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Quantum signatures of an oscillatory instability in the Bose-Hubbard trimer
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We study the Bose-Hubbard model for three sites in a symmetric, triangular configuration and search for
quantum signatures of the classical regime of oscillatory instabilities, known to appear through Hamiltonian
Hopf bifurcations for the “single-depleted-well” family of stationary states in the discrete nonlinear Schrodinger
equation. In the regimes of classical stability, single quantum eigenstates with properties analogous to those of
the classical stationary states can be identified already for rather small particle numbers. On the other hand, in
the instability regime the interaction with other eigenstates through avoided crossings leads to strong mixing,
and no single eigenstate with classical-like properties can be seen. We compare the quantum dynamics resulting
from initial conditions taken as perturbed quantum eigenstates and SU(3) coherent states, respectively, in a
quantum-semiclassical transitional regime of 10100 particles. While the perturbed quantum eigenstates do not
show a classical-like behavior in the instability regime, a coherent state behaves analogously to a perturbed
classical stationary state, and exhibits initially resonant oscillations with oscillation frequencies well described

by classical internal-mode oscillations.
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I. INTRODUCTION

Oscillatory instabilities, where a small perturbation of a
stationary (or time-periodic) state yields an initial oscillatory
dynamics with exponentially increasing amplitude, are quite
ubiquitous in the classical dynamics of Hamiltonian nonlinear
lattices (see, e.g., [1] and references therein). They typically
appear for states with inhomogeneous amplitude distribution,
dividing the lattice into sublattices of sites with small and large
amplitudes, respectively, as a result of resonances between
internal oscillations from the different sublattices. In the linear
stability problem, oscillatory instabilities arise through Hamil-
tonian Hopf bifurcations yielding eigenvalues with nonzero
real as well as imaginary parts. Well-known examples for
one-dimensional lattices are, e.g., two-site localized “twisted”
modes [2,3], discrete dark solitons (“dark breathers™) [4,5],
spatially periodic or quasiperiodic nonlinear standing waves
[6], and gap modes in diatomic chains [7,8]. In the latter
contexts, oscillatory instabilities may play an important role
in the initial stages of breather formation and thermalization
processes [6,8].

Arguably the simplest example of an oscillatory instability
appears in the symmetric discrete nonlinear Schrodinger
(DNLS) trimer, with f = 3 degrees of freedom interacting
identically with each other [9]. (The DNLS dimer, f = 2,
is integrable and its stationary solutions may exhibit only
nonoscillatory instabilities [9].) As first discussed in [9], one
particular family of exact stationary solutions, corresponding
to two sites in antiphase oscillations and the third site
identically zero, is oscillatorily unstable in an interval of
intermediate nonlinearity. Such solutions were later termed
“single depleted well” (SDW) states [10]. The unstable
dynamics, investigated in some detail in [1], involves a
resonant oscillation between one mode whose main effect is
to populate the empty site and another mode corresponding
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mainly to internal population oscillations between the two
nonzero sites.

The DNLS model is a classical limit of the well-known
Bose-Hubbard model for interacting bosons on a lattice
(therefore also termed the “quantum DNLS” model [11]),
when the total number of bosons N goes to infinity. In
particular, the trimer has a direct physical application for
a Bose-Einstein condensate in symmetric triple-well traps;
see, e.g., [12—14] for some proposed realizations. The natural
question then arises: how can an oscillatory instability appear
in the classical limit (“7 — 0”) of a fundamental quantum
lattice model?

One may consider several possible ways to characterize
the appearance of the classical oscillatory instability from
the quantum problem, and it is the purpose of the present
work to discuss and compare some different approaches,
mainly through numerical computations for modest particle
numbers. We will characterize certain quantum signatures
of the classical instability transition, which may be experi-
mentally observable as the number of bosons per lattice site
increases.

First, we discuss the energy spectra and eigenstates for
particle number N increasing from 10 to 90. In the strong-
interaction or weak-coupling (“anticontinuous”) limit there
are, for each finite (even) N, three degenerate quantum
eigenstates of the form [N/2,N/2,0], with exactly zero
population at one of the sites. Following these states towards
weaker interaction or larger coupling, they start to mix strongly
with other states through avoided crossings in the spectrum (as
seen already in [15]), and it is not a priori evident which of
the quantum states (if any) should be considered as a quantum
counterpart to a classical single-depleted-well state. We will
discuss various ways to characterize a “good” quantum SDW
eigenstate and show that such typical “goodness” measures
drastically decrease in an intermediate-parameter regime
dominated by strong quantum resonances, which approaches
the regime of classical oscillatory instability as the particle
number increases.
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We then go on to investigate the quantum dynamics for
slightly perturbed quantum SDW-like eigenstates, and find
that such perturbations in general are not able to reproduce a
classical-like behavior in the instability regime.

On the other hand, itis well known (see, e.g., [12-14,16,17])
that for each finite N, one may construct SU( f') coherent states
(f = 3 for a trimer), for which the time evolution obtained
from the Bose-Hubbard model exactly reproduces the classical
DNLS dynamics in the limit N — oo. [The SU(f) coherent
states are equivalent to the Hartree states of [ 18], but differ from
the Glauber coherent states used, e.g., in [19,20] essentially
in that the former conserve total particle number for any N,
while the latter conserve the rescaled particle number, the
DNLS norm, only in the classical limit N — oo.] However,
even if the classical solution is an exact stationary solution
(the absolute values of the coherent-state parameters are time
independent), the corresponding coherent state will generally
not be an exact quantum eigenstate for any finite N.

Thus, since the coherent states are the most “classical-
like” states but generally not eigenstates, one may look for
signatures in the properties of the finite-N coherent states
rather than the eigenstates. This is the approach used, e.g.,
in [14], and may be useful in particular for large N. As we
shall see, for N approaching 100 it is indeed possible to trace
the classical resonant oscillations in pure quantum dynamics
using SU(3) coherent states as initial conditions, although the
quantum instability transition for such relatively small values
of N becomes smooth rather than sharp as in the classical
model.

Although, to the best of our knowledge, quantum signatures
of the classical Hamiltonian Hopf bifurcations and oscillatory
instabilities of stationary, non-current-carrying solutions have
not been analyzed before, there are several earlier works
discussing quantum counterparts to other types of classical
DNLS dynamical instability transitions that deserve to be
mentioned in this context. For example, the classical mod-
ulational instability threshold of current-carrying constant-
amplitude lattice waves [21] was analyzed from the quantum
Bose-Hubbard perspective in [22], and in particular it was
found that quantum fluctuations may lead to a substantial
broadening of the classical transition for a one-dimensional
lattice (as we will find also for our case). Another well-studied
example is the classical self-trapping transition, where, for an
attractive effective interaction, the delocalized ground state
becomes unstable and a stable localized ground state appears
in a bifurcation [9]. The quantization of this transition, which
appears already for the dimer case f = 2, has been analyzed
in a large number of papers starting from [18,23], and very
recently in [24] (to which we also refer for a more complete
set of references on this issue), where a major result is that,
again, quantum fluctuations result in a critical regime rather
than a single bifurcation point. We should, however, stress that
both these instability transitions appear for perturbed ground
states (or highest-energy states, depending on whether the
interaction is repulsive or attractive), while Hamiltonian Hopf
bifurcations necessarily must appear for excited states since the
two resonating internal modes must contribute with different
signs to the total energy of the stationary state (see, e.g., [1]).
Thus, the physical origin of the instabilities studied here is
fundamentally different from that in earlier works.
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II. MODEL

The form of the Bose-Hubbard model that we will use is

3
Agy = Y {aalalaa; + af(aio + 6o}, 1)

i=1

with periodic boundary conditions and nonlinear parameter
a > 0. Using boson commutation relations [&,-,&J'-] =§;,j and

the number operator 7i; = &j a;, this can also be written as

3
Ay = Y (ahi(i; — )+ af@ + a0} Q)
i=1

Following [12—14,16-18] and making an ansatz of the wave
function as an SU(3) coherent state with a given N =
Z?: 1{A;), we obtain a dynamical equation for the coherent-
state parameters a;, which is the DNLS equation corresponding
to the following effective classical Hamiltonian:

3
o N —1
H:<HBH>=Z{a( ~ )|ai|“+a;*(ai+1+ai1>}, 3)

i=1

with | |a;|> = N. Comparing with the notation in [1],
identifying C = i% takes —i%(?—l —2N) into the
classical Hamiltonian in Eq. (2) of [1].

Thus, from this identification, we can conclude that
the classical condition [1,9] for oscillatory instability
of the SDW stationary state {a;} = {~/N/2, — +/N/2,0},
9.077... < N/C < 18, translates for a quantum SU(3) co-
herent state into 4.5385.../(N —1) <a <9/(N —1). On
the other hand, if one were to choose instead trial functions as
tensor products of standard Glauber coherent states at each site,
as is done, e.g., in [19,20] (eigenfunctions of the annihilation
operators d; at each site), one would again end up with a DNLS
equation for the dynamics of these coherent state parameters,
but corresponding to a classical Hamiltonian without the
factor (N — 1)/N in (3). The above condition for oscillatory
instability would then instead become 4.5385... /N <« <
9/N. Clearly this distinction is irrelevant in the classical limit
(assuming that « scales inversely with N to have a finite energy
per particle, H/N < oo, in this limit), and we have also found
that the observed signatures of oscillatory instabilities for the
pure quantum system (not too large N), described below,
essentially cannot determine whether one coherent-state ansatz
gives a more classical-like behavior than the other. Therefore,
in the remainder of this paper we will show numerical results
using, for convenience, o N rather than (N — 1) as parameter
[as also in Sec. IV B where SU(3) coherent states are used as
initial conditions].

Concerning the classical dynamics of perturbed SDW
states in the unstable regime, it was discovered in [1] that
a self-trapping transition appears at a critical value, o ~
5.3/(N — 1) in the notation of (3). Below the transition,
the unstable dynamics remains trapped close to the initial
state due to phase-space-dividing Kolmogorov-Arnold-Moser
(KAM) tori, so that, although the dynamics may be weakly
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chaotic, the amplitude of the initially unexcited site remains
small forever. Above the transition the dynamics is strongly
chaotic, and typically an intermittent population-inversion
dynamics is observed with the small-amplitude oscillation
moving chaotically between all three sites. As will be seen
below, some traces of this transition can be identified also in
the quantum model.

III. ENERGY SPECTRUM AND EIGENSTATES

We first illustrate in Fig. 1 an overall picture of the energy
spectrum of Eq. (1) for particle numbers increasing from
N =10 to N = 60. (Pictures of the general trimer spectrum
for particle numbers of this order were probably first shown
in [15].)

Our initial strategy is to consider the family of exact
eigenstates which approaches a state of the form [N /2, N /2,0]
for large «. Due to translational invariance in the symmetric
trimer configuration (periodic boundary conditions) there are
three of these, one state with Bloch vector k = 0 and two
degenerate with k = £27/3; see, e.g., [11,15]. Explicitly, we

10 particles

140

Energy

5 10 15
oN

30 particles

Energy
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may thus use the basis states
1
Ini.na,n3)x = E(Munz,ns)

+e*|nz,ni,na) + e¥¥na,nyny)). (4)

This introduces a tunneling time scale proportional to the
inverse of the energy spacing between states with k =0
and k = £27/3 so that, close to the anticontinuous limit,
an initially excited SDW state with the zero at a given site
would in general not be an exact quantum eigenstate, but
instead we should expect the “hole” to perform periodic
quantum tunnelings between all three sites. Analogously as
for single-quantum-breather states [18,25-27], we should
expect this tunneling time scale to go to infinity as well
in the anticontinuous as in the classical limits (properly
rescaled). Thus, for a given (rescaled) nonlinearity strength
where the SDW state is unstable, this should put a lower
bound on the particle number for which quantum mechanics
can properly reproduce the initial stages of an oscillatory
instability: the tunneling frequency (energy splitting) must be
small compared to the classical oscillation frequency of the
unstable eigenmode. This will be discussed further in Sec. IV.

20 particles

Energy

60 particles

Energy

FIG. 1. (Color online) Energy spectrum of Eq. (1) vs N, for Bloch states with k = 0 and N = 10,20,30,60 particles, respectively. The
state with the largest expansion coefficient for the basis function |N/2,N /2,0), (see text) is plotted with a bold (blue) line.
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FIG. 2. (Color online) Left: Magnification of an avoided crossing corresponding to a strong resonance in Fig. 1 for N = 20 particles. Right:
comparison of the eigenstates on both sides of the crossing, at the points (i), (ii), (iii), and (iv) marked with arrows. In these figures, coefficients

of the basis states (4) are arranged in the following order: |0,N,0)o,|1,N — 1,0)0,|2,N — 2,0), ..

3,2,1)0,...,12,N —3,1)9,IN — 4,2,2), ..

IN —1,1,0)0,|N — 2,1,1)0,|N —

.. (Note that, for instance, |I,N —2,1)¢ did not follow [2,N — 3,1) since [I,N —2,1)( is a

translation of [N — 2,1,1), which occurred earlier in the series.) State number 11 is thus [10,10,0)¢, and all states with numbers larger than 20

correspond to nonzero population on all three sites.

When nonlinearity decreases, it is not a priori evident which
of the quantum eigenstates to follow, since the [N /2,N/2,0]
state starts to mix with other states through avoided crossings.
One intuitive suggestion is to identify the “right” quantum
eigenstate as the state which has its largest expansion coef-
ficient for the basis function |N/2,N/2,0);. This may not
uniquely identify an eigenstate; another property of a “good”
eigenstate that should be checked is that the signs of the
coefficients for basis functions |N/2 + 1,N /2 F 1,0}, should
be opposite to that of |N/2,N /2,0); (and there will be further
sign alternations when more bosons tunnel between these
two sites). This is true for the corresponding SU(3) coherent
state, and can be intuitively understood since the antiphase
oscillations of the two sites in the classical limit would require a
boson to change the sign of its wave function to tunnel between
these sites. One should check separately the two cases k = 0
(bold curves in Fig. 1) and k = +27/3 (in the latter case it
is more convenient to take the two linear combinations giving
real states).

Since the classical unstable dynamics originates in the
resonant oscillation between a mode essentially populating the
empty site and another mode of internal population oscillations
between the two nonzero sites [1], quantum mechanics must
reproduce the corresponding oscillations for large N. Thus,
one could expect that in the unstable regime, there should be a
strong mixing (corresponding to avoided crossings) with states
having large expansion coefficients for basis functions of the
form |[N/2+ p,N/2F p,0)x and |[N/2 —¢q,N/2 —q,2q),
respectively, where p and g are some small integers corre-
sponding to transfer of a few bosons from the “[N/2,N /2,0]”
state in the classical internal-mode directions. There are in
general several such eigenstates which, in addition to the
different values of the Bloch vector k = 0, &+ 27 /3, also may
be either symmetric or antisymmetric under site permutations
when k = 0 [15], and avoided crossings may appear only with

those of the same symmetry as the [N/2,N/2,0] state. An
example of such an avoided crossing for N = 20 is illustrated
in Fig. 2. As can be seen for decreasing nonlinearity, the state
with the largest expansion coefficient for the basis function
IN/2,N/2,0)0 [bold blue line, states (ii) and (iv)] will pick up
an additional peak at the crossing, which corresponds to the
basis state (here number 63) where the crossing state [dotted
red line, states (i) and (iii)] has its main peak. Here, the main
resonant basis state is |4,4,12), and thus it can be viewed
as corresponding to a transfer of ¢ = 6 bosons equally from
the populated sites to the empty site. Similar analyses can
be made for other main resonances. For example, for the
case with N = 20 particles in Fig. 1, we find five avoided
crossings involving the [N/2,N/2,0] state in the interval
5.5 < aN <10, and in addition to the case shown in Fig. 2
major resonance peaks can be identified for basis functions
[11,8,1)0,]12,7,1)0,19,9,2)0,19,8,3)0,112,5,3)0.

Even though the above figures show that it is possible to
identify a reasonably smooth curve in the spectrum (away
from the strongest resonances) as a good [N/2,N/2,0]
state, the properties of such eigenstates drastically change
in a regime around the classical oscillatory instability. This

is illustrated in Fig. 3, where the quantity [c}}5 v /2!0|2 =

maxgs |(%,%,0|E5)k|2 is plotted as a function of « N for N
increasing from 10 to 80 particles (in the following, ES will
be used to denote “eigenstate” in formulas and figures). It is
evident that, as NV increases, this quantity drops considerably in
the region that corresponds to the classically unstable regime,
and thus, in any eigenstate, the probability to find the particles
equally distributed on only two sites becomes very small in
this regime. Thus, this shows a clear quantum signature of the
classical oscillatory instability.

We can also observe that the avoided crossings in the
spectrum (Fig. 2) typically appear in the region where the
curves in Fig. 3 drop. The conclusion is therefore that the drop
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FIG. 3. (Color online) The maximum probability that, in any eigenstate, all particles are equally distributed between only two sites, plotted
as a function of o N for N between 10 and 80 particles. Blue (darker) and green (lighter) curves correspond to k = 0 and k = +2x/3,

respectively. The shaded region marks the classical instability regime.

in Fig. 3, and also the instability, are related to the avoided
crossings and the mixing of eigenstates. The avoided crossings
that, possibly, occur outside this region cannot be seen in our
plots, which means that the eigenstates would get very close
and the mixing would therefore be very swift.

A complementary approach is to look globally rather than
locally at the eigenspectrum, and consider a measure of
the total overlap between symmetric “compact” SDW basis
states |[N/2,N /2,0); and basis states which are not two-site
localized, as summed over all the eigenstates for a given
N. This can be considered as a necessary (but generally not
sufficient) condition for development of an instability: if the
overlap is small, an initial exact zero in a SDW excitation can
never grow large. The quantity that we use to measure this

“overlap” property is
N N 2 =
T=)" <—,—,0|ES> (1 =Y UN - n,n,O|ES)k|2) )
ES 22 k n=1
®)

A plotof Y is shown in Fig. 4. Low values of Y implies that
eigenstates with a large portion of | %, % ,0)« contain very little
of states not entirely located on two sites. They will therefore
not excite the empty site much. As is clear from Fig. 4, a
plateau of high values of T starts to develop as N increases (a
tendency can be seen already for N = 10 bosons), and already
for N = 80 it corresponds almost perfectly to the classical

instability regime. Thus, this measure can also be used as a
clear instability indicator here. (The increase for small « is not
related to any instability, but reflects the general delocalization
tendency of eigenstates in the linear limit.)

IV. DYNAMICS

A number of numerical simulations of the dynamics have
been performed, in order to elucidate to what extent the
quantum dynamics, for relatively small particle numbers,
may reproduce essential features of the classical SDW state
transition from stable internal-mode oscillations to oscillatory
instability. Since there is no unique choice of quantum initial
state corresponding to the classical SDW stationary state,
we will here separately discuss two alternative possibilities:
slightly perturbed specific eigenstates (Sec. IV A) and SU(3)
coherent states (Sec. IV B).

A. Eigenstate

The analysis in Sec. III indicates that we can generally
identify a “quantum SDW” eigenstate, interacting resonantly
with symmetry-breaking eigenstates in the regime of classical
instability. We may thus investigate the dynamics for a slightly
perturbed quantum SDW eigenstate by making a small,
symmetry-breaking change in some expansion coefficents,
and check if the classical transition from stable oscillations

016214-5



PETER JASON, MAGNUS JOHANSSON, AND KATARINA KIRR

10 particles 20 particles
1 1
0.8 0.8
0.6 0.6 /\\A |
| |
— = \M / \KU\
| I J‘\/ |
0.4 | I 0.4
I\ |
0.2 0.2
0 0
0 10 20 0 10 20
oN oN
50 particles 60 particles
1 1
0.8 0.8f W W

0.6 \\k/ L(k 0.6 \J\) \‘\

= S
0.4 0.4

“u

0.2 0.2

0 10 20 0 10 20
oN oN

PHYSICAL REVIEW E 86, 016214 (2012)

30 particles 40 particles

08 08
0.6 l /[y \ 0.6 NU/ \AL

0.2 L 0.2
0 0
0 10 20 0 10 20
oN oN
70 particles 80 particles
1 1
08 o i 0.8
/
0.6 0.6
— —
0.4 0.4 N
0.2 0.2
0 0
0 10 20 0 10 20
oN oN

FIG. 4. (Color online) The quantity Y (5), measuring total overlap in eigenstates between symmetric compact SDW components and
components which are not two-site localized, plotted as a function of a N for N between 10 and 80 particles. The shaded region marks the

classical instability regime.

to unstable may be reproduced for sufficiently large N. It is
important to consider all relevant quantum time scales, which
must be separated in order to observe classical-like dynamics.

Since the eigenstates are divided into three different sub-
spaces (k = 0, & 27 /3) making them translationally invariant,
a classical-like initial SDW state must break this translational
invariance by adding SDW-like eigenstates from all the
subspaces. The energy splitting between these, AEy, then
yields an oscillation period 7; = 27/ A E}, for tunneling of the
SDW site, and if classical dynamics is to be reproduced, we
must have AE; — 0as N — oo for some specific “tunneling
pair” [25-27] of nearly degenerate SDW-like eigenstates
(strictly speaking there are of course three states involved, but
states with k = +2m /3 are always degenerate). Considering,
as in Sec. III, the SDW-like eigenstates as eigenstates that
maximize the |N/2,N/2,0); expansion coefficient, there is
some ambiguity in how to choose an optimal tunneling pair,
since the eigenstates with largest |N/2,N/2,0); coefficient
may have different characters for k = 0 and k = +27/3 in the
instability regime, as the avoided crossings appear in different
places (cf. Fig. 3). We here selected the eigenstate, in the sub-
space for k = 0, with the largest coefficient for |N /2,N /2,0)¢.
We can then “project” this eigenstate on the eigenstates in the
other subspaces if we introduce a pseudoscalar product defined
by the property y(n},n5,n5|n1,12,13)k = 8uin, .nynynins- This
makes it possible to pick out eigenstates with k = +27/3
having the largest overlap with our selected eigenstate from

k = 0. The tunneling oscillation period 7; resulting from this
energy splitting is illustrated in Fig. 5. As is clearly seen,
the oscillation period rapidly grows with particle number
in the classically stable regimes (notice the logarithmic
scales), but remains considerably smaller in the regime
of classical instability. Thus, this indicates a fundamental
problem in any attempt to reproduce features of the classical
instability dynamics with initial conditions chosen from such
quantum eigenstates: the quantum tunneling oscillations may
occur on the same time scales as (or smaller than) the
development of the instability, even for rather large particle
numbers.

A good SDW-like state constructed from quantum eigen-
states should also have certain other classical-like properties,
for example, (ES|Ai3/N|ES) &~ 0 and (ES|# 7,/ N?|ES) ~ 1/4.
To test this we can measure (n;) for all eigenstates, after
breaking the translational invariance by adding states from
the different subspaces. The optimal SDW triplet of nearly
degenerate states chosen as above are added together (1/+/3
of each eigenstate), and the phase of each eigenstate is selected
so that the coefficient 011{\//2,1\//2,0 of |[N/2,N/2,0); is real and
positive. There is of course an ambiguity also in the choice
of phases when we add the eigenstates, and in general it is
possible that we do not access the state with optimal values of
(n;),1.e., we may have an intermediate state that has “tunneled
halfway” between two sites. By demanding that c’jv /2N/2,0 18
positive and real, this should be avoided.
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FIG. 5. (Color online) Oscillation period 7; = 27 /A E; corrsponding to energy splitting between the eigenstate with maximum coefficient
for the basis function |N/2,N/2,0), when k = 0, and a corresponding eigenstate with k = 27 /3 as described in the text vs (left) a N for
fixed N = 60 particles (the saturation around 10'? is due to using a limited numerical accuracy), and (right) particle number N for fixed
aN = 10,11,12 (from bottom to top). The shaded region in the left figure marks the classical instability regime.

In Fig. 6 we show (n;/N)min and (n;1;/N?)max, respec-
tively, for the states maximizing the [N /2,N /2,0), expansion
coefficient, as a function of o N for different numbers of
particles. From these plots it is evident that (n;/N )min
((ninj/N %) max) is not a strictly decreasing (increasing) func-
tion of the number of particles in the unstable region. On
the other hand, in the classically stable regimes they well
approach the classically expected values 0 (0.25) already
for N of the order of 100 particles. Note that Fig. 6 also
shows an interesting feature in terms of plateaus developing in
the upper part of the classical instability region. This might
be a sign of the strongly chaotic regime, surrounding the
classical unstable SDW solution for these parameter values [1].
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Note also the different behaviors around the lower and upper
classical instability thresholds: Around the lower threshold,
where the classical unstable dynamics is self-trapped [1],
the expectation values slowly increase (decrease) from their
classical values until stronger resonances start to appear around
the self-trapping transition at « N = 5.3. On the other hand, at
the upper threshold the expectation values remain nonclassical
also in a part of the classically stable regime (9 < aN < 10
for N = 100) where they only slowly approach the classical
values as N increases.

We also found other SDW-like candidates among the eigen-
states in the classical instability regime, using the same criteria
as above ((ES|ii3/N|ES) ~ 0 and (ES|f/i,/N?|ES) ~ 1/4).
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0.2
3
£
A
o
<
c”
c
\
0.15¢
0.1 L L
4 5 6 7 8 9 10 1 12
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FIG. 6. (Color online) (n;/N)min (left) and (n;n;/N 2)max (right) as a function of aN, for linear combinations of eigenstates with k =
0, & 27 /3 with maximum coefficient for the basis function |N /2,N /2,0)¢, for N = 60 (dotted blue), N = 80 (light green), and N = 100 (dark

red), particles. The shaded region marks the classical instability regime.
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FIG. 7. Left: Difference A(n3/N) in occupation of site 3 (having initially smallest (r;)) between an exact and a perturbed tunneling pair

of eigenstates, prepared as described in text. Right: Dynamics over the
N = 60.

However, these states did not show the expected antisymmetric
structure (tunneling of one particle connected with a minus
sign), while the eigenstate that maximizes the |[N/2,N/2,0)¢
coefficient generally does (see the examples in Fig. 2, and also
in Fig. 9 below).

same time range of (n3/N) for the unperturbed tunneling pair. « N = 6,

We thus, first, chose as initial condition for dynamical
simulations the linear combination of eigenstates with k =0,
4 27 /3 with largest |[N/2,N/2,0), coefficient as described
above, prepared to minimize (n3), and subsequently perturbed
with arandom perturbation of the order of 1% for the expansion
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FIG. 8. (Color online) Projection of SU(3) coherent states onto tunneling pairs of eigenstates with maximal expansion coefficient for
IN/2,N/2,0)0. Blue (dark) curves, eigenstates chosen as in Sec. IV A; green (light) curves, linear combinations of eigenstates with maximum
coefficients for |N/2,N /2,0), for each k. [The blue (dark) curves coincide with the green (light) curves in regimes where only the latter can
be seen.] The shaded region marks the classical instability regime.
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oN =150

0.6
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coefficient
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basis state number

basis state number

50 100 150
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FIG. 9. (Color online) Coefficients of dominating Fock basis states for SDW SU(3) coherent states (red crosses) and for the k& = ( eigenstate
with largest projection on the SU(3) coherent state (blue bars) when N = 60 and (left) « N = 1; (middle) «a N = 12; (right) « N = 150. The
ordering of the basis states is the same as in Fig. 2, and thus state number 31 is |30,30,0)¢, and all states with numbers higher than 60 correspond

to nonzero population at all three sites.

coefficients of |ny,ny,n3). A typical example of the resulting
dynamics in the classically unstable regime is shown in
Fig. 7. As can be seen, in contrast to the classically perturbed
unstable SDW dynamics the difference of (n3) between the
perturbed and unperturbed states does not grow at all, and
thus the dynamics of the perturbed eigenstate is not analogous
to the classically perturbed dynamics. There is, however,
an oscillation of (n3) over longer time scales that can be
attributed to the tunneling time scale AE; discussed above,

but this oscillation is essentially the same for the perturbed and
unperturbed states, leaving only minor traces in the dynamics
for A(n3/N).

The failure of a single tunneling pair of eigenstates to
capture the essential features of the classical dynamics in the
instability regime is related to the many avoided crossings,
leading to a mixing between the chosen state and other
eigenstates [cf. state (ii) in Fig. 2, which in addition to its
main SDW-like peak in the left part contains large non-SDW-
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FIG. 10. (Color online) Short-time dynamics with SDW SU(3) coherent state as initial condition, for N = 80 particles and o N varying
from 8 to 11.5 (i.e., crossing the classical upper stability transition). Green lines (lower at t = 0) show relative population expectation values
(n;/N) for the initially empty site, and blue lines (upper at ¢+ = 0) for one of the two initially excited sites.
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like components in its tail in the right part]. Thus, in the
instability regime already the unperturbed quantum state is
too far away from a classical SDW state to reproduce the
classical instability development [e.g., (n3/N) is not even
initially close to zero as seen from Figs. 6 and 7 (right)]. It
is therefore reasonable to assume that the SDW-like properties
are spread out over several eigenstates and that a “satisfying”
classical-like SDW state can only be created by a superposition
of many eigenstates. On the other hand, in the classically stable
regimes where the expectation values in Fig. 6 are close to the
classical values, the single tunneling pair well reproduces the
classical dynamics with superposed tunneling oscillations with
periods as in Fig. 5 (cf. Fig. 13, right part, below).

B. Coherent state

An SU(3) coherent state, converging to a classical SDW
stationary solution in the classical limit, can be constructed
as described, e.g., in [12-14,16,17]. In particular, we may use
the explicit expansion in Fock eigenstates given in Eq. (2.16)
in [14] with coherent state parameters w; = —1,w; = 0 to
construct, for any given particle number N, an SU(3) coherent
state with exactly zero population on site 2, corresponding to
a classical SDW state for N — oo.

These SU(3) coherent states are generally not eigenstates
for finite N, and to compare with results from the previous
section we plot in Fig. 8 [blue (dark) curves] the projection of
the coherent state on the linear combination of the three nearly
degenerate eigenstates from k = 0, &+ 27 /3 with the largest
IN/2,N/2,0)¢ component (the eigenstate of Fig. 3), chosen

aN=11

oN=11.5

oaN=12

time
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as described in Sec. IV A. We can see that the coherent state
does not approach the eigenstates closely, especially not in the
unstable region where the projection develops a pronounced
dip as N increases. We should note that the coherent state that
we use is strictly zero on the “empty” site, while the eigenstates
generally have probabilities for nonzero but small population
also on this site, which becomes negligible in the classical
limit. Figure 9 shows explicit comparisons between coherent
states and the k = 0 eigenstates with highest projection on
the coherent state (which are precisely the states with largest
coefficient for the |N/2,N/2,0)¢ basis state) in regimes of
classical stability. Note that for small « N, the population of
the third site is the main source of discrepancy between the
coherent state and the eigenstate, while for large o N the main
discrepancy occurs because the eigenstate narrows towards
a single peak at |N/2,N/2,0) when o — oo for fixed N,
while the width of the coherent state by definition remains
unchanged. [A similar comparison between SU(3) coherent
states and exact eigenstates was discussed for the ground state
of the Bose-Hubbard trimer in [28].]

For comparison, we also show in Fig. 8 [green (light)
curves] the corresponding projection of coherent states onto
a linear combination of three eigenstates where we instead
chose independently, for each k, the eigenstates with maximum
coefficients for the basis state |N/2,N/2,0);. As can be seen,
in the classically stable regimes the curves coincide (the chosen
eigenstates for k = £27/3 are then generally the same), while
in the classically unstable regime the green (light) curves
typically show less pronounced dips. The more pronounced
dips for the blue (dark) curves are associated with the fact that,
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FIG. 11. Early dynamics showing the expectation value for the relative population of the initially unoccupied site, for a coherent-state initial
condition with N = 80 particles. Left: dynamics for 0 < ¢ < 10 and, from top to bottom, « N = 11,11.5,12; right: dynamics for 0 < ¢ < 50

and, from top to bottom, « N = 11,12,13.
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close to strong resonances, the maximum overlap criterion
may select states with k = +2m /3 whose large overlap with
the chosen k = 0 state is not primarily due to the coherent
part corresponding to zero population on the third site, but
rather due to a strong incoherent tail of basis states with
nonzero population on site 3 (cf. the examples in Fig. 2). It is
also interesting to note that this feature becomes particularly
pronounced in a regime of o N between approximately 5.3 and
9, where the classical unstable SDW solution is surrounded by
strong chaotic dynamics. On the other hand, for N of the order
of 90 particles, we see that the green (light) and blue (dark)
curves in Fig. 8 essentially coincide for 4.5 < aN < 5.3,
where the classical SDW solution is unstable but surrounded
by KAM tori and therefore self-trapped (cf. Figs. 10 and 11
of [1]).

Figure 10 shows the short-time dynamics for a system
with 80 particles when the coherent state is used as the
initial state. We can see that, in certain aspects, it behaves
similarly to a perturbed SDW stationary state from the classical
dynamics, and in particular the transition from a self-trapped
SDW dynamics in the stable regime to population mixing in
the unstable is clearly seen as o N decreases. During a short
time period in the beginning we can observe small-amplitude
oscillations in both the stable and the unstable regions with
frequencies that agree with the internal-mode oscillations
of the classical dynamics [see, e.g., Eq. (12) and Fig. 1
in Ref. [1]]. This is illustrated more clearly in Fig. 11.
Since the classical SDW solution in the stable regime has

20 particles 30 particles
1 1
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two internal oscillation modes for the amplitudes a;, for a
generic small perturbation the population (n3) = |a3|? of the
initially unexcited site should exhibit oscillations with the
sum as well as the difference of these frequencies. Taking,
e.g., the explicit example o N = 12 in Fig. 11 and plugging
in the relevant numbers in the classical formula (12) of Ref.
[1], we obtain oscillation periods 27 /(w4 + w—) ~ 0.34 and
2r /(w+ — w—) =~ 1.9, which agree well with the two major
oscillations seen in Fig. 11. As a N decreases towards the
instability transition the two classical frequencies approach
each other, so that the larger oscillation period 27 /(w4 — w_)
increases and diverges at the transition point. This tendency
is also seen in Fig. 11. Notice also from the right figures
in Fig. 11 that there is an additional modulation with period
approximately 25. This oscillation is a pure quantum feature
with no classical analog; the period of this oscillation increases
with N (e.g., for N = 60 we observe similar oscillations for
o N = 13 but with a period of approximately 19).

It is worth observing that there is a gradual transition from
the stable to unstable dynamics in Fig. 10, which is essentially
a quantum effect since the classical transition occurs abruptly
at the Hamiltonian Hopf bifurcation at N = 9 [1,9]. In Fig. 12
we can see that for « N = 10.0 (classically stable regime) we
get a dynamics that approaches the classical stable dynamics
when we increase the particle number.

Finally, we give in Fig. 13 a comparison between the
long-time dynamics in the classically stable regime with
initial conditions given by an SU(3) coherent state and a
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FIG. 12. (Color online) Dynamics for the coherent-state initial condition for 20-90 particles, respectively, for « N = 10. The same quantities

as in Fig. 10 are plotted.
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FIG. 13. (Color online) Long-time dynamics for a system of 60
particles and « N = 11, for initial conditions given by (left) the SU(3)
coherent state, and (right) a linear combination of exact eigenstates
constituting a SDW tunneling pair as in Fig. 5, prepared to minimize
(n3(t = 0)) (pseudoeigenstate).

symmetry-broken SDW “pseudoeigenstate” prepared as a
linear combination of k =0 and k = £27/3 exact SDW
eigenstates as described in Sec. IV A, respectively. In both
cases, the observed oscillation of the population expectation
values between the sites correspond well to an oscillation
period of the order 10*, as expected from tunneling oscillations
(see Fig. 5). Note that, in these oscillations, the populations
at sites 1 and 2 never drop to zero. Due to the symmetry
of the initial condition, the inital hole at site 3 can only
“split” symmetrically between sites 1 and 2, and after a full
oscillation period recombine again at the original site 3. Note
that, while the symmetry-broken eigenstate initially has a small
but nonzero value of (n3/N) (cf. Figs. 6 and 9) which it returns
to almost perfectly after one oscillation period, the coherent
state has (n3) = 0 exactly at + = 0, but returns to a value
significantly larger than zero after one period. This, together
with the small superposed oscillations for the coherent state,
are the main qualitative differences between the long-time
dynamics of these two types of eigenstate in the classically
stable regime.

V. CONCLUSIONS

In conclusion, using the Bose-Hubbard model for a
triangular configuration, we have identified a number of
quantum signatures of the classical oscillatory instability
regime for the single-depleted-well stationary solution of
the corresponding discrete nonlinear Schrodinger equation.
Focusing on a transitional regime between strongly quantum
and semiclassical behavior with particle numbers between 10
and 100, some major conclusions can be drawn:

(i) The regime of classical oscillatory instability is directly
related to avoided crossings in the energy spectrum, and a
strong mixing between a pure SDW eigenstate and other

PHYSICAL REVIEW E 86, 016214 (2012)

eigenstates corresponding to resonances which populate the
originally unoccupied site as well as breaking the originally
symmetric population of the occupied sites.

(i1) As a consequence of these resonances, we may construct
several measures that give clear signatures of the classically
unstable regime already for particle numbers of the order of
20-30. As a particular example, we showed that the maxi-
mum probability, in any eigenstate, to have particles equally
distributed between only two sites drastically decreases in the
classically unstable regime. As another measure, we calculated
the total overlap (5) between compact SDW basis states and
basis states which are not two-site localized, summed over all
eigenstates, and found a pronounced plateau developing in the
classically unstable regime.

(iii)) While in the classically stable regimes a single
tunneling pair of quantum eigenstates with k = 0, & 277/3 can
be identified as corresponding to a classical SDW stationary
state, attempts at a similar identification in the classically
unstable regime fail to capture essential features of the classical
dynamics. For example, we showed that the dynamics resulting
from a slightly perturbed single tunneling pair of quantum
eigenstates in the unstable regime cannot reproduce the
development of the oscillatory instability. Thus, the classical
unstable dynamics must be viewed as a consequence of
global properties of the eigenstates, rather than of individual
eigenstates.

(iv) Using instead SDW SU(3) coherent states as initial
conditions for the dynamics, several features of the classical
transition from stable internal oscillations to oscillatory in-
stability could be reproduced. However, while the classical
transition appears abruptly at a given bifurcation point,
the quantum transition appears gradual. Close to the upper
bifurcation point on the stable side, the quantum dynamics
for small particle numbers may signal instability with a large
population developing on the initially unoccupied site, but for
increasing particle numbers the classically stable dynamics is
seen to be recovered.

Thus, there are a number of interesting features related
to the quantum dynamics of SDW states and their stability-
instability transitions, and we hope that the signatures that
we have described here may be experimentally observable
for triple-well Bose-Einstein condensate configurations in the
near future. We should stress that oscillatory instabilities also
appear for many other types of classical stationary states in
the DNLS model [1], and it would be interesting to investigate
to what extent the specific quantum signatures that we have
described here for the SDW states are generic.
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