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Thermomagnetic convective flows in a vertical layer of ferrocolloid: Perturbation energy analysis
and experimental study
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Flow patterns arising in a vertical differentially heated layer of nonconducting ferromagnetic fluid placed in an
external uniform transverse magnetic field are studied experimentally and discussed from the point of view of the
perturbation energy balance. A quantitative criterion for detecting the parametric point where the dominant role
in generating a flow instability is transferred between the thermogravitational and thermomagnetic mechanisms
is suggested, based on the disturbance energy balance analysis. A comprehensive experimental study of various
flow patterns is undertaken, and the existence is demonstrated of oblique thermomagnetic waves theoretically
predicted by Suslov [Phys. Fluids 20, 084101 (2008)] and superposed onto the stationary magnetoconvective
pattern known previously. It is found that the wave number of the detected convection patterns depends sensitively
on the temperature difference across the layer and on the applied magnetic field. In unsteady regimes its value
varies periodically by a factor of almost 2, indicating the appearance of two different competing wave modes. The
wave numbers and spatial orientation of the observed dominant flow patterns are found to be in good agreement
with theoretical predictions.

DOI: 10.1103/PhysRevE.86.016301 PACS number(s): 47.65.Cb, 44.25.+f, 47.20.Bp, 47.54.−r

I. INTRODUCTION

Artificial nonconducting magnetocolloids (ferrofluids)
have found a variety of applications thanks to their ability
to respond strongly to externally applied magnetic fields
created by ordinary permanent or electromagnets. This is in
contrast to paramagnetic fluids such as liquid oxygen [1,2]
or gadolinium-based fluids that require much stronger fields
created by superconducting magnets [3,4]. Well-known uses
of ferromagnetic fluids include hydrosealing of gaps between
moving parts of mechanisms, targeted drug delivery, tumor
treatment, and cooling of loudspeakers, to name a few [5,6].
There are also a growing number of emerging applications that
have been suggested in recent years. A magnetic fluid was used
to measure the void fraction [7] and bubble speed [8] in gas-
liquid systems. Magnetic fluid actuators and micropumps were
suggested in [9] and references therein. The magnetocaloric
effect and the ability of magnetic fluids to flow in a magnetic
field without being mechanically forced prompted the design
of miniature automatic cooling devices for electronics [10,11].

The current study is motivated by our interest in a
relatively new application of nonconducting ferrofluids as
the working fluid in heat management systems operating in
reduced gravity conditions on orbital stations where cooling by
natural gravitational convection cannot be achieved [12–15].
Nonuniform heating results in a nonuniform magnetization of
a ferrofluid placed in an external magnetic field. Subsequently,
a ponderomotive force arises that drives cooler and thus
more strongly magnetized fluid particles [5] to the regions
with a stronger magnetic field [16]. This motion is known
as magnetoconvection. It can be initiated at normal gravity
as well as in gravity-free conditions. A number of relevant
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numerical and experimental studies have been reported in the
recent literature. For example, it was found in [17,18] that
magnetoconvection can significantly intensify the heat transfer
rate across a fluid-filled cavity in comparison with the regime
of pure gravitational convection. In contrast, the authors
of [19] found that a small-amplitude sinusoidal temperature
modulation at the boundaries of a horizontal ferrofluid layer
can suppress magnetoconvection, offering a means of its
control. Our present work focuses on the analysis of physical
mechanisms that could be responsible for such variations of
the heat transfer rate rather than on quantifying them.

The geometric setup we analyze here is prompted by the
configuration of likely applications that is closer to a flat
layer than to other commonly studied cylindrical or spherical
convection geometries. In our previous work [20] we discussed
a few analogies of the current problem with convection in
vibrating [21,22] and dielectric fluid layers [23] that become
evident in the zero-gravity limit. Further similarities could
be seen with a much studied (mostly in the context of
convection in rotating planetary atmosphere) vertical annulus
configuration with a heated outer surface and walls corotating
about the axis of the annulus. In this case a centrifugal rather
than magnetic force acts on the fluid normally to the walls.
The two problems become geometrically similar when a very
narrow annulus of large diameter is considered. However, there
are a number of other conditions (see Sec. V) that must also
be met to enable a meaningful qualitative comparison with
our current results. To the best of our knowledge these were
not satisfied in any of the published studies to date. Yet to put
the problem in a wider context we mention a few of the most
relevant rotational convection publications below.

In order to make analytical progress it is often assumed that
the gravity acting along the axis of an annulus can be neglected
in comparison with the centrifugal force acting radially. In
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FIG. 1. (Color online) Schematic diagram of main flow patterns: (a) basic flow; (b) thermogravitational waves; (c) stationary vertical
thermomagnetic rolls; (d) oblique thermomagnetic waves.

this case the rotating convection problem becomes similar
to a Rayleigh-Bénard layer “wrapped around” a cylindrical
surface [24]. It has been found that convection can take various
forms under such an approximation. A linear stability analysis
shows that stationary vertical rolls aligned with the axis of
rotation are preferred. This was confirmed experimentally for
relatively small supercritical Rayleigh numbers [25]. Similar
vertical rolls were discovered a few years earlier in our
experiments with a vertical layer of magnetic fluid [26].
More interestingly, experiments in a layer of magnetic fluid
discovered the existence of inclined convection rolls [27].
Later they were also detected in a rotating annulus filled with
nonmagnetic fluid [25]. In spite of these apparent similarities
the reasons for the specific spatial orientation of such rolls
are completely different. It is shown in [24] that the vertical
rolls in rotational convection are preferred due to the action of
the Coriolis force. Yet convection rolls in magnetic fluids are
aligned by the fluid’s up-down flow caused by the gravitational
buoyancy acting along the layer [20], which is neglected in
[24]. Such a flow was accounted for in [28], but, unfortunately,
the large-Prandtl-number regimes characterized by oscillatory
instability that is most relevant to the present study were
not discussed in detail there. Therefore, we are led to the
conclusion that, despite the seeming similarity between the
problems of magnetoconvection in a vertical layer and of
rotational convection in an annulus, currently, a direct analogy
between the two cannot be established. Moreover, the oblique
thermomagnetic waves predicted computationally in [20] are
confirmed in our current experiments. Prior to proceeding with
their analysis we briefly summarize the major findings of our
previous studies below.

A series of earlier experiments [26,29,30] conducted in
a thin disk-shaped vertical cavity of aspect ratio (diameter
to thickness) 21.4 showed that magnetoconvection can play
a dominant role in a vertical layer geometry. The resulting
convection patterns were found to be drastically different from
those expected to exist in a differentially heated vertical layer
of nonmagnetic fluid, due to thermogravitational instability.
In particular, in a large-Prandtl-number fluid, such as the
kerosene-based ferrocolloid used in our experiments, the

thermogravitational instability arising at sufficiently large
values of the Grashof number manifests itself as a pair of
counterpropagating waves seen as horizontal rolls [31–36];
see Fig. 1(b). However the most prominent patterns observed
in a magnetic field even when the values of Grashof number
are below the thermogravitational instability threshold (as is
the case in the experiments we report here) were found to
consist of vertical rolls as schematically shown in Fig. 1(c)
superimposed onto the basic flow sketched in Fig. 1(a).
Yet of most interest here are the oblique wavelike patterns
sketched in Fig. 1(d) and termed thermomagnetic waves. They
were found in a recent linear stability study [20] when a
sufficiently strong magnetic field is applied. The superposition
of these distinct patterns results in 16 parametric regions in
the Grm-Gr space for a fixed value of the considered Prandtl
number Pr = 130 (see Fig. 2 below and Fig. 12 in [20]),
each corresponding to its own type of a (three-dimensional)
convection pattern. Although the four compounding patterns—
thermogravitational waves, thermomagnetic waves of two
kinds, and stationary thermoconvective rolls—were described
in [20] neither the quantitative criterion defining the transition
between thermogravitational and thermomagnetic waves nor
the experimental evidence of the existence of these patterns
has yet been obtained in extended geometries (such as the
rectangular layer of large aspect ratio 41.6 used in the
current experiments). Filling this gap is the major purpose of
the present work. The perturbation energy balance analysis
[37–39] that enables us to pinpoint physical mechanisms
driving instability of the basic flow will be developed in Secs. II
and III, and the experimental observations of predicted patterns
including oblique thermomagnetic waves will be discussed in
Sec. IV.

In our present analysis we adopt the same physical
assumptions as in [20]. We briefly list them below.

(1) The fluid density is described by a linear dependence
on the temperature in the buoyancy term (Boussinesq approx-
imation).

(2) The vectors of magnetic field and fluid magnetization
remain codirected.

(3) The fluid is a perfect dielectric.
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FIG. 2. Parametric stability boundary Gr(Grm) (a), nondimensional critical disturbance wave number αc(Grm) (b), and nondimensional
disturbance frequency νc(Grm) ≡ σ I

c /(2π ) (c) for equivalent two-dimensional problem at Pr = 130 (see [20] for details).

(4) The variation of fluid’s temperature due to the magne-
tocaloric effect is negligible.

(5) The fluid’s magnetization decreases linearly with the
temperature and increases linearly with the magnetic field.

(6) The fluid is far from magnetic saturation so that its
integral and differential magnetic susceptibilities are equal,
i.e., the fluid operates in the linear range of Langevin’s
magnetization law (the value of Langevin’s parameter in our
experiments did not exceed 1.2).

(7) The formation of magnetic particle aggregates and their
sedimentation are negligible.

(8) The variation of the fluid’s viscosity due to magnetovis-
cous effects is negligible.

(9) The vertical thermal stratification in a fluid layer is
negligible.

(10) The thermodiffusion effects are negligible.
While assumptions 1–6 are well justified experimentally,

the validity of assumptions 7 and 8 in experiments is not
certain. The investigation of magnetoviscous effects has
become the subject of numerous dedicated studies (their
discussion in the context of shear and magnetoconvection
flows can be found in [5,6,40–43]). Yet no reliable constitutive
model suitable for our flow conditions has been suggested to
date. This forces us to adopt assumption 8. However, we are
not overly concerned with neglecting possible magnetoviscous
effects in our theoretical formulation as the inaccuracy
introduced by this simplification is smaller than that caused
by the violation of assumption 9 due to the finite aspect
ratio of the used experimental chamber. We employ this last
assumption in order to be able to make analytical progress.
The consequence of this is that, while our past and current
computational results agree qualitatively with experimental
observations, it is hard to determine the accurate values of
the nondimensional governing parameters involving viscosity
for all experimental regimes. This problem is well known
in the ferrofluid community and currently does not have
a straightforward solution. A further discussion is given in
Sec. IV.

Regarding assumption 10, we note that thermodiffusion
(or, more precisely, thermophoresis) is always present in
nonuniformly heated nanofluids such as the ferrofluid used
in our experiments [44–46]. There also exists an experimental
indication that in strong magnetic fields and at large tempera-
ture gradients thermophoresis can influence the distribution
of solid magnetic phases in a fluid. However, noticeable

variations were observed [47] only in magnetic fields at least
twice as strong as, and for the cross-layer thermal gradients
an order of magnitude larger than, those in our experiments.
Thus assumption 10 appears to be acceptable. Despite these
simplifications in the analytical formulation, the qualitative
agreement between experimentally and computationally dis-
covered features is found to be convincing, which confirms
that the adopted analytical model is capable of capturing the
major qualitative flow features.

Finally, prior to proceeding with presenting our current
study we specifically note a recent paper [48] where the authors
extended the study of [20] and investigated the parametric
dependence of magnetoconvection flows in a vertical layer on
the fluid’s Prandtl number and on the degree of the fluid’s
magnetic saturation. Namely, the linear magnetization law in
assumption 5 above was replaced with Langevin’s nonlinear
variation. It was shown that the Prandtl number range where
thermomagnetic waves can be detected does depend on the
value of the magnetic susceptibility of the fluid, but the
types of the observed four basic patterns remain the same.
Indirectly, this demonstrates the robustness of assumptions 5
and 6. It also shows that in the context of the current work
employing assumptions 7 and 8 does not lead to any loss of
important qualitative information regarding thermomagnetic
flow patterns. Indeed, should magnetoviscous effects be
accounted for [49] they would primarily lead to variation of
the fluid Prandtl number. However, this was not found to affect
the types of the observed magnetoconvective flow patterns so
that the qualitative shape of the idealized stability diagram
shown in Fig. 2 is expected to remain unchanged in realistic
experimental conditions.

II. PROBLEM FORMULATION AND PERTURBATION
ENERGY EQUATIONS

We consider a vertical layer of incompressible noncon-
ducting ferromagnetic fluid contained in the gap between
two long and wide parallel plates; see Fig. 1(a). The plates
are maintained at uniform temperatures T∗ ± �. The applied
external uniform magnetic field is perpendicular to the layer.
In the chosen Cartesian coordinate system (x,y), the x axis is
perpendicular to the layer and the y axis is along the plates in
the direction of the flow periodicity. This direction can form an
arbitrary angle with the direction of gravity g. The introduction
of such a coordinate system is warranted by the generalized
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Squire transformations discussed in [20] that enable us to
transform a full three-dimensional linearized flow stability
problem to an equivalent two-dimensional problem. It will be
sufficient to limit our consideration here to such a transformed
problem since the discussed physical results are insensitive to
coordinate system rotation in the vertical plane introduced by
Squire’s transformation.

As shown in [20] the problem admits a steady parallel basic
flow solution with a cubic vertical velocity profile v0 and linear
distributions of magnetic field H0, fluid temperature θ0, and
magnetization M0 across the gap. Nondimensionally, they are
given as

θ0 = −x, v0 = Gr

6
(x3 − x),

(1)
H0 = N − x, M0 = χ∗N + x,

where χ∗ is the integral magnetic susceptibility of the fluid
(in this work we assume the linear magnetization law so that
it is equal to the differential magnetic susceptibility χ ), Gr is
the Grashof number, and N is a coefficient depending on the
strength of the external magnetic field (its numerical value is
irrelevant to further discussion of theoretical results [50] that
neglect magnetoviscous effects).

Assume that unsteady periodic perturbations of the form

[(v(x),P (x),T (x),φ(x)) exp(σ t + iαy) + c.c.], (2)

where v = (u,v), P , T , and φ are perturbations of the
fluid velocity, pressure, temperature, and magnetic potential,
respectively, σ = σR + iσ I is the complex amplification rate,
α is a real wave number in the y direction, and c.c. denotes
the complex conjugate of the expression in brackets, are
superimposed on such a flow. Then the resulting nondi-
mensional continuity, x and y momentum, thermal energy,
and magnetization perturbation equations linearized about the
basic flow become [20]

Du + iαv = 0, (3)

σu = (D2 − α2 − iαv0)u − DP − GrmDH0 θ − Grmθ0D
2φ,

(4)

σv = −Dv0 u + (
D2 − α2 − iαv0

)
v − iαP

+ Grθ − iαGrmθ0Dφ, (5)

σθ = −Dθ0u +
(

D2 − α2

Pr
− iαv0

)
θ, (6)(

D2 − 1 + χ∗
1 + χ

α2

)
φ − Dθ = 0, (7)

where D ≡ d
dx

. The above equations along with the boundary
conditions

u = v = θ = 0 and (1 + χ )Dφ ± αφ = 0 at x = ±1 (8)

define a generalized eigenvalue problem for the complex
amplification rate σ which has been solved in [20]. Three
nondimensional parameters appearing in Eqs. (4)–(6), the
thermal and magnetic Grashof numbers Gr = ρ2

∗β∗�gd3/η2
∗

and Grm = ρ∗μ0K
2�2d2/[η2

∗(1 + χ )] and the Prandtl number
Pr = η∗/(ρ∗κ∗), where β∗ and κ∗ are the coefficients of

thermal expansion and diffusivity (both evaluated at T∗),
μ0 = 4π × 10−7 H/m is the magnetic constant, and g = |g|,
characterize the importance of buoyancy and magnetic forces
and the ratio of viscous and thermal diffusion coefficients,
respectively. The reader is referred to [20] for further details.

Here we are interested in the eigenfunctions v, T , P , and φ

computed at the representative points on the marginal stability
surface found in [20] and reproduced in Fig. 2. As seen from
this figure the stability boundary consists of three distinct
curves. Their physical nature requires further clarification and
we will achieve this by considering the perturbation energy
balance in a way similar to that used (albeit in a different
physical context), for example, in [37–39].

To derive the disturbance kinetic energy equation [51] we
multiply the momentum equations (4) and (5) by the complex
conjugate velocity components ū and v̄, respectively, add them
together, integrate by parts across the layer using boundary
conditions (8) and the continuity equation (3), and take the
real part of the result to obtain

σR�k = �uv + �Gr + �vis + �m1 + �m2, (9)

where

�k =
∫ 1

−1
(|u|2 + |v|2) dx > 0,

�uv = −
∫ 1

−1
Dv0Re(uv̄) dx, �Gr =

∫ 1

−1
GrRe(θv̄)︸ ︷︷ ︸

EGr

dx,

�vis = −α2Ek −
∫ 1

−1
(|Du|2 + |Dv|2) dx < 0, (10)

�m1 =
∫ 1

−1
−GrmDH0 Re(θū)︸ ︷︷ ︸

Em1

dx,

�m2 =
∫ 1

−1
GrmDθ0 Re(Dφ ū)︸ ︷︷ ︸

Em2

dx.

Clearly, Eq. (9) is simply an integrated form of the linearized
equations (3)–(5), but it enables one to do what cannot
be achieved using the original equations solved in [20],
namely, to directly and unambiguously determine the main
instability mechanism. Here this will be done simply by
inspecting the signs and relative magnitudes of terms entering
Eq. (9) and judging their direct contribution to the disturbance
amplification rate σR . Importantly, all information required to
make physical conclusions based on this equation is local, i.e.,
the physical flow instability is classified directly at a given
parametric point without any need to refer to a global stability
diagram such as the one shown in Fig. 2. Each of the integral
terms (10) has a distinct physical meaning: �k is the kinetic
energy of perturbations, �uv is the energy exchange between
the basic flow and the disturbance velocity fields, �Gr is the
energy contribution due to buoyancy, and �vis is the negatively
defined viscous dissipation. Because within the framework
of linearized disturbances the eigenfunctions are defined up
to a multiplicative constant, without loss of generality we
normalize the perturbation kinetic energy balance equation
(9) so that �vis = −1. The remaining two terms, �m1 and
�m2, are both due to magnetic effects. However they have
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a different physical nature. �m1 accounts for the disturbance
kinetic energy variation due to the thermal disturbances in the
field. They influence the degree of local fluid magnetization
and the appearance of a magnetic force driving cool strongly
magnetized fluid particles to the regions of stronger magnetic
field. On the other hand, �m2 contains perturbations of the
magnetic field itself that are caused by the cross-layer motion
of a nonuniformly heated fluid. This is essentially an energy
perturbation due to the magnetic induction. Given that the
disturbance kinetic energy �k is positively defined the basic
flow can only be unstable, i.e., σR > 0, if the sum of terms
in the right-hand side of Eq. (9) is positive. In other words,
positive terms in the right-hand side of (9) unambiguously
identify physical effects that lead to flow destabilization, and
the comparison of the magnitudes of these terms determines
the relative strength of various physical influences.

III. PERTURBATION ENERGY BALANCE

While the results presented in Fig. 2 and their three-
dimensional unfoldings discussed in detail in [20] provide
a comprehensive stability map of the flow, there are still
several questions that remain open regarding its physical
nature. Even though three distinct instability modes shown
by the solid, dashed, and dash-dotted lines in Fig. 2 were
identified previously, the cross-layer structure of the modes
has not yet been clarified. Since ferrofluids are not transparent,
a direct experimental visualization of their cross-layer motion
is impossible. The perturbation energy distribution that we
consider here will, however, shed light on the processes taking
place inside the layer. The other aspect awaiting clarification is
the distinction between two magnetically driven modes shown
by the dashed and dash-dotted lines in Fig. 2. The physical be-
havior of the flow along the segment of the instability boundary
shown by the solid line in Fig. 2 also requires a clarification. It
connects, in a nonmonotonic but continuous way, the limiting
regimes of pure gravitational convection (Grm = 0, Gr �= 0,
point 1) and magnetically driven flow (Grm �= 0, Gr → 0, the
solid line segment beyond point 5). Clearly, the physical nature
of the instability has to change along this curve, but where
exactly this happens cannot be determined based on modal
analysis of infinitesimal perturbations alone. Thus we consider
a number of representative points 1–8 on the marginal stability
boundary and investigate the perturbation energy balance at
these points to answer the aforementioned questions.

The values of various energy balance terms have been com-
puted at points marked by circles in Fig. 2 using expressions
(10) and the integral Chebyshev collocation method suggested
in [52] and adapted for general convection studies in [39] and
for energy integral calculation in [53,54]. From the analysis
of the computational data obtained we make the following
conclusions.

(a) The contribution of the basic flow velocity to the
disturbance energy balance, �uv , can be either slightly positive
or negative, but it remains close to zero in all regimes; see
the dashed line in Fig. 3. Therefore the interaction of the
disturbance velocity field with the basic flow is weak. This
confirms that instability associated with the presence of an
inflection point in the basic flow velocity profile, which is the
dominant instability in similar flows of low-Prandtl-number
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FIG. 3. The perturbation energy integrals characterizing ther-
momagnetic (�m1 + �m2, solid line) and thermogravitational (�Gr,
dash-dotted line) mechanisms of convection and exchange with the
basic flow (�uv , dashed line) as functions of the ratio Grm/Gr along
the stability boundary shown by the solid line in Fig. 2(a).

fluids (see, for example, [39,55]) does not occur in the current
case of a fluid with Pr = 130.

(b) The thermogravitational contribution �Gr depends
strongly on the values of both Gr and Grm and can be either
positive or negative. It is strongly destabilizing in the absence
of a magnetic field, i.e., for Grm ∼ 0, but becomes stabilizing
for larger values of Grm when the motion caused by the actions
of the vertical buoyancy force and the horizontal magnetic
ponderomotive force start competing with each other. The
peculiar Z shape of the stability boundary shown by the solid
line in Fig. 2(a) is the consequence of this competition: for
larger values of Gr both magnetic and thermogravitational
mechanisms play a destabilizing role and their combination
leads to a reduction in the parametric area of the stability region
(the solid line bends to the left). However, for small values
of Gr the buoyancy starts playing a stabilizing role; see the
dash-dotted line in Fig. 3. Figure 4 offers a possible explanation
of this fact. Note that the horizontal ponderomotive magnetic
force effectively drives the convection motion only during the
first and third quarters of a wave period when it is aligned
with the perturbation velocity; see the snapshots for t = 0
and t = T/2. At these instances cool (warm) and stronger
(weaker) magnetized fluid is pushed toward the hot (cool)
wall where the basic magnetic field given by (1) is stronger
(weaker). It is mostly the buoyancy force that drives convection
over the second and fourth quarters of the period; see the
snapshots for t = T/4 and t = 3T/4. At these moments the
warm (cool) fluid disturbance velocity has components up
(down) and toward the warm (cool) wall. Thus work is done by
the gravity force to enhance convective motion. However, work
is also done by the fluid against the horizontal ponderomotive
magnetic force, and this reduces the fluid’s kinetic energy. At
relatively large values of Gr the gravity work exceeds that
done by the fluid against the ponderomotive force so that the
overall buoyancy effect is destabilizing. For small values of
Gr the situation is reversed and the buoyancy contribution to
the disturbance energy balance becomes negative.

(c) The first of the two magnetic contributions to the energy
balance, �m1, is always non-negative. This term represents a
ponderomotive force that drives more strongly magnetized
cooler fluid particles into the regions of a stronger basic
magnetic field, i.e., from the cool wall toward the warm one;
see expressions (1). Therefore in the considered configuration
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FIG. 4. (Color online) Snapshots of thermomagnetic waves (point 4 in Fig. 2) over the wave period T . Color represents the thermal field
(red, warm, less dense, and more weakly magnetized fluid; blue, cool, denser, and more strongly magnetized fluid). White arrows show the
dominant direction of the disturbance flow driven by the ponderomotive magnetic force.

the dependence of the fluid magnetization on the temperature
always plays a destabilizing role, ultimately leading to the
onset of a thermomagnetic convection.

(d) In contrast, the second magnetic term �m2 remains
negative. It represents the induction of a disturbance magnetic
field by the displaced ferromagnetic fluid particles. The corre-
sponding modification of the basic magnetic field (an analogy
with an electromagnetic transmitter that requires energy supply
for its operation might be helpful here) always absorbs
energy and thus plays a stabilizing role, hindering the change
in the primary magnetization field. However, this magnetic
stabilization effect is always weaker than the thermomagnetic
destabilization characterized by �m1. Therefore the overall
magnetic influence in the considered geometry is always
destabilizing.

The above observations enable us to draw the general
conclusion that the destabilization of the primary parallel flow
along the solid line in Fig. 2(a) is due to two competing physical
mechanisms: the actions of ponderomotive magnetic and
buoyancy forces. They also define the nature of the instability
whose boundaries are shown by the dashed (points 6 and 8)
and dash-dotted (point 7) lines in Fig. 2(a): purely magnetic
ponderomotive force. Yet the details of these instability modes
are not made clear so far. Therefore next we consider the
spatial distribution of the three destabilizing integrands Em1,
Em2, and EGr, defined in (10) and plotted in Fig. 5 for points
1–8 marked by circles in Fig. 2.

For small values of Grm and large values of Gr (points 1 and
2), the thermogravitational instability mechanism dominates;
see the dash-dotted line in plots 1 and 2 in Fig. 5. The energy
integrand EGr has two well-defined symmetric maxima near
the walls. This is a reflection of the well-known fact that in
large-Prandtl-number fluids such as a typical kerosene-based
ferrocolloid the thermogravitational instability takes the form
of two waves counterpropagating in the wall regions [33–35].
Computations show that they are almost insensitive to a
magnetic field and exist even when the magnetic Grashof
number is significantly increased; see the plots for points 3
and 4 in Fig. 5. However, as the ratio Grm/Gr increases, the
thermomagnetic effects quantitatively characterized by Em1 +
Em2 intensify significantly while the role of gravitational
buoyancy, quantified by �Gr, weakens. This is demonstrated
in Fig. 3. The dominating role of the gravitational instability
mechanism is transferred to the thermomagnetic mechanism at
point 9 in Fig. 2 (which also corresponds to the intersection of
the solid and dash-dotted lines in Fig. 3), where the condition

�Gr = �m1 + �m2 (11)

is satisfied. This transition in dominance from one physical
mechanism of convection to another still results in a pair of
waves propagating up (down) along the hot (cold) wall. We
call such waves thermomagnetic. Despite a clear difference
in driving physical mechanisms the transition between them
occurs in a continuous way; see the solid line in Fig. 2.
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FIG. 5. Selected disturbance energy integrands for points denoted by circles in Fig. 2.

The comparison of Figs. 6 and 4 shows that the dominant
component of the thermogravitational perturbation velocity
field is vertical (along the layer, parallel to the gravity
vector) and that of thermomagnetic waves is horizontal (across
the layer, parallel to the applied magnetic field). Another
distinguishing feature is the behavior of the disturbance wave
numbers: when Grm increases so do the wave numbers of
thermogravitational waves; however, this trend is reversed
once they are replaced with thermomagnetic waves [see the
solid line in Fig. 2(b)].

When Gr decreases the wave speeds [not shown here, but
see Fig. 2(c) in [20]] also decrease, the instability pattern
becomes nearly stationary, and its maximum shifts from wall
regions toward the center of the layer; see the plot for point
5 in Fig. 5. The thermogravitational convection mechanism
continues to play a destabilizing role in the center of the layer,
but its influence in the wall regions becomes stabilizing. A
shift of the instability production region to the centre of the
layer has a profound effect on the characteristic wave number
of the perturbations: it quickly decreases [see the right end
of the solid line in Fig. 2(b)]. This has a straightforward
explanation: the disturbance structures in the center of the
layer near the inflection point of the basic flow velocity
profile are subject to large shear forces. These forces “stretch”
convection rolls, decreasing their wave number. The centrally

located instability structures elongated by the shear forces then
become so large that they cause a strong “flow blocking” effect.
Eventually they are destroyed by the basic flow, giving way to
much shorter structures; see the dash-dotted lines containing
point 7 in Fig. 2. Plot 7 in Fig. 5 shows that the physical
mechanism generating these flow structures is indeed the
same as that for the thermomagnetic waves discussed above.
Their characteristic length scale is sufficiently small (the wave
number is large) so that the basic flow blocking effect is
reduced and the two disturbance waves propagating along the
opposite walls reappear. We also note that, although the overall
magnetoinduction effect �m2 is always stabilizing, the energy
integrand Em2 for points 3, 4, and 7 is positive in the center
of the layer (between the counterpropagating thermomagnetic
waves). Thus it contributes to the local destabilization near the
midplane of the layer. As discussed in [20] the thermomagnetic
waves are most likely to be seen in experiments as obliquely
propagating patterns. This is confirmed by our observations
reported in Sec. IV.

Points 6 and 8 in Fig. 2 belong to the third type of stability
boundary, which is disjoint from the two segments discussed
so far. The physical mechanism causing this instability is of
purely thermomagnetic type: Em1 is strongly positive while
EGr is close to zero. Therefore the gravitational buoyancy plays
no essential role in these regimes of convection. The major

016301-7



SUSLOV, BOZHKO, SIDOROV, AND PUTIN PHYSICAL REVIEW E 86, 016301 (2012)

−1 0 1

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

x

t = 0

y

−1 0 1

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

x

t = T/4

−1 0 1

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

x

t = T/2

−1 0 1

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

t = 3T/4

x

FIG. 6. (Color online) Snapshots of thermogravitational waves (point 1 in Fig. 2) over the wave period T . Color represents a thermal field
(red, warm and less dense fluid; blue, cool and denser fluid). White arrows show the dominant directions of the disturbance flow driven by the
buoyancy force.

destabilization occurs near the middle of the layer where basic
flow velocity is zero. As a consequence, the corresponding
instability patterns are stationary [20]. They take the form of
vertical rolls.

IV. EXPERIMENTAL SETUP AND OBSERVED FLOW
PATTERNS

In Sec. III the linearized perturbation energy balance was
considered in detail, which enabled us to determine the
dominant physical mechanisms driving flows in a vertical
layer of ferromagnetic fluid. Here we will discuss experimental
observations of flow patterns, confirming conclusions made in
the previous section, and specifically the fact of the existence
of thermomagnetic waves.

The schematic of the experimental chamber is shown in
Fig. 7. The rectangular experimental chamber filled with a
magnetic fluid (1) had the thickness 2d = 6.00 ± 0.05 mm,
height L = 250.0 mm, and width W = 70.0 mm. The chamber
was bounded on one side by a brass wall (2) of a heat exchanger
with welded pipes for circulating a thermostatic fluid. A
transparent heat exchanger (3) made of two Plexiglass sheets
(2 and 4 mm thick), with an 8 mm gap for thermostatic fluid
between them, served as the second wall. The Plexiglas frame
(4) determined the inner dimensions of the working chamber.
Water from two jet cryothermostats KRIO-VT-01 was pumped

through the heat exchangers. The water temperature was
maintained fixed within ±0.05 K.

Since a ferrofluid is not transparent, direct observations of
flow structures were impossible. Therefore a 0.1-mm-thick
laminated thermosensitive liquid crystal film (5) was glued
onto the inner side of a 2-mm-thick transparent Plexiglas
wall of the heat exchanger (3) to enable registering the fluid
temperature distribution at the cool wall of the enclosure.
The sensor film was covered by a 0.075 mm laminating
layer in order to protect it against erosion caused by the
kerosene-based ferrofluid. The working temperature range
of the thermosensitive film was 18–22 ◦C, corresponding to
the color range from brown to green to blue. In order to
achieve a near-optimal resolution of the sensor the water
temperatures in heat exchangers were chosen in such a way
that the average temperature of the thermosensitive film was
maintained at around 20 ◦C. The thermal signature of the flow
was photographed using an Olympus E330 camera directly
connected to a computer and filmed using a Sony DCR-
TRV370E digital video camera. An 18-cm-long fluorolamp
was used to provide uniform lighting throughout experiments.
A fluorescent lamp rather than an incandescent bulb was used
to avoid parasitic heating of the experimental chamber.

A uniform magnetic field H was created by Helmholtz
coils with the average diameter of 800 mm, width of 45 mm,
and radial thickness of 100 mm. The distance between the
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FIG. 7. (Color online) Schematic of the experimental chamber:
1, magnetic fluid layer; 2 and 3, brass and Plexiglas heat exchangers;
4, frame; 5, laminated thermosensitive liquid crystal film; 6, thermo-
couple.

coil centers was equal to their average radius. The magnetic
field created by the coils had intensity up to 25 kA/m. A
photograph and a schematic of the complete setup are shown
in Fig. 8.

Experiments were performed with a kerosene-based mag-
netic fluid with magnetic saturation MS = 70 kA/m, mean
particle size of 10 nm, magnetic phase concentration of 14%,
density ρ∗ = 1.44 × 103 kg/m3, thermal expansion coeffi-
cient β∗ = 9.6 × 10−4 K−1, thermal diffusivity κ∗ = 4.3 ×

10−8 m2/s, and initial dynamic viscosity η∗ = 7.66 × 10−3

kg/(m s) (measured in the absence of a magnetic field).
At the values of Grashof number estimated in the absence

of a magnetic field, the thermogravitational waves sketched in
Fig. 1(b) would be expected to propagate vertically along an
infinite fluid layer; see the flow stability diagram in Fig. 2(a).
However, they were not detected experimentally because of the
finite size of the experimental chamber that led to a vertical
thermal stratification. Such a stratification suppresses both
stationary [56] and wave [57] disturbances that are not caused
by magnetic effects (see further discussion below). Note also
that the viscosity of a ferrofluid generally depends on the
applied magnetic field. One of the reasons for its change is the
formation of solid particle aggregates in a fluid [41,58,59]. For
example, it was shown in [42] that the viscosity of a ferrofluid
placed in a magnetic field can significantly increase provided
that the flow shear rate is sufficiently small. For this reason the
values of the governing nondimensional parameters change
during the experiment. In particular, the value of Gr ∼ 1/η2

decreases when an external magnetic field is applied, leading
to the further suppression of thermogravitational waves. These
factors enabled us to focus our experimental study fully
on the thermomagnetic effects whose thermal signature (not
obscured by thermogravitational waves) is reliably detected
by a sensor film. Even though the physical processes leading
to the variation of fluid properties are known and a number of
constitutive relations have been suggested for simple steady
flows [60,61], at present there is no reliable constitutive model
for magnetoviscosity nor a definitive way of measuring it over
the complete range of our specific flow conditions. Because
of this currently it is impossible to accurately estimate the
nondimensional parameters Gr, Grm, and Pr for all experi-
mental conditions. Thus below we choose to report the directly
measured values of the applied magnetic field H and the cross-
layer temperature difference �T ≡ 2� without converting
them to the nondimensional parameters introduced in Sec. II.

The experimental runs were conducted following two
scenarios: (a) increasing the cross-layer temperature difference
while keeping the external magnetic field and the average

FIG. 8. (Color online) Experimental setup: 1, Helmholtz coils; 2, correcting coils; 3, cooling system; 4, dc power supply; 5, experimental
chamber; 6 and 7, thermostats; 8, copper-Constantan thermocouples; 9, thermocouple signal recorder Thermodat-38V1; 10, computer; 11,
photo camera; 12, fluorolamp.
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FIG. 9. (Color online) Left: snapshots of typical flow patterns observed at �T = 18.3 K. The width of the depicted region is 58 mm. Right:
experimental stability map (squares, stationary vertical thermomagnetic rolls; triangles, superposition of stationary vertical thermomagnetic
rolls and oblique thermomagnetic waves; crosses, superposition of stationary thermomagnetic vertical rolls and two oblique thermomagnetic
waves; solid line, basic flow stability boundary. Error bars are shown by thin horizontal and vertical lines.

fluid temperature T∗ fixed and (b) strengthening the field while
keeping the temperature difference fixed. Both experimental
scenarios correspond to a predominantly left-right cut through
Fig. 2(a) and lead to strengthening of thermomagnetic effects
and the appearance of various magnetoconvective patterns;
see the experimental stability map and examples of typical
flow patterns in Fig. 9. Consistent with the theoretical results
of [20], they fall into four general categories described in detail
below.

In the absence of a magnetic field, only the primary flow
exists in the chamber when the fluid rises along the warm brass
wall and descends along the cooler transparent wall to which
the thermosensitive film is attached. In the case of an infinite
vertical fluid layer this would correspond to solutions given
by expressions (1). However, since the experimental chamber
had a finite vertical size, the thermal stratification seen in the
leftmost image in Fig. 9 as a vertical color gradation from
brown (cool) at the bottom to blue (warm) at the top was
unavoidable. This in turn resulted in a spatial variation of
magnetoconvective flow strength along the layer, clearly seen
in the other three images in Fig. 9: the most profound patterns
were observed in the cooler lower part of the chamber, where
the fluid was characterized by a larger local magnetic Grashof
number.

As the magnetic field was gradually increased, the first
spatial pattern was observed: a set of stationary vertical rolls
appearing as color stripes on the liquid crystal sensor (squares
in the experimental stability map in Fig. 9). It can be shown
that for a relatively slow fluid motion the heat transfer intensity
across the layer and thus the local temperature of the wall
registered by a sensor are proportional to the cross-layer
velocity component u. Thus the blue-green stripes correspond
to the locations where fluid flowing from a warm back wall
impinges on the sensor and the brown stripes correspond

to cool zones where the induced flow was reversed; see
Fig. 1(b). The width l of the blue-brown stripe pairs was
used to compute the observed nondimensional wave number
αexpt of the pattern as αexpt = 2πd/l. It was found to
be 1.9 ± 0.1. As was discussed in [20], the appearance of
stationary vertical magnetoconvection rolls does not depend on
the value of the gravitational Grashof number and corresponds
to point 8 in Fig. 2. The computed value of the critical
wave number for magnetoconvection rolls is α = 1.936, which
agrees closely with experimental observations. Moreover, the
vertical roll threshold is characterized by a fixed value of
the magnetic Rayleigh number Ram ≡ GrmPr rather than the
magnetic Grashof number. Since the Rayleigh number does not
depend on the fluid viscosity, we can meaningfully compare
its theoretical and experimental critical values, 181.74 and
(1.8 ± 0.2) × 102 (averaged over several experimental runs
with slightly different mean fluid temperatures), respectively.
They are also in reasonable agreement. As was discussed
in [20], stationary thermomagnetic rolls remain vertical and
dominate the disturbed flow.

The further increase of the magnetic field led to the
appearance of slightly oblique thermomagnetic traveling
waves (triangles in the experimental stability map in Fig. 9);
see the third snapshot in Fig. 9. The dynamics of such
waves is illustrated in Fig. 10: they move in a direction
perpendicular to the color stripes as shown by the arrows.
A ruler is shown for reference along the bottom edge of each
frame. The experimentally observed propagation speed was
1–2 mm/s, which falls into the range of wave speeds c =
2πνc/α, corresponding to the dash-dotted lines in Fig. 2
predicted theoretically. While stationary vertical rolls are still
clearly seen, the inclined rolls regularly appear near the left
vertical edge of the experimental chamber and move right and
slightly down over the complete lateral span of the cavity.
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FIG. 10. (Color online) Unsteady convection rolls observed in the middle section of the experimental chamber. Arrows show the direction
of roll propagation and the vertical lines trace the instantaneous location of a selected convection roll [62]. The width of the depicted region is
58 mm (divisions on the ruler are approximately 2.6 mm apart).

A video of the corresponding experimental observations is
available online [62].

In even stronger magnetic fields the convection pattern
becomes essentially unsteady. The rolls are noticeably sloped
and propagate in the direction of their inclination (their
velocity has a downward component near the cool wall). The
patterns become less regular [see the image corresponding to
H = 21 kA/m in Fig. 9 (crosses in the experimental stability
map in Fig. 9)], indicating the appearance of additional
waves with a different wave number that interfere with
the stationary vertical rolls and oblique waves detected in
weaker fields. In this regime the pattern is still dominated by
stationary vertical rolls labeled as 1 and 3 in Fig. 11. However,
additional rolls labeled as 2 and 4 slowly drifting from left to
right (in the direction of inclination) periodically appear and
disappear in between the original vertical rolls. Qualitatively
this regime corresponds to the simultaneous presence of
stationary magnetoconvection rolls and slowly propagating
relatively weak thermomagnetic waves corresponding to the
dashed and dash-dotted lines in Fig. 2(a) and characterized
by a wavelength which is 1.5–1.8 times smaller than that
of the stationary rolls; see Fig. 2(b). This behavior is also
consistent with the theoretical findings of [20]: the observed
wave number of the centrally located rolls is found to be close
to the theoretical values along the solid line in Fig. 2(b). These
facts indicate that the observed propagating patterns are caused
by thermomagnetic waves identified near points 3–5 and 9 in
Fig. 2(a) via the disturbance energy balance analysis of the
previous section.

Since in our experiments the thermosensitive liquid crystal
film was glued to the cool wall, only the related temperature
distribution in a thin layer near the cool wall was visualized.
Thus only one of the counterpropagating waves is seen in the
presented experimental images. It was shown in [20] that the
waves near the cool wall follow the direction of the basic flow
that descends near this wall. Indeed, the rolls seen in the middle
of the lower part of the experimental cavity that lean slightly

to the right (see the rightmost photo in Fig. 9) move from
left to right. This is consistent with the theoretical prediction
for thermomagnetic waves arising near points 3–5 in Fig. 2.
However, the thermal field visualization also shows that the
leftmost and rightmost colored stripes move with a velocity
having an upward component. This contradicts theoretical
predictions. We believe that the vertical walls near the left
and right edges of the experimental chamber, whose presence
is not accounted for by the present analysis, could induce this
motion. In order to minimize friction losses the near-edge
convection rolls tend to orient themselves perpendicularly
to the sidewalls as soon as they approach them. Because of
the vertical stratification more convection rolls appear in the
lower part of the chamber so that they approach the sidewalls
there first (see the �-shaped color stripe formation in the
rightmost image in Fig. 9). As soon as this happens the stripes
representing convection rolls bend to become perpendicular
to the vertical sidewalls. This deformation of convection rolls
appears as an upward motion. Once the deformed roll bends
upward, it reaches a hotter (due to stratification) region, where
the fluid magnetization is weaker, and disappears. Its place is
taken by the next roll and the process repeats.

In addition to a purely mechanical reason for the upward
motion of the observed patterns along the vertical edges, the
distortion of the magnetic field near the layer boundaries could
also contribute to the deviation of the observed patterns from
those expected theoretically in an infinite layer. This will be
discussed in more detail below.

In order to obtain a quantitative record of the temperature
variation in the fluid layer, a thermocouple with the diameter
of wires 0.1 mm was installed in the lower part of the
chamber at the location shown in the leftmost image in Fig. 9
approximately 0.75 mm away from the warm back wall of
the experimental chamber and 46 mm above the bottom
edge of the chamber. A second thermocouple was installed
43 mm away from the top edge of the chamber above the
first one to register the vertical temperature stratification in

016301-11



SUSLOV, BOZHKO, SIDOROV, AND PUTIN PHYSICAL REVIEW E 86, 016301 (2012)

1 3 1 3 1 3

2 4

Thermocouple

Thermocouple

:puesolC:weivlluF

s08s03s0

FIG. 11. (Color online) Temporal evolution of convection patterns at �T = 18.3 K and H = 21 kA/m. Stationary rolls 1 and 3 are always
present; traveling rolls 2 and 4 appear periodically. Arrows show the propagation directions of the local patterns. The width of the region
depicted in the closeup images is 52 mm.

the layer. The time history of the output corresponding to the
temperature difference τ between the brass heat exchanger and
the location of the lower thermocouple is shown in Fig. 12 for
an experimental run when the temperature difference between
the chamber walls was maintained at �T = 18.3 K and the
applied magnetic field was increased in a stepwise manner
from H = 0 to 7, 10, 14, 17, and, finally, 21 kA/m.

In the absence of the magnetic field the lower and upper
thermocouples registered steady temperature differences of
about 2.40 and 0.86 K, respectively. This difference in readings
indicates the presence of a vertical temperature gradient of
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FIG. 12. Thermocouple readings for �T = 18.3 K: (a) H = 0,
7, and 10.4 kA/m, (b) H = 14 kA/m, (c) H = 17 kA/m, and (d)
H = 21 kA/m.

the order of S = 10 K/m in the vertical plane containing the
thermocouples. Nondimensionally, this gives

SL

�T
≈ 0.14.

Because the thermocouples are located near the isothermal
brass wall, this value is the lower bound estimation for the
thermal stratification in the cavity. The universally accepted
upper bound value of 0.5 was determined in the classical
experiments reported in [63] for the center plane in the limit of
large Gr. Therefore the corresponding value of the stratification
parameter γ introduced in [57] and written in our notation is

3.3 < γ ≡
(

8
Sd

�T
GrPr

)1/4

< 4.5.

Then according to [57], Fig. 11] our experimental regimes
(Pr ∼ 1.3 × 102, 16Gr ∼ 1.1 × 103, where the factor of 16 is
introduced to enable direct comparison with the cited figure)
are very close to the Grc(γ ) stability boundary of thermo-
gravitational waves which increases steeply with stratification.
This once again explains why no thermogravitational waves
were detected in our experiments, and this is also consistent
with their absence in numerical calculations of similar regimes
reported in [64].

The thermocouple reading decreases abruptly when the
magnetic field is switched on and then changes in a stepwise
manner. The observed decrease in the temperature difference
registered by thermocouples is attributed to the edge effects.
Because of the difference in magnetic properties of the
ferrocolloid and surrounding air, the applied uniform magnetic
field is necessarily distorted near the edges of the chamber.
The magnetic field gradient so induced, which depends on the
strength of the applied field, leads to a toroidal fluid motion
along the perimeter of the chamber. It manifests itself as narrow
blue-green stripes on a liquid crystal film along the vertical
edges of the chamber where the warm fluid from the back
wall impinges on the sensor film. The intensity of these edge
vortices increases with the field, leading to fluid mixing and,
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subsequently, to the decrease of the temperature difference
registered by the thermocouple as seen in Fig. 12(a).

The vertical thermomagnetic rolls were first detected
visually at H = 10.4 kA/m. This convection pattern is
stationary and it corresponds to the third horizontal line
segment in Fig. 12(a). When the field was increased to H = 14
kA/m the thermocouple signal changed abruptly to a well-
structured (ignoring noise) nonharmonic signal with a period
of about 480 s. The corresponding Fourier spectrum shown in
Fig. 13(a) indicates the presence of a fundamental harmonic
with frequency ν0 ≈ 0.0021 Hz as well as regularly spaced
superharmonics with frequencies 2ν0, 3ν0, and 4ν0. They
arise due to a nonlinear self-interaction of the fundamental
harmonic and do not represent physically distinct oscillatory
modes. The spectrum also has a peak near zero frequency. It
represents a slow variation of the average oscillation amplitude
which is also a result of nonlinear self-interaction of the
fundamental harmonic. Therefore we conclude that the first
unsteady pattern arising when the field strength increased to
14 kA/m consists of a single nonlinear thermomagnetic wave.
This is in agreement with the theoretical predictions of [20].

At H = 17 kA/m the period of the thermocouple signal is
reduced to approximately 290 s and its spectrum undergoes
a qualitative change; see Fig. 13(b). Instead of the regularly
spaced well-defined superharmonics a relatively wide range of
frequencies centered at ν0 ≈ 0.0035 Hz appears. The widening
of the spectrum near the main frequency and the disappearance
of superharmonics observed here are similar to the perturbed
flow behavior reported in [65]. It was shown there that
increasing the degree of the supercriticality has a double effect
on the perturbation characteristics. On one hand it widens
the spectrum of unstable disturbances near the fundamental
frequency (wave number); on the other it leads to a sideband
instability that destroys harmonics whose frequencies are far
apart from the main one. As a result the thermocouple signal
shape becomes more sinusoidal, as seen in Fig. 12(c).

Increasing the magnetic field to H = 21 kA/m leads to
yet another qualitative change: the periodic thermocouple
response becomes modulated as seen in Fig. 12(d). This is
the signature of a second oscillatory mode (thermomagnetic
wave) with a nearby frequency appearing in the flow. The
Fourier power spectrum shown in Fig. 13(c) has two satellite
peaks corresponding to ν1 ≈ 0.0041 Hz and ν2 ≈ 0.0047 Hz
near the base frequency of ν0 = (ν1 + ν2)/2 ≈ 0.0044 Hz
corresponding to the main period of 225 s. The modulation
frequency νm = (ν2 − ν1)/2 ≈ 0.0003 corresponds to a mod-
ulation period which is about 15 times longer than the main
oscillation period.

It is important to note that even though in the experimental
run documented in Fig. 13 the magnetic field was maintained
fixed for not more than 2 h for each field value, the period,
the amplitude, and the shape of the oscillatory thermocouple
signal remained unchanged in much longer (8–10 h) fixed-field
runs for each of the tested field intensities. Therefore it is safe
to state that the data obtained during the reported 2 h runs
faithfully represent statistically steady regimes. Specifically,
the thermocouple signal quantitatively confirms the existence
of four main flow patterns predicted theoretically and detected
visually in experiments: undisturbed up-down flow and its
superposition with stationary vertical rolls, propagating waves,
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FIG. 13. Normalized Fourier spectrum of the thermocouple sig-
nal for �T = 18.3 K: (a) H = 14 kA/m, (b) H = 17 kA/m, and (c)
H = 21 kA/m.

and combinations of propagating waves. Although the detected
frequencies of oscillations are somewhat smaller than those
found computationally [see Fig. 2(c)], their qualitative behav-
ior is in full agreement with the theoretical predictions: the
thermomagnetic wave frequency increases with the magnetic
field, i.e., with Grm [see the dashed line in Fig. 2(c)], and
the second close frequency appears when the magnetic field
becomes sufficiently strong [see the intersection of the dashed
and solid lines in Fig. 2(c)].

V. CONCLUSIONS

Our analysis of the perturbation energy distribution across a
vertical layer of a ferrofluid shows that the instability is caused
by two physical mechanisms: thermogravitational (gravita-
tional buoyancy) and thermomagnetic (magnetic buoyancy).
These mechanisms result in four major types of perturbation
flow patterns: counterpropagating thermogravitational waves
(large Gr, small Grm), two types of counterpropagating
thermomagnetic waves (large Grm, intermediate Gr), and
stationary magnetoconvection rolls (intermediate to large
Grm, small Gr). The transition between thermogravitational
and thermomagnetic waves occurs when Gr and Grm are
of comparable sizes. It is continuous in its nature so that
conventional indicators such as a jump in a disturbance wave
number or propagation speed cannot be used to detect it.
Thus the quantitative criterion for determining the dominant
mechanism at a given set of governing parameters is introduced
based on disturbance energy considerations.

The spatial orientation of the detected instability patterns
is found to be related to the physical mechanisms causing
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them: the propagating thermogravitational or thermomagnetic
instability waves form moving horizontal or inclined convec-
tion rolls, respectively, while stationary magnetoconvection
rolls remain vertical. Such rolls appear at relatively small
values of Grm and continue to dominate the flow as Grm
increases, forming a stationary background over which the
thermomagnetic waves propagate.

The experimentally measured and numerically determined
values of wave numbers and wave speeds (frequencies)
corresponding to various flow patterns are found to be
in reasonable agreement, and so are the critical values of
the Rayleigh number for stationary vertical thermomagnetic
rolls. However, estimation of accurate experimental values
of the nondimensional parameters involving fluid viscosity
for other observed patterns faces difficulties due to the
presence of a vertical thermal stratification, magnetoviscous
and particle thermodiffusion effects, as well as the formation
of magnetic particle aggregates, all leading to variations in
fluid viscosity that are unquantified to date. The presence of
vertical sidewalls is also found to influence the experimental
observations in the near-edge regions where the parallel
basic flow and uniform field assumptions used to make
the theoretical analysis tractable fail. The use of a wider
experimental chamber in future experiments is hoped to
reduce the influence of the edge effects on the flows in
question.

Despite these difficulties the experimental investigation
undertaken, which focused on the study of magnetoconvective
patterns, confirmed the existence of all four patterns predicted
in [20] and interpreted from a physical point of view in Sec. III.
Experimental observations also strongly indicate that different
individual flow patterns identified in the modal linear analysis
of [20] can coexist and interact with each other. Further

analysis of this interaction requires nonlinear consideration,
which is the subject of our current studies.

It will also be of importance to determine whether the
wavelike patterns reported here are unique to magnetocon-
vection or could be found in other convective systems. The
obvious candidate for such an exploration is convection in an
annulus with corotating walls as described in the Introduction.
However, in addition to the requirement of a narrow gap
between the rotating walls, the following conditions have to be
satisfied: (1) the annulus has to be long and its top and bottom
surfaces need to be flat and horizontal rather than sloping or
curved to prevent the formation of thermal Rossby waves [66];
(2) the working fluid has to be characterized by a large Prandtl
number (typical values for kerosene- or oil-based magnetic
fluids range between 60 and 130); (3) the Coriolis force must be
small in comparison with other forces acting in the system; (4)
the gravitational and centrifugal buoyancy forces should be of
comparable sizes. We note also that a recent theoretical study
of isothermal Taylor-Couette flow of a ferrofluid in a finite gap
between two differentially rotating cylinders [67] found that,
in contrast to our observations, a transverse magnetic field pins
the developing instabilities, making them stationary. Therefore
it appears that the competition between the thermal and
magnetic mechanisms that we reported here is very important
in defining flow patterns in ferrohydrodynamic systems of var-
ious configurations and thus it deserves further research effort.
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