voracity of this claim using bivelocity hydrodynamics
is the dominant theme of this paper. Indeed, these kinematical
tracer questions constituted the original motivating force
[1,4] leading to the creation of bivelocity theory in the first
place.

A. Review of evidence against Eq. (2.2)

Incontrovertible evidence, both theoretical and
experimental—the latter as embodied in the phenomenon
of thermophoresis [16,17] and the former as embodied in
bivelocity theory [2]—is presented in what follows, thereby
contradicting the universality of several of the naive beliefs
expressed by Eq. (2.2).

In fact, as it turns out, bivelocity theory shows, when the
flow is compressible, such that ∇ρ �= 0 in the neighborhood
of the point in the fluid where the fluid’s velocity v is sought,
that

v′′ �= v, (2.3)

thus conflicting with one aspect of (2.2). That is, par-
ticulate tracers do not always move with the fluid’s
mass velocity. Rather, they do so only when the flow is
incompressible.

In contrast to the inequality (2.3), and as is demonstrated
in Appendix A (independently of the validity of bivelocity
theory),

v′ = v (2.4)

in any and all circumstances, compressible or otherwise. That
is, the dye tracer always faithfully monitors the fluid’s mass
velocity.

It follows jointly from Eqs. (2.3) and (2.4) that for
compressible flows

v′ �= v′′, (2.5)

with equality holding only for incompressible flows. Physi-
cally, the source of the difference (2.5) in the respective dye-
and particle-tracer velocities lies in the fact that in contrast with
the particle-tracer case the domain occupied by the dye’s color
does not constitute a deterministic, material object. Rather, the
dye’s molecules (which are the carriers of the color) undergo
diffusion owing to their respective Brownian motions. As a
result, the dye’s center of color, as opposed to the particle’s
center of mass, is a statistical rather than deterministic object.
Since the fluid’s mass velocity v is itself a statistical-molecular
attribute of the fluid, it turns out that the equality (2.4) of dye
and fluid mass velocities holds true under all conditions.

It is thus the difference between the statistical and de-
terministic natures of the two physical tracer measurements
that renders the dye and particle-tracer velocities generally
unequal, with equality holding only when the fluid’s molecules
are, on average (i.e., macroscopically), uniformly distributed.
The latter is the case when the fluid is incompressible. It is only
when the molecules are, on average, nonuniformly distributed,
for which case ∇ρ �= 0 (constituting a compressible flow), that
the respective statistical and deterministic tracer velocities
diverge from one another, whereupon the inequality (2.5)
prevails. That inequality, when combined with (2.4), gives rise
to the fact the particle tracer does not move with the fluid’s
mass velocity, as set forth in Eq. (2.3). Rather, the particle
tracer is shown to move at the fluid’s volume velocity.

In summary, it is only for incompressible flows that the
fundamental hypothesis (2.2) underlying the experimental
verification of the equations of contemporary fluid mechan-
ics is upheld in all circumstances. Amendments to these
relations are thus required when the flow is compressible,
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namely when temperature or pressure gradients (or both) give
rise to density gradients within the flow field. Identifying,
formulating, and experimentally confirming the viability of
these amendments is the sum and substance of bivelocity
hydrodynamics.

From an overall perspective the bivelocity paradigm serves
to establish the theoretical counterpart of the particle tracer
velocity v′′, such that this tracer velocity constitutes the
physical realization of a theoretical quantity that we have
termed the fluid’s volume velocity, represented by the symbol
vv , and subsequently define in Eq. (3.10).

III. PRECONSTITUTIVE MASS, MOMENTUM, AND
ENERGY CONSERVATION EQUATIONS

A. Generic conservation laws

Prior to the introduction therein of any constitutive laws,
the generic mass, linear momentum, and energy equations
currently regarded as embodying the general conservation
principles underlying fluid mechanics are [3,7,18,19]

(i) mass conservation,

∂ρ

∂t
+ ∇ · (ρv) = 0; (3.1)

(ii) momentum conservation,

ρ
Dm̂
Dt

= −∇ · P + ρ f̂; and (3.2)

(iii) energy conservation,

ρ
Dê

Dt
= −∇ · ju − ∇ · jw. (3.3)

In addition to those symbols defined earlier, the new
symbols appearing in the above are the specific momen-
tum (or “momentum velocity”) m̂; pressure tensor P; spe-
cific body force f̂ = −∇φ̂ (assumed conservative, with
φ̂ a time-independent specific potential energy); specific
energy

ê = û + êk + φ̂, (3.4)

consisting of internal-, kinetic-, and potential-energies; the
heat flux ju (“diffuse internal energy flux”); and what we here
term the “work-rate” or “rate-of-working” flux jw.

The material derivative appearing in the preceding equa-
tions is defined as

D

Dt
= ∂

∂t
+ v · ∇. (3.5)

Furthermore, the pressure tensor is usually decomposed
into the sum

P = I p − T, (3.6)

in which I is the dyadic idemfactor and T the deviatoric stress.
The latter is assumed here to be both symmetric and traceless.
Choosing T to be traceless is tantamount to ignoring bulk
viscosity effects. While for simplicity we do so in this paper,
bivelocity results for the more general asymmetric case are
available elsewhere [2].

B. Constitutive relations

In order to effect closure of the trio of conservation
equations (3.1)–(3.3), thereby enabling their use in fluid-
mechanical applications, constitutive equations are required
for each of the symbols appearing therein [except for v,
whose constitutive equation is already given by Eq. (1.2).
In particular, the goal is to ultimately express all constitutive
relations in terms of the trio of independent variables (v,p,T ),
with all other symbols (both nonequiulibrium- and equilibrium
thermodynamically related) being regarded as dependent
variables deriving from this set.

In current modes of pedagogical exposition [3,18,19] the
selection of constitutive relations to be inserted into the above
conservation equations in order to effect their closure invari-
ably proceeds in two sequential steps: (i) formulating those
constitutive equations that are regarded as being universal in
scope, that is, are independent of the material properties of the
particular fluid to which the resulting set of fluid-mechanical
equations are ultimately to be applied; and (ii) formulating
those material-specific constitutive laws that are specifically
applicable only to a restricted class of fluids, for example,
NSF fluids.

1. Universal constitutive relations

In the fluid-mechanics literature [3,7,18,19] the set of
universally applicable constitutive relations appearing in
the mass, momentum, and energy equations are assumed
to be

m̂
?= v, (3.7a)

êk

?= v · v/2, (3.7b)

and

jw
?= P · v, (3.7c)

each of which depends functionally upon the fluid’s mass
velocity (with the same being true of P). Subsequently, we
show that Eqs. (3.7a) and (3.7b) are, indeed, universal in scope,
whereas Eq. (3.7c) is seen as generally applicable only for the
case of incompressible flows.

2. Material-specific constitutive relations

Material- or fluid-specific substances are those whose
(v,p,T ) constitutive dependence lacks universality and whose
transport behavior is therefore specific to a given fluid or to a
particular class of fluids. By way of example, the constitutive
equations obeyed by the class of materially specific NSF fluids
are [3] (i) Navier-Stokes rheological law,

T = 2η∇v, (3.8)

and (ii) Fourier’s heat-conduction law,

ju = −k∇T . (3.9)

Appearing in these expressions are the fluid’s thermal
conductivity k and shear viscosity η, each of which de-
pends on (p,T ). The overbar surmounting a dyadic, as in
Eq. (3.8), represents the dyadic’s symmetric and traceless
form.
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C. Challenges

Bivelocity hydrodynamics [2] departs from the contempo-
rary hydrodynamics embodied in Eqs. (3.1)–(3.7) by chal-
lenging the present belief that each of the three Eqs. (3.7) is
indeed universal in scope. In reviewing the origin of these three
constitutive relations it becomes clear that each is an intuitively
based hypothesis rather than an irrefutable physical law. Each
of these intensive relations is obviously based upon an implicit
analogy with a comparable extensive Newtonian mechanics
counterpart, wherein the purely kinematically defined velocity
symbol v appearing therein is replaced by the fluid’s mass
velocity v. For example, the Newtonian formula M = mv for
the extensive linear momentum M of a point-size rigid body
of mass m moving through space with velocity v becomes,
when adapted analogically to a fluid continuum via the fact
that M/m = v, is assumed to furnish the constitutive relation
(3.7a) for the fluid’s specific momentum density. However,
the velocity v appearing in the expression for M is a purely
kinematical quantity, divorced from that of the body’s mass m,
as witnessed by their separate appearances in the constitutive
formula for M. In contrast, the fluid-mechanical velocity v is
not strictly kinematical in nature, owing to its linkage to that
of mass via Eqs. (1.1)–(1.3).

However plausible each of the three analogies underlying
(3.7) may seem, they nevertheless need to be formally proven
if true. Rationally, proofs of each, in order to be acceptable,
need to be based either (i) upon well-established and more
all-embracing physical principles or, when no such principle
exists, (ii) on the accord with experiments of theoretical
predictions emanating from having adopted these analogical
hypotheses.

With regard to the above issues it is useful to recall that
a fluid continuum is, after all, a mathematical rather than
physical (material) entity, one that does not literally exist
in nature, as opposed to, say, a rigid body in Newtonian
mechanics. As such, it should not prove too surprising to learn
that the analogy between a hypothetical fluid continuum and
a rigid body may not be as exact as might otherwise appear
from long experience. Indeed, in this context Serrin [20, p. 134]
makes the explicit observation that the conservation equations
of continuum fluid mechanics cannot, themselves, be formally
derived from their Newtonian mechanics conservation coun-
terparts. Rather, the fluid-mechanical equations appearing in
textbooks are said by him to be merely “plausible.” These
cautions come to the forefront, especially when considered in
conjunction with experimental tracer-velocity data suggesting
that, in order to rationalize the tracer data, the existence of a
second velocity, the fluid’s volume velocity v′′ ≡ vv , may be
required in a more comprehensive hydrodynamic theory.

D. Proofs of the universality of Eqs. (3.7a) and (3.7b)

Authoritative physical principles already exist that are
sufficient to establish the universality of both Eqs. (3.7a) and
(3.7b), but not that of (3.7c).

In particular, theoretical proof of Eq. (3.7a) for the fluid’s
specific linear momentum density, based upon recent work
by others, is offered in Appendix B. Key to the proof is
the (perceived) need for the equations of fluid mechanics to

satisfy the principle of conservation of angular momentum, a
universally accepted physical principle.

Theoretical proof of the universality of the constitutive
relation (3.7b) for the fluid’s specific kinetic energy is offered
in Appendix C on the basis of the physically required Galilean
invariance of the resulting mass, momentum, and energy
laws, with such invariance being recognized by the scientific
community as an indisputable universally valid, physical
principle.

E. Work-rate flux jw

The constitutive equation for the work-related flux (3.7c)
stands alone among the trio of Eqs. (3.7) by virtue of there
currently being no proof of either its universality or its lack
thereof. No pertinent physical principle having the broad
authority, say, of a conservation law or a Galilean invariance
principle appears to exist in the case of (3.7c) that would
prove sufficient unto itself to enable a decision in the matter.
Nevertheless, as subsequently discussed in Sec. V, in the
course of demonstrating the latter’s lack of universality, it
proved possible to repair the situation by drawing upon
a combination of reasonably well-accepted theories (LIT
together with Boltzmann’s gas-kinetic equation) jointly with
experimental thermophoretic tracer-velocity data to reach
the important conclusion that Eq. (3.7c) lacks universality.
This finding challenges the foundations of contemporary
fluid mechanics, which rely, inter alia, implicitly upon the
universality of that relation.

In particular, it will be seen that the work-rate flux formula
(3.7c) is correct only for incompressible fluids. In its stead,
and with vv the fluid’s volume velocity, as defined explicitly
by its presence in the expression

jw = P · vv, (3.10)

we tentatively adopt this nested constitutive relation as a
hypothesis for use in Eq. (3.3). “Nesting” refers here to the
fact that the constitutive equation for P is seen to depend upon
that for vv. As such, the constitutive equations for both need
to be determined concomitantly rather than sequentially, as
elaborated upon in Sec. V.

Because of this nesting aspect, the amendments to fluid
mechanics posed by these considerations impact not only on
the energy equation, where the symbol vv appears explicitly,
but also on the momentum equation (3.2). This is so because
of the interlinking (3.10) of the constitutive equation for
P with that of vv , jointly with fact that P appears in the
momentum equation. This makes the momentum equation
implicitly dependent on the constitutive equation for vv , even
though vv itself appears explicitly only in the energy equation.
As a consequence, Eq. (3.10) plays a role in amending
fluid-mechanical calculations even for isothermal flows, where
the energy equation itself proves irrelevant.

Owing to the constitutive dependence of vv (as well that of
P) on the physical properties of the fluid bring addressed,
Eq. (3.10) is, by definition, a material-specific rather than
universal constitutive law (unless, of course, vv ultimately
proves to be constitutively synonymous with v, such as
is currently believed to be the case in conventional fluid
mechanics). Furthermore, much as in the NSF case, theoretical
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knowledge of the respective constitutive laws governing P
and vv (and ju) proves to be accessible only for those
situations where LIT suffices as regards the degree of accuracy
required in applications involving the consequent constitutive
equations. That is, constitutive data for jw is available later on
in this paper only for those flows whose departures from a state
of uniform pressure and temperature are sufficiently small such
that linear rheological and thermal constitutive laws, typified
by those embodied in Eqs. (3.8) and (3.9), provide sufficient
accuracy.

F. A brief glimpse of what follows

For the case of single-component fluids, and for modest
degrees of departures from equilibrium, the volume velocity at
a point in a fluid is seen to be given in terms of the trio (v,p,T )
of independent variables by the constitutive equation [2]

vv = v + Dv∇ ln ρ, (3.11)

where Dv , whose units are those of a diffusivity, is a phe-
nomenological coefficient termed the fluid’s volume diffusion
coefficient. This macroscopically defined volume diffusivity,
like its conventional diffusion coefficient analogs appearing
in transport processes theory [3], is dependent, at most,
upon only the pressure and temperature of the fluid, being
independent of the fluid’s mass velocity. When the fluid is
incompressible, such that ∇ρ = 0, Eq. (3.11) shows that
the two velocities merge into one, such that vv = v, for
which case bivelocity hydrodynamics reverts to conventional
monovelocity hydrodynamics [3,7,18,19].

The volume diffusivity for the case of dilute gases is found
to be given by an expression of the general form [2]

Dv = Cvυ, (3.12)

where υ = η/ρ is the kinematic viscosity and Cv is a
dimensionless coefficient whose numerical value is very near
to unity. Estimates of this coefficient by several authors, each
based upon a version of his own bivelocitylike theory, are given
later (in Table I).

It often proves convenient to express the difference between
the volume and mass velocities in the form of a diffuse volume
flux, with the latter defined as

jv := vv − v. (3.13)

As such, the latter’s constitutive formulation for near-
equilibrium flows is, from Eq. (3.11),

jv = Dv∇ ln ρ. (3.14)

IV. THERMOPHORESIS: PARTICULATE TRACERS

A. Particle image velocimetry

Under the heading of particle image velocimetry [21],
Wikipedia’s current encyclopedic article bearing thereon states
that, “Particle image velocimetry (PIV) is an optical method
of flow visualization used in education and research. It is used
to obtain instantaneous velocity measurements and related
properties in fluids. The fluid is seeded with tracer particles
which, for sufficiently small particles, are assumed [emphasis

ours] to faithfully follow the flow dynamics (the degree to
which the particles faithfully follow the flow is represented
by the Stokes number). The fluid with entrained particles is
illuminated so that particles are visible. The motion of the
seeding particles is used to calculate speed and direction (the
velocity field) of the flow being studied.”

The preceding remarks are equivalent to the supposition
that the equality sign applies in Eq. (2.3).

B. Thermophoresis

The phenomenon of thermophoresis [16,17] negates this
implicit Wikipedia claim, namely that particles of effectively
zero size and mass (corresponding to zero Stokes number)
are necessarily entrained by the fluid, and hence that their
velocities v′′ are equal to the velocity v of the fluid, the
latter as defined constitutively by Eq. (1.2). With regard
to the thermophoretic movement of particles relative to
the nonisothermal fluids in which they are immersed, it is
already moderately well known [22] to those concerned, for
example, with the transport of soot particles during combustion
processes that a small, isolated, force- and torque-free solid
particle suspended in a nonisothermal fluid does not move
with the fluid’s mass velocity v. As shown in what follows,
this knowledge, when appropriately interpreted and pursued
to fruition in the context of bivelocity theory, ultimately
provides physical insight, heretofore lacking, into the well-
known failure [8] of the NSF equations to accurately model
compressible flow phenomena.

Thermophoresis provides the premier example, indeed the
only unequivocal example currently known to the author,
showing that the particle-tracer velocity does not always
mirror the fluid’s mass velocity and confirming thereby the
general inequality v′′ �= v set forth in Eq. (2.3). In view of
the universally valid dye- and mass-velocity equality v′ = v
appearing in Eq. (2.4) it follows that respective dye- and
particle-tracer measurements of the fluid’s velocity will not
generally agree with one another, namely that v′ �= v′′, as set
forth in Eq. (2.5).

In the conceptually simplest case, thermophoretic particle
motion [16,17] is encountered following the introduction
of a solid, macroscopic, particle into an initially quiescent
fluid confined between parallel walls maintained steadily at
different temperatures. (In the general case the particle need
be neither small nor inert to acquire thermophoretic mobility.)
Subsequent monitoring of the particle’s spatiotemporal move-
ment (occurring from the hotter towards the colder regions
of the fluid) establishes that though the original, undisturbed,
particle-free fluid was at rest, a force- and torque-free particle
nevertheless translates through the fluid despite the absence
of any obvious externally imposed animating force. In what
follows, we address only situations where the particle is
sufficiently small relative to its distance from either wall, so as
to rule out the possibility of wall effects impinging upon the
particle’s motion.

Prior to insertion of the particle, the undisturbed fluid
is simply undergoing steady-state heat conduction governed
by Fourier’s law. Dye introduced into that quiescent fluid
in the role of a tracer of the fluid’s mass motion will
remain at rest (as proved in Appendix A) such that v′ = 0,
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TABLE I. Cv values for gases proposed by various authors for use in Eq. (6.3).a,b

References to researcher’s
Author(s) Scheme Cv publications

Brenner LIT (Le Pr)−1 Eq. (1.6) [5]
Öttinger GENERIC Pr−1 Eq. (2.82) [33]
Klimontovich Modified Boltzmann Pr−1 Eq. (14.1.2) [35]
Greenshields-Reese Experimental interpretation 1 Eq. (4.6) [36]
Dadzie-Reese et al. Modified Boltzmann (Le Pr)−1 Eq. (52) [37]
Eu Statistical mechanics (Le Pr)−1 Eq. (103) [40]
Koide-Kodama Stochastic variational 1 Eq. (26) [41]
Durst et al. Extended molecular transport 1 Eq. (10a) [46]
Graur et al. Quasi-gasdynamics (QGD) 1 Eq. (25) [47]

aThe dimensionless Prandtl number is Pr = υ /α. Prandtl numbers for gases are of O(1) [3, Table 9.1.2.].
bThe dimensionless Lewis number [3] is Le = α/D, where D is the self-diffusivity. Lewis numbers for gases are of O(1); see Table I of [24].

confirming the absence of macroscopic mass motion. This lack
of fluid movement appears to rule out entrainment of the ther-
mophoretc particle by fluid motion as the source of its mobility.
However, what of the possibility of a second, hidden, fluid
“motion” as the entraining flow mechanism—say, the fluid’s
hypothetical preexisting volume velocity vv brought on by the
Fourier temperature gradient—as a possibility suggested by
the independent particle tracer-velocity measurement v′′?

1. Inert particles

Whereas a dye tracer remains at rest when introduced into a
quiescent nonisothermal fluid, a small (albeit non-Brownian),
physicochemically and thermally inert (non-heat-conducting)
particle introduced therein in the presumably objective role of a
tracer of the fluid’s motion, is observed to move thermophoret-
ically through the fluid at a reproducible velocity UT relative
to the walls (and hence relative to the externally imposed
temperature gradient). Experimentally, as noted below, UT ,

the particle’s thermophoretic velocity, is observed to depend
upon only the physicochemical properties of the fluid (and the
magnitude of the temperature gradient), independently of any
and all of the particle’s material or geometric properties.

When the fluid is an ideal gas this inert particle velocity is
found to be

UT = −Csυ∇ ln T , (4.1)

a formula that has extensive theoretical and experimental sup-
port [16,17]. Cs is Maxwell’s [23] thermal-creep coefficient,
an empirical, experimentally determined, nondimensional
constant of O(1), for which the value Cs ≈ 1.15 (see Table I
of Ref. [16]) is frequently cited. In regard to particle geometry,
the velocity given by (4.1) is found to be independent of the
particle’s size and shape, and (when nonspherical [25]) also
of the particle’s orientation relative to either of the confining
walls or, equivalently, relative to the direction of the externally
imposed vector temperature gradient. For example, Eq. (4.1)
applies equally to both spherical and ellipsoidal particles, in
the latter case being independent of the ellipsoid’s orientation.

Such solid particle movement through a fluid under the
influence of a temperature gradient has been known since at
least the time of Tyndall [26]. This type of motion should
not be confused with the comparable Marangoni movement

[27] of a liquid droplet though an immiscible, nonisothermal
viscous liquid, with motion in that case being animated
by the dependence of the droplet’s interfacial tension upon
the temperature. Marangoni motion reflects the impact of
interacting droplet-fluid physicochemical surface forces on
particle movement through immiscible fluids, and depends
upon droplet size, vanishing in the limit as droplet size shrinks
to zero. (Moreover, the droplet speed depends not only on
the chemical properties of the fluid continuum, but also on
those of the droplet itself, since interfacial tension is a joint
property of both the droplet and the surrounding fluid.) In
contrast, as seen from Eq. (4.1), the thermophoretic motion
of a physicochemically inert solid particle through a gas is
size-independent, with the particle’s thermophoretic velocity
UT remaining nonzero even in the extrapolated hypothetical
limit of zero size. Moreover, in contrast with the droplet case,
the inert particle’s velocity is observed to be independent of
the particle’s chemical constitution.

In addition to the particle’s mobility in the absence of any
obvious animating force, the size independence and geometric
and physicochemical property independence of the particle’s
thermophoretic velocity as evidenced by Eq. (4.1) are striking
phenomena, attributes whose fundamental significance to the
subject of fluid kinematics and, ultimately, fluid dynamics
and energetics as a whole was not recognized prior to the
creation of bivelocity hydrodynamics [1,4]. This importance
stems from the fact that whereas the fluid is locally at rest
when the particle is absent (i.e., v′ ≡ v = 0, as confirmed by
a dye-tracer measurement), the fluid is no longer locally at
rest (v �= 0) in the neighborhood of the particle, even when
the particle is effectively only infinitesimal in size and thereby
effectively absent from the fluid.

In effect, insufficient attention was paid in the past to
the source of the particle’s ability to move despite the
seeming absence of any animating force. Epstein [28],
building on Maxwell’s [23] thermal-creep model, explained
thermophoretic motion as resulting from temperature gradient-
induced slip (thermal creep) of the gas’s mass velocity v along
the particle surface. Though not incorrect, this explanation fails
to reconcile the fundamental physical-scale incompatibility
of the notion of slip (a strictly macroscopic phenomenon)
with fluid movement occurring along a particle surface of
asymptotically zero size.
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Given the solidity of the particle, the magnitude of the
fluid’s velocity v in proximity to the particle, with the latter
pushing the previously quiescent fluid mass out of its way as
its moves between walls under the influence of the temperature
gradient, must obviously be of the same order of magnitude
as the particle’s thermophoretic velocity UT , even in the limit
as the particle size shrinks to zero. Apparently, in this limit,
an evanescent ghostlike mobile residue of the thermophoretic
particle remains present in order to create this finite-size
nonzero fluid velocity v despite the gas apparently being at
rest. As such, a singularity exists in this limit. While this
singularity might seem to be of only mathematical interest, its
physical consequences are believed to herald a major advance
in the theory of compressible fluid mechanics. Following the
pursuit of the physical consequences stemming from this
singular behavior, this advance refers, among other things,
to the replacement of the NSF paradigm by its bivelocity
counterpart.

2. Noninert particles

When the solid particle is heat-conducting rather than being
thermally inert (though remaining physicochemically inert) its
thermophoretic velocity through a gas is given by Epstein’s
more general formula [28],

—UT = − 1

1 + 2(kS /k)
Csυ ∇ ln T , (4.2)

valid for the case where the particle is spherical in shape,
and only for that shape [25]. When kS � k this formula
reduces to (4.1). In contrast, the particle’s noninert velocity,
(4.2), valid for the case of spherical particles, is thus now
dependent upon several of the particle’s transport properties,
namely kS , as well as the particle’s shape. [The shape effect is
evidenced in the work of Mohan and Brenner [25], which
derives the generalization of (4.2) for a heat-conducting,
slightly deformed sphere, showing that the body’s consequent
anisotropy renders the particle’s velocity —UT dependent upon
the particle’s orientation relative to the temperature gradient.]
In contrast, in the thermally inert limit kS = 0 the particle’s
thermophoretic velocity UT as given by (4.1) was formally
confirmed by these same authors to be independent of the
nonspherical particle’s orientation relative to the temperature
gradient, despite the particle’s geometric anisotropy. It is as a
result of its particle-dependent attributes that a noninert (i.e.,
heat-conducting) particle cannot serve as an objective tracer
of the fluid’s undisturbed motion.

C. Summary: Thermophoretic particles

To summarize, when the small, non-Brownian, solid par-
ticle is physicochemically and thermally inert, it is our thesis
that the particle’s thermophoretic movement relative to the
fixed walls may be viewed as a purely fluid-mechanical
phenomenon, attributable exclusively to an as-yet-unexplained
(that is, “unexplained” prior to bivelocity considerations)
preexisting condition within the undisturbed fluid itself,
independently of any attribute of the tracer particle, whose sole
role is to render visible this hidden fluid motion. This allows
the possibility that a particle with these properties can play a
passive role as the tracer of the quiescent fluid’s unexplained

motion, namely its volume velocity vv. Explicitly, according
to this proposed interpretation,

v′′ = UT = vv. (4.3)

In other words, it is our contention that the particle’s
thermophoretic motion is simply the manifestation of a physic-
ochemically, dynamically, and energetically neutral particle
being entrained by the undisturbed fluid’s preexisting volume
flow engendered by the temperature gradient. Equation (4.3)
is formally proved in Sec. VII, wherein the volume velocity
symbol appearing in the preceding relation is that defined in
Eq. (3.10).

As noted in connection with our discussion of Marangoni
phenomena, the necessity that the particle be physicochemi-
cally inert in order to possibly play the role of an objective
tracer of the undisturbed fluid’s unexplained motion vv stems
from the need for such surface phenomena to be absent,
allowing only purely hydrodynamic fluid-particle surface
effects to prevail. Since the thermophoretic data upon which
Eq. (4.1) is based are for motion through ideal gases it is not
unreasonable to suppose that physicochemical surface forces
were indeed absent. More generally, say for the case of liquids
or dense gases (to which bivelocity theory also applies [2]),
such inertness can only be testified to by performing repetitive
experiments using a variety of phyicochemically different
(and differently shaped) particles, wherein measurements
of the particle’s tracer velocity v′′ prove to be replicated
for each class of particle used that, concomitantly, also
yielded identical tracer velocities UT . In those circumstances
one performs experiments with ever smaller-sized particles
of a given class fulfilling the above criteria, subsequently
plotting particle speed UT vs particle size, and eventually
graphically extrapolating that data to zero particle size (while
bearing in mind that, experimentally, the particle cannot
be so small as to undergo any sensible Brownian motion).
This extrapolation scheme then furnishes the particle-tracer
velocity v′′.

In summary, our fundamental hypothesis is that a passive
particle may, in the context of any and all circumstances
(nonisothermal or isothermal, compressible or incompressible,
etc.), be viewed as an objective tracer of the undisturbed
fluid’s hidden volume velocity vv if a number of repetitive
particle experiments performed using different classes of inert
particles all furnish the same extrapolated particle velocity
measurement v′′, as was found to be the case in connection
with Eq. (4.1), but not (4.2). After all, this independence
suffices to assure that the velocity being measured is a property
solely of the undisturbed fluid, rather than of any physical
attribute of the particle. In the present context we are simply
stating the seemingly obvious fact, presumably accepted by
all fluid mechanicians, that issues of the fluid’s nonisother-
malicity cannot be relevant to the objective interpretation of
tracer velocity experiments. The tracer simply measures some
preexisting kinematical attribute of the fluid prior to the tracer’s
introduction therein, whether that attribute be the fluid’s mass
or volume velocity or something else.

Bivelocity theory [2] eventually explains that the attending
thermophoretic particle motion is attributable to the fact that
the particle is simply passively entrained in the nonisothermal
fluid’s preexisting volume velocity vv driven by the difference
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in wall temperatures. More specifically, thermophoretic mo-
tion will be shown to be a consequence of the dependence of the
fluid’s density upon temperature, as quantified by the fluid’s
coefficient of thermal compressibility, β = −(∂ ln ρ /∂T )p.
Were the latter to be zero, thermophoretic motion would
be absent despite the existence of a temperature gradient.
This latter phenomenon, namely immobility in the presence
of a temperature gradient, has already been demonstrated
experimentally [29], albeit implictly rather than explicitly, for
the case for liquid water near 4 oC, at which temperature water
has its maximum density, and hence for which β = 0. For
example, were the respective wall temperatures confining the
water to be, say, 1 oC and 7 oC, the thermophoiretic particle
would ultimately come to rest roughly midway between the
walls, irrespective of whether the particle was initially released
into the water nearer to the colder or hotter wall.

Experimental data of other than a thermophoretic nature
exist in support of the bivelocity paradigm. These pertain
to the flow of gases in microchannels, as summarized in
Ref. [2], to which group of transport phenomena should be
added the recent work of Dadzie and Brenner [30]. Owing
to their remoteness from fundamentals, these confirming
data lack the authority and clarity of the present tracer-
based kinematical confirmation of bivelocity hydrodynamics.
Accordingly, these supporting data are not further discussed
here.

V. LINEAR IRREVERSIBLE THERMODYNAMIC MODEL

A. Bivelocity mass, momentum, and energy
conservation equations

Introduction of the constitutive equalities (3.7a), (3.7b),
and (3.10) into the generic pre-constitutive equation set (3.1)–
(3.3) furnishes the following bivelocity mass, momentum, and
energy equations:

(i) continuity equation,

∂ρ

∂t
+ ∇ · (ρv) = 0; (5.1)

(ii) momentum equation,

ρ
Dv
Dt

= −∇ · P + ρ f̂; (5.2)

(iii) energy equation,

ρ
D

Dt

(
û + 1

2
v · v + φ̂

)
= −∇ · ju − ∇ · (P · vv). (5.3)

The material derivative appearing in these expressions is
defined as in Eq. (3.5).

B. Constitutive equations based on linear irreversible
thermodynamics

The totality of nonequilibrium flux symbols appearing in
the set of bivelocity transport equations (5.1)–(5.3) requiring
constitutive formulation in order to effect complete closure
is three in number, explicitly (T, ju,vv). [Those equilibrium
thermodynamic symbols also requiring constitutive expression
in order to effect closure are represented by (ρ,û,φ̂).] On the
other hand, for the NSF case, only two nonequilibrium flux

symbols are required, namely (T, ju). Despite this difference in
numbers, the broad general principles governing LIT—being
independent of the number of symbols appearing in the set of
transport equations to which LIT is to be applied —are exactly
the same in the two cases, whether NSF or bivelocity [7,12].

In the conventional two-symbol NSF case, the use of LIT
leads to the following expression for the entropy production
rate πs [7]:

T πs = T :∇v − ju · ∇ ln T .

The two constitutive expressions (3.8) and (3.9) emerge
from the above as a consequence of the LIT-based linearity
requirement imposed on the resulting flux (T, ju)-conjugate
driving force (∇v,∇ ln T ) constitutive pairs. Moreover, the
non-negativity requirements imposed upon the phenomeno-
logical viscosity and thermal conductivity coefficients η and
k appearing therein arise as a consequence of the required
non-negativity of πs .

In the present three-symbol bivelocity case, the use of LIT
[7] leads, analogously, to the following expression for the
entropy production rate πs [2]:

T πs = T :∇vv − q · ∇ ln T + jv · (∇p − ρ f̂),

involving the trio of fluxes (T, q , jv) ≡ (T, ju,vv) (where
ju = q − pjv and vv = v + jv) and their conjugate driving
forces (∇vv,∇ ln T ,∇p − ρ f̂). In turn, the LIT-imposed flux-
force linearity requirement furnishes the following three
constitutive expressions for the respective diffuse fluxes of
momentum, entropic heat, and volume [2]:

T = L33∇vv, (5.4)

q = −L11∇ ln T + L12(∇p − ρ f̂) (5.5)

and

jv = −L21∇ ln T + L22(∇p − ρ f̂), (5.6)

in which q denotes the “entropic (or Second-law) heat flux” [2].
It is defined in terms of the “energetic (or First-law)] heat flux”
ju appearing in the energy equation (5.3) by the expression [2]

ju = q − pjv. (5.7)

The non-negativity of the entropy production rate jointly
with the Onsager reciprocity requirement [7] imposes con-
straints upon allowable values for the five phenomenological
coefficients appearing in Eqs. (5.4)–(5.6).

The above-cited constitutive equations are valid for both
gases and liquids.

Were the phenomenological coefficients appearing in the
preceding constitutive equation set to be known, it would then
follow that introduction of this set of constitutive equations
into the transport equations (5.1)–(5.3) would bring closure
to the now amended set of fluid-mechanical equations. This
closed set constitutes the bivelocity hydrodynamic paradigm.
As seen below, it is only the presence of a nonzero value for
jv that distinguishes bivelocity theory from NSF theory.

1. Phenomenological coefficients

The principles governing LIT [7] require that the phe-
nomenological coefficients Lαβ appearing in the preceding
constitutive relations be functions, at most, of only pressure
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and temperature, thus being independent of the fluid’s mass
velocity v. The additional requirements of LIT [7] impose fur-
ther restrictions on these coefficients, namely that (i) Onsager’s
reciprocal theorem in the form L21 = L12 be satisfied and
(ii) the temporal rate of entropy production calculated on the
basis of the above set of transport equations be non-negative.
For ideal gases both of these conditions are shown [2]
to be satisfied by the set of phenomenological coefficients
subsequently set forth below in Eqs. (5.9a), (5.9b), (6.8a), and
(6.8b).

In view of the fact that

vv = v + jv, (5.8)

it follows that vv = v in the limiting case where jv = 0. That,
in turn, from (5.6), requires that L21 = L22 = 0, and hence
from the Onsager reciprocity requirement that L12 = 0 too.
Thus, when jv = 0, Eqs. (5.4) and (5.5), respectively, reduce
to the pair of NSF constitutive equations (3.8) and (3.9). Since
the Lαβ are functions only of pressure and temperature, this
leads to the fact that

L33 = 2η, (5.9a)

and
L11 = kT . (5.9b)

It follows from the above set of bivelocity equations
that knowledge of jv alone (together with knowledge of
the fluid’s shear viscosity η and thermal conductivity k)
suffices to fully establish the set of bivelocity equations
required in applications. The point here is that knowledge
of jv is, from Eq. (5.6), equivalent to knowledge of the pair
of phenomenological coefficients L21 and L22. Furthermore,
owing to the Onsager relation, knowledge of L21 implies
comparable knowledge of L12. The latter, in turn, completes
knowledge of the constitutive equation for q, with that result,
in turn, furnishing knowledge of the energetic heat flux in
Eq. (5.7). It can be seen from this interwoven bivelocity
structure that knowledge of the constitutive equation for the
diffuse volume flux jv alone suffices to establish all necessary
amendments that need to be made to the NSF equations in
order to render the bivelocity model applicable to compressible
fluids.

C. Comments

Despite the somewhat greater complexity of the preceding
bivelocity scheme relative to the comparable NSF paradigm,
it is worth noting that in relation to current views of fluid
mechanics, creation of this structure has required nothing more
than acceptance, without change, of the standard principles of
LIT [7]. Thus, while there exist a number of so-called extended
versions of LIT [31,32], designed at least in part to overcome
the inapplicability of the NSF equations to compressible flows,
ours is not numbered among them. No extension of the
fundamental principles underlying LIT has been required here,
beyond maintaining an open mind on the assumed constitutive
equalities (3.7).

The next section reviews the current availability of theoret-
ical and experimental data pertaining to the phenomenological
coefficient values Lαβ required for use in the bivelocity
equation set (5.1)–(5.7).

VI. PHENOMENOLOGICAL COEFFICIENT VALUES:
CONSTITUTIVE EQUATION FOR jv

For simplicity in what follows we address only those
circumstances for which body forces are absent or negligible,
so that in place of Eqs. (5.5)–(5.6) we now have that

q = −k∇T + L12∇p (6.1)

and

jv = −L21∇ ln T + L22∇p. (6.2)

LIT does not, itself, furnish values for the phenomenologi-
cal coefficients required to establish the constitutive equations
for the diffuse fluxes of momentum, heat, and volume. Rather,
the coefficients must be obtained independently of LIT from
other sources. These sources include (i) Klimontovich [34]
and [35]; (ii) experiment [36]; (iii) molecular theories, such
as Burnett’s [10] or Grad’s [10] solutions of the Boltzmann
equation, including extensions of the Boltzmann equation
by Dadzie-Reese et al. [37,38]; (iii) statistical-mechanical
theories [39–43]; (iv) macroscopic theories, either rational,
such as the equidiffuse model [44], or ad hoc [45–48];
(v) simulation, etc.

The models cited in the preceding paragraph, while gener-
ally differing significantly from one another in detail, all point
independently to the same general constitutive formulation for
the diffuse volume flux in single-component gases. (Details
behind the present author’s own LIT-based arguments can be
found in Ref. [2].) Explicitly, in the absence of body forces
the general agreement among all of the above-cited sources is
that the following general constitutive expression applies to all
dilute gases:

jv = Cvυ∇ ln ρ, (f̂ = 0), (6.3)

wherein the choice of the non-negative, dimensionless, O(1)
coefficient Cv varies slightly from one author to the other. This
coefficient has either the same value for all gases or is, at most,
weakly dependent upon the properties of the particular gas of
interest (see Table I for the respective coefficient values). In
what follows, we present evidence in support of Eq. (6.3),
including evidence posed, not surprisingly, by thermophoretic
experiments.

A. Phenomenological coefficients for gases and liquids

The functional relation ρ = ρ(p,T ) for the dependence of
density upon pressure and temperature is such that

d ln ρ = −βdT + κdp, (6.4)

in which

β = − 1

ρ

(
∂ρ

∂T

)
p

(6.5)

and

κ = 1

ρ

(
∂ρ

∂p

)
T

(6.6)

are, respectively, the coefficients of thermal expansion and
compressibility. From (6.3) it thus follows that

jv = −CvυβT ∇ ln T + Cvυκ∇p. (6.7)
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Comparison of the latter with (6.2) together with use of
Onsager reciprocity gives

L21 = L12 = CvυβT , (6.8a)

and

L22 = Cvυκ. (6.8b)

1. Ideal gases

For ideal gases, where β = 1/T and κ = 1/p, Eq. (6.7)
becomes

jv = −Cvυ∇ ln T + Cvυ∇ ln p. (6.9)

Table I presents a tabulation of Cv values for gases proposed
by various authors based upon their own versions of what we
have characterized as constituting (at least approximately) a
proper “bivelocity” theory. By this bivelocity characterization
is meant that irrespective of the choice made by each
researcher for the respective constitutive equations governing
(m̂,vk,T,ju), all arrive at the same constitutive formula (6.3) for
the diffuse volume flux, but with Cv values specific to each au-
thor’s particular model. The overall scheme by means of which
each author arrived at his below-tabulated value is noted in the
table.

According to the tabulations in Table I a variety of different
bivelocitylike theoretical schemes all arrive, independently,
at the common constitutive expression (6.3) for the diffuse
volume flux. As emphasized in Sec. V, in our LIT-based
scheme [2] it is the nonzero value of this flux alone that
distinguishes the bivelocity model from that of the NSF model.
(Some of these other bivelocity like schemes may, however,
differ from NSF in ways other than solely with respect to
the jv value.) The large number of entries in Table I, each
embodying a very different physical argument for amending
the NSF equations in the case of compressible fluids, speaks
of a growing consensus among widely varying classes of fluid
mechanicians that bivelocity theory is meritorious. It is not our
intention here to contrast and compare the relative strengths
and weaknesses of each of the varied approaches to the subject,
nor to suggest which is the more correct Cv value in Table I.
Rather, our goal is simply to exploit the commonality of these
findings with regard to the existence of a diffuse volume flux
in order to answer the question posed 8 years ago, namely,
“Is the tracer velocity of a fluid continuum equal to its mass
velocity?”

VII. BIVELOCITY PROOF OF THE
PARTICLE-TRACER/VOLUME VELOCITY
EQUALITY, v′′ = vv WHERE vv IS DEFINED

IN EQ. (3.10)

A. Introduction

For the previously discussed case of an otherwise quiescent
gas confined between two walls while undergoing steady-
state heat conduction, our goal in this section is to use the
bivelocity equations of the preceding section to calculate the
velocity U of a small, inert, force- and torque-free particle
immersed in that gas and to subsequently compare that
theoretical result with the experimentally observed velocity

v′′ (≡UT ) of a thermophoretic tracer particle, under these same
circumstances, for which UT is given by Eq. (4.1). The purpose
of this exercise is to confirm, by example, that the proposed
bivelocity model summarized in Secs. V and VI furnishes
theoretical results that accord with experiment. In effect, this
exercise creates a formal connection joining bivelocity theory
(embodying the two theoretical fluid-mechanical velocities v
and vv) to experiment (embodying the two experimental tracer
velocities v′ and v′′).

B. Bivelocity fields in the absence of the tracer particle

We begin by first solving the steady-state bivelocity equa-
tions governing the state of affairs existing in the undisturbed,
particle-free gas prior to the particle’s introduction therein.
With x a Cartesian coordinate perpendicular to the walls,
and with the confining walls situated at x = 0 and x = L,
the boundary conditions imposed upon the fluid’s temperature
field require that

T = T0 at x = 0, (7.1a)

and

T = TL at x = L, (7.1b)

with T0 and TL the respective wall temperatures. For definite-
ness we suppose that �T = TL − T0 � 0. By symmetry, the
problem is strictly one-dimensional, such that the boundary
conditions specifying the impermeability of the confining
walls to mass flow require that

ix · v(0) = 0 at x = 0 (7.2a)

and at

x = L, (7.2b)

where ix is a unit vector in the x direction, and where the
superscript (0) refers to conditions existing in the quiescent,
undisturbed gas undergoing heat conduction. The unique
solution of the bivelocity equations satisfying these boundary
conditions is readily found to be

v(0) = 0, (7.3)

p(0) = const = po, say, (7.4)

T (0) = T0 + �T

L
x, (7.5)

and

v(0)
v = j(0)

v = −Cvυ ∇ ln T ≡ − Cvη∇T

ρT
, (7.6a)

or, more explicitly,

v(0)
v = j (0)

v = Cv

R

Mw

η

po

�T

L
= const, (7.6b)

where, in the latter, v(0)
v = ixv(0)

v and j(0)
v = ix j (0)

v . In the
denominator of (7.6a) we have noted from the ideal gas law
that ρT = Mwpo /R = const. That is, while ρ and T both vary
with x, their product is independent of x.

In connection with (7.6b), by declaring the volume ve-
locity’s speed to be constant throughout the gas, we have
regarded the viscosity η as being a constant, independent of
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temperature. Similarly, we have implicitly assumed the ther-
mal conductivity entering into the calculations leading to (7.5)
to be temperature independent. Inclusion of such dependence
would have given rise to nonlinear contributions. These will
be systematically ignored throughout the subsequent develop-
ment as being negligible compared with the dominant linear
contributions.

C. Bivelocity fields in the presence of the tracer particle

Solution of the bivelocity field equations when the particle
is present in the gas requires recognizing the fact that as the
particle moves through the gas under the influence of the
imposed temperature gradient the particle changes it position
relative to the walls, thereby encountering ever-changing
local temperatures T (0). As such, the velocity, pressure, and
temperature fields (v,p,T ) when the particle is present are
necessarily time-dependent, although under the asymptotic
circumstances for which we solve these equations those fields
may be regarded as quasistatic.

In the course of solving the bivelocity equations one
needs also to address the boundary conditions to be imposed
upon the bivelocity fields. From the point of view of an
observer fixed in the walls, the temperature boundary condition
at the surface S of the nonconducting particle requires
that

n · k∇T = 0 on S, (7.7)

since the heat flux is Galilean invariant. From this same
vantage point fixed in the walls, the impenetrability of the
particle to the transit of mass through its interior requires
that

n · (v − U) = 0 on S, (7.8)

with n the unit normal vector at a point on S. Furthermore,
the tangential velocity boundary condition at the particle
surface requires that there be no slip of the fluid’s volume
velocity [49]:

(I − nn) · (vv − U) = 0 on S. (7.9)

In the above expressions U = Uo + � × (x − xo) is the
velocity at a point on the surface of the solid particle measured
relative to the fixed walls, while Uo denotes the particle’s
velocity at an arbitrary point xo fixed in the particle. In
addition, � is the particle’s angular velocity relative to the
fixed walls. Ultimately, the condition that the particle be force
and torque free serves to determine both Uo and � in terms
of the prescribed parameters of the problem, for example, the
difference �T in wall temperatures. As it subsequently turns
out, the particle, irrespective of its shape, does not rotate. In that
case, all points in the particle translate with the same velocity,
such that U = Uo. In anticipation of this fact we suppose,
subject to a posteriori verification, that � = 0, whence we
regard U simply as the velocity of the particle as a whole
relative to the walls.

In addition to the boundary conditions at the particle surface
there are also boundary conditions to be satisfied on the walls of
the apparatus, specifically the temperature boundary condition
(7.1a) and (7.1b) and the impenetrability boundary condition

(7.2a) and (7.2b). Furthermore, analogous to the usual no-
slip volume velocity boundary condition imposed at the solid
particle surface S, as in Eq. (7.9), we impose a similar no
volume-velocity slip condition along the walls:

(I − ix ix) · vv = 0 at x = 0 (7.10a)

and

x = L. (7.10b)

D. Asymptotic solution scheme

We do not seek an exact solution of the unsteady-state
boundary-value problem outlined above. Rather, with a a
characteristic linear particle dimension (e.g., the radius of
a sphere was the particle to be spherical) we seek only an
asymptotic solution, valid for the case where

ε = a

L
� 1. (7.11)

As discussed by Brenner and Bielenberg [50] in a virtually
identical context, this limiting calculation can be effected by
using a matched asymptotic expansion scheme based upon use
of the small perturbation parameter ε.

Thus, using a matched asymptotic (singular perturbation)
scheme, one forms an outer expansion based upon use of the
wall separation distance L to scale the various length and
gradient operator terms appearing in the bivelocity equations
and boundary conditions. Not surprisingly, the leading-order
outer perturbation fields prove to be closely related to the fields
(7.3)–(7.6) existing in the absence of the particle. This is so
because at this leading-order level of description of the outer
fields, no particle is present in the gas in the limit where ε � 1.
As such, no outer boundary conditions, other than subsequent
matching conditions with the inner fields, are to be specified
at the particle surface.

Similarly, one forms an inner expansion based upon use
of the characteristic particle linear dimension “a” to scale the
various length and gradient operator terms appearing in the
bivelocity equations and boundary conditions. At this level
of description, and from the point of view of the leading-
order inner perturbation fields, no walls are present in the limit
where ε � 1. As such, no inner boundary conditions, other
than matching conditions with the outer expansion fields, are
to be specified in proximity to the walls.

The respective inner and outer expansions, neither of which
has yet been uniquely determined, are then asymptotically
matched in the usual way, and the condition of no net force
and torque on the particle applied to uniquely establish the
dominant, leading-order terms in both the inner and the outer
fields in the limit where ε is small. The lengthy details gov-
erning the respective inner and outer fields, their perturbation
expansions, and their ultimate matching in proximity to both
the walls and the particle surface are virtually identical to those
set forth by Brenner and Bielenberg [50]. As such, they need
not be elaborated upon here. The net result of the analysis is
that an inert, force- and torque-free particle translates (without
rotation) relative to the walls of the apparatus with a velocity
given by the size- and shape-independent expression [2]

U = −Cvυ∇ ln T . (7.12)
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The latter represents a purely theoretical result, derived by
having solved the bivelocity equations subject to appropriate
boundary conditions. It constitutes an asymptotic result, valid
for the case where (7.11) applies, and holds independently of
any and all properties of the particle. Comparison of (7.12)
with (7.6a) shows that

U = v(0)
v . (7.13)

That is, the particle is simply carried along (entrained)
with the volume velocity of the undisturbed fluid in the
neighborhood of the space occupied by the tracer particle.

1. Interpretation of U(≡vv) as the particle tracer’s experimentally
observed thermophoretic velocity UT (≡v′′)

Comparison of (7.12) with Epstein’s experimentally and
theoretically supported thermophoretic-velocity expression
UT given in Eq. (4.1) shows that our theoretical bivelocity
result for the particle’s force- and torque-free velocity will
coincide with the inert particle’s thermophoretic velocity when

U = UT , (7.14)

thus requiring that

Cv = Cs. (7.15)

Recall that the coefficient Cv arises theoretically from
bivelocity theory in connection with the constitutive equation
(6.3) for the diffuse volume flux. Expected Cv values for the
case of gases were noted in Table I. Whereas Cv is seen to have
a rational theoretical basis, the thermal creep coefficient CS is a
more-or-less empirical parameter entering into Maxwell’s [23]
theory of slip at solid surfaces along which the temperature
varies. Though Maxwell presented a theoretical momentum
transport-based derivation of his slip boundary condition based
upon mid-19th-century gas-kinetic theory, he pointed out that
his molecularly based CS coefficient nevertheless possesses a
purely empirical macroscopic aspect owing to the fact that its
value depends on whether gas molecules rebounding from the
particle’s surface are reflected diffusively or specularly. This,
of course, cannot be established by molecular arguments alone
since the surface is part of a macroscopic body.

The magnitudes of Cv (Table I) and Maxwell’s slip
coefficient CS both lie very near to unity, as well as near to
one another. Given the respective theoretical uncertainties in
their precise numerical values, especially when considered in
the light of their common thermophoretic physical status, it is
quite reasonable to suppose that Eq. (7.15) constitutes an exact
relation. Granting this premise then leads, in turn, to the fact
that Eq. (7.14) too is an exact relation. Finally, use of (7.14)
together with Eqs. (7.13) and (2.3) shows that

v′′ = v(0)
v . (7.16)

2. Interpretation of the particle-tracer velocity v′′

Equation (7.16) provides a physical interpretation of
the second type of fluid velocity v′′ observed during the
particle-tracer experiment described at the beginning of this
paper. In this context, recall from Eq. (7.6) that v(0)

v is the
volume velocity of the quiescent undisturbed fluid. Thus,

Eq. (7.13) shows that a small tracer particle is entrained by the
undisturbed fluid’s pre-existing volume motion, rather than by
the fluid’s undisturbed mass velocity v(0) (≡v′), as is commonly
assumed to be the case. It is only in the case of incompressible
flows, for which ρ = const throughout the flow field, that these
two velocities coincide.

Though the volume-based entrainment equation (7.13) has
only been shown to hold for the case of quiescent fluids, where
mass flow is absent, it is easily shown [2] to also hold for
flowing fluids. This is simply a consequence of the fact that
the velocity boundary condition satisfied on the surface of
the inert particle is one of no-slip of the undisturbed fluid’s
volume velocity rather than that of no-slip of the fluid’s mass
velocity. In the limit where a/L � 1, in which L is the
characteristic length on which the undisturbed flow varies,
this volume velocity is that of the undisturbed flow.

VIII. VOLUME TRANSPORT

A. Introduction

Though the notion of volume flow has been invoked
repeatedly through this paper, we have, thus far, not actually
established a direct connection between the contents of this
paper and the physical notion of volume. This is evidenced
by the fact that the definition of what we have termed the
volume velocity (and used the symbol vv to denote throughout
this paper) is that given by Eq. (3.10). That definition bears
only a remote relation to the physical notion of volume
through its analogy with the work term pdV appearing in
equilibrium thermodynamics. In this section we seek to make
the association of the velocity symbol vv with the notion of
volume more than just a mere analogy.

B. Volume transport and production

The generic Eulerian transport equation [2] governing the
transport of any extensive property 
 through space is

∂

∂t
(ρψ̂) + ∇ · nψ = πψ, (8.1)

where ψ̂ is the specific density, nψ the flux, and πψ the
temporal rate of production per unit volume of the property
undergoing transport. By using the definition of the material
derivative (3.5) together with the decomposition formulation
(D3) of the flux nψ into convective and diffusive portions,
jointly with the continuity equation (1.1), Eq. (8.1) can be
transformed into the alternative, but physically equivalent,
generic form [2]:

ρ
Dψ̂

Dt
+ ∇ · jψ = πψ. (8.2)

When the extensive property undergoing transport is that
of volume (
 ≡ V ), the specific property density is the fluid’s
specific volume, such that ψ̂ = v̂. Equation (8.1) thus adopts
the form

∇ · nv = πv. (8.3)

Alternatively, in view of (D6),

∇ · vv = πv. (8.4)
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Furthermore, (8.2) becomes

ρ
Dv̂

Dt
+ ∇ · jv = πv. (8.5)

Either one of last two physically equivalent expressions
constitutes the volume transport equation.

1. Volume conservation accompanying incompressible flows

When the density of the fluid remains constant during its
transport one has by definition that v̂ = const throughout the
flow field and hence from (6.3) that jv = 0. Accordingly, it
follows from Eq. (8.5) that

πv = 0, (8.6)

showing that volume is conserved for incompressible flows.
This is, of course, exactly what one would have anticipated for
the incompressible case. In that event, Eq. (8.3) becomes

∇ · nv = 0 (8.7a)

or, equivalently,

∇ · vv = 0. (8.7b)

Since vv = v for incompressible flows the preceding equa-
tion becomes

∇ · v = 0, (8.8)

which is the standard equation used by fluid mechanicians for
so-called incompressible flows [18].

Equation (8.5) shows that volume is not generally con-
served during compressible flows. It is pertinent to note,
philosophically, that the notion of volume production has
no counterpart in Newtonian mechanics since the point-size
particles of matter comprising a mathematical continuum
possess no volume. At best, volume can only be (statistically)
attributed to a collection of particles rather to an individual
particle. This renders volume fundamentally different from
the properties of mass, momentum, and energy, since those
properties are possessed by the individual point masses
themselves.

The astute reader will have noted that we have not proved
that the symbol jv defined by its appearance in Eq. (D3), and
hence appearing in Eq. (8.5), is the same jv as that defined
in Eq. (3.13). On the other hand, if we assume them to
be synonymous then we arrive via (8.6) at the conclusion
that volume is conserved during incompressible flows. Given
the reasonableness of that conclusion it seems appropriate to
regard the two diffuse volume fluxes as one and the same and
to believe that we have justified the use of the word “volume”
in connection with our analysis. In any event, the validity of
the bivelocity paradigm does not depend in any way upon
this equality, or even upon the use of the word volume in
connection with the symbol vv. It appears likely that molecular
arguments of the type used by Dadzie and Reese [37,38]
could be used in an attempt to formulate a more authoritative
demonstration of the relation of the symbol vv or jv to that of
volume.

Appendix D provides further arguments buttressing belief
in the claim that it is appropriate to assign the name volume
to those attributes bearing the subscript “v” and deriving from

the symbol vv defined by its initial appearance in Eqs. (3.10)
and (5.8).

IX. HYDROSTATICS

The material in this section provides two examples illus-
trating the role played by the principles of “fluid mechanics in
fluids at rest,” the title of our paper.

A. Introduction

According to standard textbooks [18], mechanical equi-
librium in isotropic fluids is governed by the hydrostatic
equation

∇p = ρ f̂. (9.1)

Although the issue of the explicit physical conditions under
which mechanical equilibrium is assumed to prevail is usually
not mentioned in the course of promoting Eq. (9.1), it is in most
cases implicitly understood to refer to a fluid at rest in a body-
force field, typically gravity. By “a state of rest” is invariably
meant the condition wherein the fluid’s mass velocity is zero
at all points of the fluid. Moreover, the pedagogical level at
which the subject of hydrostatic equilibrium is introduced to
neophytes normally does not state whether the fluid to which
Eq. (9.1) is to be applied is isothermal or nonisothermal. After
all, stable steady-state nonequilibrium Fourier heat conduction
can occur in nonisothermal fluids at rest when the temperature
gradient is antiparallel to gravity.

B. Hydrostatics in nonisothermal fluids at rest

The existence of a temperature gradient in a quiescent fluid,
namely one for which v = 0, implies that the fluid, though in
a state of mechanical equilibrium, is not at the same time in a
state of thermodynamic equilibrium. In that context, thermody-
namicists [51] carefully distinguish between mechanical and
thermodynamic equilibria. Whereas mechanically oriented
derivations [18] of (9.1) define pressure in terms of force
per unit area, such that p = dF /dA, thermodynamically
oriented derivations regard pressure as a fundamental physical
quantity in its own right, independently of that of force,
defining pressure as a physical attribute of a fluid defined by an
equation of state, p = p(ρ,T ). Thus, for example, Kirkwood
and Oppenheim [51], and Guggenheim [52] addressing the
subject of thermodynamics in a gravitational field of force,
provide careful thermodynamic derivations of (9.1). The net
effect of this is that thermodynamicists produce exactly the
same hydrostatic equation as do the fluid mechanicians,
albeit subject to the caveat that the user exercise caution in
applications involving nonisothermal fluids, owing to such
fluids not being in a state of thermodynamic equilibrium.

C. Bivelocity hydrostatic equation

Without assuming either mechanical or thermodynamic
equilibrium, and upon setting v = 0 in Eq. (5.2) we obtain

∇ · P − ρ f̂ = 0, (9.2)
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in place of the hydrostatic equation (9.1). Use of (3.6) enables
this to be rewritten as

∇ · T − ∇p + ρ f̂ = 0. (9.3)

For the case where v = 0, Eqs. (5.4), (5.9a), and (5.8)
combine to yield

T = 2η∇jv, (9.4)

a result valid for both gases and liquids.
Following use of Eq. (6.7) in Eqs. (9.4) and (9.3) fur-

nishes the following form for the bivelocity-based hydrostatic
equation:

−2Cv∇ · 〈η∇{υ[β∇T + κ(∇p − ρ f̂)]}〉 − ∇p + ρ f̂ = 0.

(9.5)

It is evident from this expression that it is only in the case
of isothermal fluids, where ∇T = 0, that the conventional
form (9.1) of the hydrostatic equation is upheld. Estimates
of the relative magnitude of the deviation of (9.5) from (9.1)
occurring in nonisothermal fluids remain to be calculated
for both gases and liquids. However, that will not be done
here.

In order that the condition v = 0 can actually be achieved in
a nonisothermal fluid subject to a body force, the temperature
gradient must be antiparallel to both the body force and hence
the pressure gradient. In such circumstances the preceding
expression becomes a one-dimensional problem, whose struc-
ture, however, will not be further explored here.

D. Heat conduction in a gravity field

From Eqs. (5.5), (5.9b), and (6.8a), the entropic heat flux is
found to be

q = −k∇T + CvυβT (∇p − ρ f̂). (9.6)

From (9.5) it is seen that the last term in the above
expression does not vanish for the case of a nonisothermal
fluid at rest. That being so, Eq. (9.6) shows, for a specified
temperature gradient, that the rate of heat flow through a
quiescent fluid is affected by the gravity field. Issues of the
magnitude of the effect are deferred to a later date.

X. DISCUSSION

A. An explanation for the presence of vv in place of v in the
work-rate terms in Eqs. (3.7c) and (3.10)

As noted in the preceding section, those fluid mechanicians
whose dominant training lies in mechanics choose to define
pressure in terms of force per unit area, whereas fluid-
mechanicians trained in thermodynamics regard pressure as
a fundamental physical quantity in its own right, given by
an equation of state. This point has already surfaced in
connection with the hydrostatic analysis of Sec. IX. Indeed,
it appears that the concept of force enters into the lexicon
of thermodynamicists only when they need to derive the
fundamental constitutive equation dW = pdV for the work
performed during a change in the volume of a system
accompanying a reversible change in its state. It is presumably
at this point that they draw upon the strictly mechanical

notion of work as force times linear displacement, such that
dW = Fdx. Upon multiplying and dividing the latter by area
A, and using the mechanical definition, p = F /A, of pressure,
together with the kinematical definition dV = Adx of volume
change, thermodynamicists thus arrive at the desired relation:
dW = pdV .

In the course of deriving the latter constitutive equation
for the work performed it is obvious that thermodynamicists
implicitly assume, inconsistently, that the mechanical pressure
and their thermodynamic pressure are, physically, one and
the same. Awareness of their implicit assumption might have
led them to contemplate the possibility of the notion of
thermodynamic work rate as force dS · P times volume flux
nv , a concept distinct from that of the classical notion of
mechanical work rate, namely force dS · P times rate of linear
displacement of mass v.

Given that possibility, could such a difference between
the respective mechanical and (hypothetical) thermodynamic
work rates be reflected in the respective energy equations (3.3),
(3.7c), and (5.3), as the source of the additional work-related
term P · jv arising in bivelocity theory? After all, the difference
in the irreversible thermodynamic and mechanical rates of
working in those respective energy equations is P · vv − P ·
v = P · (vv − v) ≡ P · jv . If so, it would be appropriate to refer
to the scalar quantity dS · (P · jv) ≡ (dS · P ) · jv = dF · jv
(the latter relation involving the product of a force times a
velocity) as the “diffuse rate of working.” The proposed name
uses the word “diffuse” appropriately, since the extra work
contribution arises from molecular rather than macroscopic
action, namely as a consequence of Brownian motion (albeit
only in inhomogeneous fluids, wherein a density gradient
exists).

In effect, in attempting to rationalize the success achieved
by the bivelocity work-rate (3.10), we are proposing adoption
of the notion of irreversible thermodynamic work ∇ · (P ·
vv) ≡ ∇ · (P · nv) as a new physical concept, distinct from
that of mechanical work, ∇ · (P · v). Given the status of nv

as a volume flow in Appendix D, the term P · nv is clearly
the analog of the equilibrium thermodynamic work term pdV

when the latter is adapted so as to include temporal changes,
wherein dV appearing therein is replaced by dV /dt , the rate
of increase of volume.

B. Magnitude of the bivelocity effect

Define the dimensionless velocity-deficit ratio

Rv := |v − vv |
|v | . (10.1)

Rv , being null when bivelocity hydrodynamics merges into
NSF hydrodynamics, thus provides a measure of the relative
importance of the proposed bivelocity amendments to conven-
tional NSF theory. As regards the order-of-magnitude of Rv it
follows from Eq. (6.3) that

Rv = O

(
Cv

�ρ

ρ

1

Re

)
, (10.2)
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in which Cv = O(1), �ρ is a characteristic density difference,

Re = L|v |ρ
η

(10.3)

is a characteristic Reynolds number, and L is a characteristic
length over which sensible changes �ρ in density occur
(i.e., such that �ρ/L = O(|∇ρ |). Equation (10.2) shows
that bivelocity amendments are likely to be largest at small
Reynolds numbers.

C. Illustration of the flow of volume independently
of that of mass

Whereas v quantifies the flow of fluid mass, vv (or,
equivalently, nv) quantifies the flow of fluid volume, whatever
physical interpretation the reader may wish to assign to such a
nonmaterial flow. That is, the reader may have some reluctance
in accepting the notion of the “flow” of a nonmaterial
substance. To resolve the dilemma, it is useful to recognize
the currently unqualified acceptance by fluid mechanicians of
heat as “flowing,” despite the fact that heat, like volume, is a
nonmaterial substance.

Pursuing that analogy, the ability of volume to flow indepen-
dently of mass belongs in the same category of nonmateriality
as the ability of heat to flow independently of mass (such
as occurs during Fourier heat conduction). Indeed, in the
special case of quiescent (i.e., v = 0) nonisothermal processes
occurring in fluids, the notions of heat flow and volume flow
prove to be effectively synonymous, sans a dimensional factor
dependent upon the fluid’s properties. Explicitly, in that case,
for both liquids and gases, one finds that [53]

nv = β

ĉp

ju, (10.4)

in which the heat flux is given by Fourier’s law. The physical
significance of this relation is displayed pictorially in Ref. [53],
where volume, like heat, is seen to be able to pass unimpeded
through solid walls.

D. Boltzmann’s equation in relation to bivelocity
hydrodynamics

The Boltzmann equation [11,54] for gases, which is
widely regarded as an authoritative molecular precursor to
macroscopic fluid mechanics, would appear to be in direct
conflict with the possible existence of two different fluid
velocities. After all, Boltzmann’s equation appears to give rise,
statistically, to but a single macroscopic velocity, namely the
fluid’s the mass velocity. However, that view is superficial.
For, as shown in detail in Ref. [2], our macroscopically
derived bivelocity constitutive equations for the stress tensor,
heat flux, and volume velocity are identical to their molec-
ularly derived Burnett constitutive counterparts, obtained
from Burnett’s perturbation solution [55] of the Boltzmann
equation for small Knudsen numbers. Accordingly, given this
one-to-one correspondence [2] of our two-velocity, diffuse
flux, constitutive expressions for the diffuse fluxes (T,ju,jv)
(with Burnett/Boltzmann’s one-velocity constitutive results
for this same trio of fluxes with their jv given implicitly
rather than explicitly [2]), it is clear that currently hidden
within some, as yet undefined, Boltzmann-equation statistical

velocity measure there must surely exist a second fundamental
velocity, one remaining to be discovered and identified with
our volume velocity.

E. Liquids

Our analysis has focused on gases owing to the availability
of a large body of experimental and theoretical data pertinent
to the motion of tracers in gases. Yet bivelocity hydrodynamics
per se is equally applicable to liquids. The only unequivocal
data of which we are aware that bears on the present tracer-
velocity issue for liquids is that of Schermer et al. [56]. Those
authors compare their experimental thermophoretic velocity
data with a large number of proposed models for liquids,
including our equidiffuse model [44,50], where, in place of
Eq. (4.2) for noninert particles in gases, there now appears the
comparable formula for noninert particles in liquids:

—UT = − 1

1 + 2(kS /k)

1

Pr
υβT ∇ ln T . (10.5)

The Scherer data agreed closely with the above formula,
certainly when compared with all of the other thermophoretic
models examined by them. Those models, other than our
own, which proved appropriate for comparison over the range
of data covered by the conditions of the Schermer et al.
experiments, differed from the above by orders of magnitude.

F. Nonlinear, non-Newtonian, and other flows not
within the province of LIT

Owing to our self-imposed restriction to fluids whose con-
stitutive behavior falls within the purview of LIT, our paper has
emphasized amendments only to NSF fluid mechanics, since
both classes of fluids, bivelocity and NSF, belong to that linear
constitutive category. However, going beyond LIT and its
requirement of linear behavior, the more general philosophical
consequences of bivelocity hydrodynamics are believed to
apply to all fluids, including fluids whose rheological and
thermal constitutive responses are nonlinear, such as in the
case of non-Newtonian fluids [3]. By this is simply meant that
we believe that the general trio (5.1)–(5.3) of preconstitutive
bivelocity conservation equations applies to all fluids under
all circumstances. The main feature of that belief is that one
starts out with the symbol vv appearing in place of v in the
work term of the energy equation, with the idea of seeking
to ascertain the material-specific constitutive equation for that
symbol (along with those for the heat flux ju and the viscous
stress tensor T). While we were able to use LIT to achieve
those goals in the present linear case, where vv was found to
be given by the constitutive equation (5.8), and jv by (6.3), we
know of no comparable LIT-like recipe scheme applicable in
other, more general, circumstances that could be adapted to
address nonlinear constitutive fluid behavior.

XI. SUMMARY AND COMMENTS

A. Summary

Using readily available thermophoretic particle veloc-
ity data it was shown, experimentally, contrary to current
teachings, that in compressible flows the molecular-tagging
velocimetry (MTV, dye-tracer) velocity measurement v′ of
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a flowing fluid’s velocity is not the same as the comparable
particle-image velocimetry (PIV, particle-tracer) velocity mea-
surement v′′, with equality holding only for incompressible
flows, namely for those flows wherein the density gradient
∇ρ is zero. Moreover, it was shown theoretically in all
circumstances, compressible and incompressible, that (i) v′ =
v, where v is the fluid’s mass velocity appearing in the
continuity equation ∂ρ/∂t + ∇ · (ρv) = 0; and (ii) v′′ = nv ,
where nv is the volume flux appearing in the volume transport
equation ∇ · nv = πv , with πv the temporal rate of production
of volume per unit volume at a point of the fluid, the latter
vanishing for incompressible fluids. (As nv has the units of a
velocity, for simplicity this flux is termed the fluid’s volume
velocity in our paper and represented by the symbol vv .)

Recognition of the fact that two independent fluid veloci-
ties, mass- and volume-based, are formally required to model
continuum fluid behavior was noted to have the effect of
overthrowing the foundations of contemporary (monovelocity)
fluid mechanics, including the NSF equations, which were
shown to apply only to incompressible, a fact well-known,
albeit empirically, to experimental gas kineticists. These
findings were shown to lead to the development of a new
general theory of fluid mechanics, bivelocity hydrodynamics,
differing from conventional hydrodynamics in situations en-
tailing compressible flows, and reducing to conventional NSF
hydrodynamics when the flow is incompressible. The closely
related, but ad hoc independent bivelocitylike theories of other
researchers were shown to fully support the need for both
mass- and volume-based velocities in the case of compressible
fluids. (The use of ad hoc is meant to imply that those theories
are actually in the nature of hypotheses, rather than rational
theories based upon well-established physical principles, such
as LIT and Burnett’s solution of the Boltzmann equation.)

Distinguishing between respective states of mechanical
and thermodynamic equilibrium, our analysis showed that
the widely accepted hydrostatic equation ∇p = ρ f̂ governing
the pressure distribution in fluids at rest was valid only for
isothermal fluids, and that gravity could affect Fourier’s law
of heat conduction in quiescent compressible fluids.

B. Comments

The mere existence of thermophoretic particle motion was
noted to contradict the commonly held belief that a sufficiently
small (albeit non-Brownian) solid macroscopic particle would
simply be entrained in the flowing fluid’s mass velocity v,
irrespective of the physical process giving rise to that tracer
velocity. It was the attempt to explain that phenomenon
theoretically that led to the creation of bivelocity theory
[2]. Because of the overwhelming and elaborate explanatory
background that was required in the context of proving that
v′′ = vv (and to a lesser extent that v′ = v), it may fail to be
clearly recognized by the reader that but a single data point
was available to provide unequivocal experimental kinematical
support for bivelocity theory. We refer to the experimental data
implicit in Eqs. (4.1) and (4.3), bearing on the fluid’s second
velocity, whose existence was identified by its thermophoretic
footprint. The issue of unequivocality is compounded by the
fact that the condition of no-slip of the volume velocity at the
surface of the particle, used in our reconciliation of theory

and experiment, is an empirical relation, divorced from the
question of the validity of the bivelocity equations themselves
(although we have attempted to prove that this boundary
condition has theoretical justification [49]). Obviously, if the
entire theory is to stand up to closer scrutiny, much further
work is required.

Perhaps the timetable with respect to firmer and indepen-
dent confirmation of bivelocity theory by others is not as distant
as it may seem. As is implicit in the tabulation appearing in
Table I, the closely related bivelocitylike theories of others,
though differing from ours in key details, is encouraging in
that they arrive at very similar results that prove to agree well
with a limited amount of experimental data. Moreover, moving
beyond our use in this paper of bivelocity theory to address
only kinematical issues, we believe that the success of our
dynamic bivelocity application to flow in microchannels [30]
offers further support in favor of the paradigm.

APPENDIX A: PROOF THAT THE DYE-TRACKING
EXPERIMENT FURNISHES THE MASS VELOCITY v′ = v

APPEARING IN THE CONTINUITY EQUATION

1. Molecular tagging velocimetry v′

When interpreting a photochromic dye-tracking velocity
measurement the domain embodying the bulk of the dye’s
color is simply regarded as if it were an object to be monitored.
With x′ the position of the dye’s center of color at time t , and
following the dye’s initial introduction at time t = 0 into the
fluid at point x′

0, the fluid’s dye-velocity measure v′(x′,t), as
defined by the above dye-tracking protocol is, as in Eq. (2.1),

v′ =
(

∂x′

∂t

)
x′

0

. (A1)

With dS a directed element of surface area centered about
a point x fixed in space, and with v′ the statistical-kinematical
measure at point x of the velocity at which the color (and
hence mass) moves through space in a small time interval δt ,
the volume δV ′of space swept through by the color as it moves
through dS is then given by the expression δV ′ := dS · v′δt.
This follows from the fact that v′δt ≡ δx′ is the geometric
projective displacement of the patch of color occurring during
that time and that dS · δx′ is the consequent amount of volume
displaced.

Next, recall that the definition of the mass flux is such
that with dS a directed element of surface area fixed in
the space while being centered about some fixed point x,
the temporal rate at which the mass crosses that surface is
dS · nm. With v̂ = 1/ρ denoting the fluid’s specific volume,
the corresponding amount of fluid volume accompanying
that mass, and hence crossing that surface in the small
time interval δt, is thus δV := dS · nmv̂ δt ≡ dS · nm /ρ δt =
dS · v δt. The photochromically developed color that is being
tracked is obviously being carried by the fluid’s molecules,
since it is they that are emitting the color. However, each
colored molecule crossing the surface is at the same time
also carrying that particular molecule’s mass along with it.
Consequently, the movement of the color is synonymous with
the movement of the fluid’s mass.

Upon now, identifying δV with the volume δV ′ defined
previously, we find upon equating corresponding terms and
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noting that the areal element dS and time interval δt are both
arbitrary that

v′ = v. (A2)

Thus, dye tracking does, indeed, provide a statistical
measure of the fluid’s mass velocity, a fact that was already
intuited in connection with Eq. (2.2).

APPENDIX B: PROOF OF EULER’S HYPOTHESIS, m̂ = v

Landau and Lifshitz [19, p. 196] were apparently the first
to recognize the need to prove Euler’s implicit hypothesis,
namely that m̂ = v, rather than to simply accept it as an
established fact based on an analogy with the principles of
Newtonian mechanics. However, their brief attempt at a proof
was incomplete, as noted by Kostdädt and Liu [57], who
offered a more authoritative proof of Euler’s hypothesis. Liu,
later [58] invoking both mechanical and thermodynamic argu-
ments, elaborated further upon his proof, which was endorsed
by Öttinger [59], leading them, together with Struchtrup, to
ultimately to write a joint paper [60] on the subject, arguing
that the failure of Euler’s hypothesis to apply would result,
inter alia, in a violation of the angular momentum equation.
An independent proof of this same fact is contained in the
Appendix to Ref. [30].

APPENDIX C: PROOF OF THE KINETIC ENERGY
CONSTITUTIVE EQUATION, êk = v · v/2

With êk the specific kinetic energy defined by its appearance
in the energy equations (3.3) and (3.4), define the kinetic-
energy velocity v k in terms of the already-defined êk by the
relation

êk = (1/2)vk · v k. (C1)

We begin by first proving that vk = v. Were that to be true
it would then follow from the above equation that Eq. (3.7b)
was indeed correct.

From the generic energy equation (3.3) together with (3.4)
and the definition (3.10) of vv we have that

ρ
Dû

Dt
+ ρ

Dêk

Dt
− ρv · f̂ = −∇ · ju − ∇ · (P · vv), (C2)

where, with the material derivative given by (3.5), it has been
noted that ρDφ̂ /Dt = −ρv · f̂. In addition, from Eqs. (3.2)
and (3.7a) the momentum equation is

ρ
Dv
Dt

= −∇ · P + ρ f̂. (C3)

Consider two possible frames of reference, both pertaining
to the same inertial coordinate system: the O frame and
the O ′ frame, respectively labeling events according to the
spatiotemporal coordinates (x,t) and (x′,t ′). The primed frame
moves relative to the unprimed frame at a steady, time- and
position-independent velocity, say V; that is, V is independent
of the choices of (x,t) and (x′,t ′). Let the origins of these two
frames coincide at t = t ′ = 0, The Galilean transformations
connecting these two frames are t = t ′ and x = x′ + Vt ′. With
∇ = ∂/∂xt and ∇′ = ∂/∂x′

t ′ the respective gradient operators
in the two systems, the material derivative in the O frame is

given by Eq. (3.5), whereas the corresponding derivative in the
O ′ frame is D/Dt ′ = ∂/∂t ′x′ + v′ · ∇′, where

v = v′ + V. (C4)

It follows as a consequence of the preceding relations that

∇′ = ∇ (C5a)

and

D/Dt ′ = D/Dt. (C5b)

Since the notion of velocity is purely kinematical, indepen-
dently of whether it is being used in a mass, momentum, or
energy context, it follows that

vk = v′
k + V (C6a)

and

vv = v′
v + V. (C6b)

By identity, ∇ · (P · vv) = (∇ · P) · vv + P : ∇vv in
Eq. (C2). Use this identity to replace the last term appearing
in Eq. (C2). Elimination of the common symbol ∇ · P
between the newly rewritten energy equation Eq. (C2) and the
momentum equation (C3) then yields the following relation
upon rearrangement using (C1):

ρ
Dû

Dt
= −∇ · ju − P :∇vv − ρvk · Dvk

Dt
+ ρvv · Dv

Dt

− (vv − v) · ρ f̂. (C7)

The preceding expression describes the transport of internal
energy as seen by the O-frame observer in an inertial reference
system. The corresponding equation as seen by the O ′-frame
observer in this same inertial system is

ρ
Dû

Dt ′
= −∇′ · ju − P :∇′v′

v − ρv′
k · Dv′

k

Dt

+ ρv′
v · Dv′

Dt
− (v′

v − v′) · ρ f̂, (C8)

in which we have noted that the constitutive expressions for the
specific densities ρ, û, f̂ and the fluxes ju and P, being Galilean
invariant, necessarily possess the same values in both the
unprimed and primed reference frames. Upon subtracting (C8)
from (C7) and subsequently making use of Eqs. (C4)–(C6a)
and (C6b) we eventually find that V · (D/Dt)(vk − v) = 0.
Since V is position- and time-independent, this is equivalent
to

D

Dt
[V · (vk − v)] = 0. (C9)

The time and position independence of Vthus requires that

vk = v, (C10)

showing that the specific kinetic energy (C1) is indeed given
by Eq. (3.7b), namely êk = v · v/2.
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APPENDIX D: ON THE CHOICE OF THE NAME
“VOLUME” ASCRIBED TO THE NONMATERIAL

FLUID VELOCITY vv

With v̂ = 1/ρ the specific volume, Eq. (3.14) can be
rewritten as

jv = −ρDv∇v̂. (D1)

We emphasize this alternative form with the aim of
rationalizing our association of the affixed volume with the
symbol vv .

In addressing transport processes [3], and as a consequence
of the fluid’s Brownian motion, several physically different
types of diffuse fluxes arise from molecular sources. In this
context consider the transport through space of some generic
extensive physical property 
, for example, mass, momentum,
chemical species, entropy, volume, etc. With use of the
circumflex symbol ψ̂ to denote the specific density of that
property (i.e., the amount 
 per unit mass of the property) at a
point in the fluid, all of the elementary diffusion fluxes of that
property appearing thus far are, as noted by Woods [61], special
cases of the following generic linear constitutive formulation:

jψ = −ρDψ∇ψ̂, (D2)

in which Dψ denotes the diffusivity appropriate to that
property. Examples of this constitutive group include the
following.

(i) Fourier’s heat conduction law for the diffuse flux jh =
−ρDh∇ĥ of enthalpy (or for the isobaric “heat” flux), with ĥ

the specific enthalpy and H the extensive amount of enthalpy.
That the preceding constitutive expression for jh is correct
follows from the fact, from equilibrium thermodynamics,
that dĥ = ĉpdT for the isobaric case, so that one has that
jh = −ρĉpDh∇T . With α = k /ρĉp the fluid’s thermometric
diffusivity, the preceding expression can be rewritten as jh =
−k∇T by choosing Dh ≡ α. As regards notation, jh ≡ ju for
the present isobaric case in which ju is the heat flux appearing
in the energy equation (3.3).

(ii) Fick’s law for the diffuse flux jγ = −ρD∇ŵγ (γ =
1,2) of chemical species γ in a binary solution, with ŵγ the
specific mass or mass fraction of the species (i.e., mass Wγ per
unit mass of the mixture composed of masses W1 + W2) and
Dγ = D the binary diffusion coefficient.

(iii) Allowing for poetic license, Navier’s diffuse momen-
tum transport law (a dyadic) for the diffuse flux of momentum,
jm̂ = −ρυ∇m̂, with m̂ (≡v) the specific momentum and
Dm = υ the kinematic viscosity.

From the perspective of these existing diffuse transport
laws, representing special cases of Woods’ generic scheme,
one sees that the constitutive equation (D2) for the diffuse
volume flux fits perfectly into that scheme, wherein v̂ is the
specific volume, with volume V being the extensive property
undergoing transport. As such, this provides support for the
belief that the symbol vv pertains to the notion of volume.

There is another equally compelling reason for attaching
the name volume to the symbol vv . This stems from the fact
that, generically, by definition, the (total) flux, say nψ , of any
extensive property 
 is, by definition, the sum

nψ = nmψ̂ + jψ (D3)

of the respective convective and diffusive fluxes of that
property (referring to the convective portion as representing
the amount of the property carried by the flowing mass). When
applied to the transport of volume, this yields

nv = nmv̂ + jv (D4)

for the volume flux nv . Since v̂ = 1/ρ and in view of (1.2) we
thus obtain

nv = v + jv. (D5)

Comparison with (3.13) shows that

nv = vv. (D6)

As such, vv is, physically, really a flux or current rather
than a kinematically defined velocity. This is consistent with
the fact, with the symbols l and τ, respectively representing
length and time, that the dimensions of the volume flux nv

are volume (l3) per unit area (l2) per unit time (τ ), which is
equivalent, dimensionally, to l/τ , namely to a velocity.

By analogy with its Fourier heat flux analog ju (wherein
heat is said to be “flowing”), the view of vv or nv as a flux that
also is flowing, rather than as a velocity that expresses linear
movement, renders more palatable the use of the word “flow”
when affixed to volume.
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[60] H. C. Öttinger, H. Struchtrup, and M. Liu, Phys. Rev. E 80,

056303 (2009).
[61] L. C. Woods, An Introduction to the Kinetic Theory of Gases

and Magnetoplasmas (Oxford, New York, 1993), p. 63.

016307-20

http://dx.doi.org/10.1016/j.ijengsci.2009.05.002
http://dx.doi.org/10.1017/S0022112089001424
http://dx.doi.org/10.1007/s003480050264
http://dx.doi.org/10.1088/0957-0233/11/9/301
http://dx.doi.org/10.1088/0957-0233/11/9/301
http://dx.doi.org/10.1080/02786829108959515
http://dx.doi.org/10.1016/S0001-8686(01)00067-7
http://dx.doi.org/10.1007/s00348-005-0991-7
http://dx.doi.org/10.1016/0010-2180(95)00189-1
http://dx.doi.org/10.1016/0010-2180(95)00189-1
http://dx.doi.org/10.1080/00102209308924118
http://dx.doi.org/10.1080/00102209308924118
http://dx.doi.org/10.1017/S0022112080001905
http://dx.doi.org/10.1098/rstl.1879.0067
http://dx.doi.org/10.1103/PhysRevE.72.061201
http://dx.doi.org/10.1137/050632075
http://dx.doi.org/10.1007/BF01338485
http://dx.doi.org/10.1140/epje/e2006-00012-9
http://dx.doi.org/10.1140/epje/e2006-00012-9
http://dx.doi.org/10.1103/PhysRevE.74.036306
http://dx.doi.org/10.1515/jnet.1982.7.2.95
http://dx.doi.org/10.1515/jnet.1982.7.2.95
http://dx.doi.org/10.1007/BF01015557
http://dx.doi.org/10.1017/S0022112007005575
http://dx.doi.org/10.1017/S0022112007005575
http://dx.doi.org/10.1016/j.physa.2008.07.009
http://dx.doi.org/10.1016/j.physa.2008.07.009
http://dx.doi.org/10.1063/1.3292011
http://dx.doi.org/10.1063/1.3292011
http://dx.doi.org/10.1063/1.2919557
http://dx.doi.org/10.1063/1.2987367
http://dx.doi.org/10.1063/1.2987367
http://dx.doi.org/10.1063/1.2971039
http://arXiv.org/abs/arXiv:1105.6256v2
http://arXiv.org/abs/arXiv:1108.0124v2
http://dx.doi.org/10.1016/j.physleta.2012.01.004
http://dx.doi.org/10.1016/j.physleta.2012.01.004
http://dx.doi.org/10.1016/j.ijengsci.2010.07.006
http://dx.doi.org/10.1007/s10404-010-0604-5
http://dx.doi.org/10.1007/s10404-010-0604-5
http://dx.doi.org/10.1007/s10404-005-0055-6
http://dx.doi.org/10.1007/s10404-005-0055-6
http://dx.doi.org/10.1051/lhb/2003092
http://dx.doi.org/10.1103/PhysRevE.84.046309
http://dx.doi.org/10.1016/j.physa.2005.03.020
http://dx.doi.org/10.1016/j.physa.2005.03.020
http://dx.doi.org/10.1021/ie102106j
http://dx.doi.org/10.1112/plms/s2-40.1.382
http://dx.doi.org/10.1063/1.1397256
http://dx.doi.org/10.1063/1.1397256
http://dx.doi.org/10.1063/1.1466827
http://dx.doi.org/10.1016/j.physrep.2008.04.010
http://dx.doi.org/10.1364/OE.19.010571
http://dx.doi.org/10.1103/PhysRevE.58.5535
http://dx.doi.org/10.1103/PhysRevLett.100.098901
http://dx.doi.org/10.1103/PhysRevLett.100.098902
http://dx.doi.org/10.1103/PhysRevE.80.056303
http://dx.doi.org/10.1103/PhysRevE.80.056303

