
PHYSICAL REVIEW E 86, 016213 (2012)

Parameter estimation through ignorance

Hailiang Du1 and Leonard A. Smith1,2

1Centre for the Analysis of Time Series, London School of Economics, London WC2A 2AE, England, United Kingdom
2Pembroke College, Oxford OX1 1DW, England, United Kingdom

(Received 25 October 2010; revised manuscript received 10 February 2012; published 16 July 2012)

Dynamical modeling lies at the heart of our understanding of physical systems. Its role in science is deeper than
mere operational forecasting, in that it allows us to evaluate the adequacy of the mathematical structure of our
models. Despite the importance of model parameters, there is no general method of parameter estimation outside
linear systems. A relatively simple method of parameter estimation for nonlinear systems is introduced, based
on variations in the accuracy of probability forecasts. It is illustrated on the logistic map, the Henon map, and
the 12-dimensional Lorenz96 flow, and its ability to outperform linear least squares in these systems is explored
at various noise levels and sampling rates. As expected, it is more effective when the forecast error distributions
are non-Gaussian. The method selects parameter values by minimizing a proper, local skill score for continuous
probability forecasts as a function of the parameter values. This approach is easier to implement in practice
than alternative nonlinear methods based on the geometry of attractors or the ability of the model to shadow the
observations. Direct measures of inadequacy in the model, the “implied ignorance,” and the information deficit
are introduced.
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I. INTRODUCTION

The estimation of physical constants (parameters) plays a
central role in the physical sciences. Yet there is no general
method of parameter estimation for nonlinear dynamical
systems [1]. In what may have been one early use of least
squares (LS) (see [2,3]), Gauss [4] predicted where the newly
discovered Ceres would appear as it emerged from behind
the sun. The prediction involved both a parameter (Newton’s
gravitational constant) and initial conditions (brief observa-
tions of Ceres before occultation). This success, where other
methods failed, supported both the least squares approach
and the mathematical form of Newton’s laws. A minimum
ignorance (MI) approach to parameter estimation for use in
dynamical systems is presented and illustrated in nonlinear
cases where the common “least squares” approaches can be
systematically biased. While the focus is on cases in which
the data archive is relatively large and the model structure is
correct,1 the approach may prove useful outside this perfect
model scenario [7]. In the MI approach, many large sets of
probability forecasts are made, each using different parameter
values; the quality of those parameter values is determined by
the quality of the corresponding set of probability forecasts. A
measure of the internal consistency of probability forecasts is
also introduced, providing quantitative insight into modeling
inadequacy.

Parameter estimation for deterministic nonlinear models
poses several challenges, as nonlinear processes can be
sensitive to initial conditions and parameter specifications.

1Specifically, we refer to cases where there is a parameter value for
which the mathematical model is empirically adequate. The motion
of Mercury is inconsistent with the mathematical form of Newton’s
laws; an internally consistent description requires general relativity.
It is not that the value of a parameter in Newton’s laws is uncertain,
but rather the value is indeterminate [5]: no value will yield results
consistent with observed planetary motion. In the “perfect model
scenario,” the “true” parameter is unknown but does exist [6].

Traditional methods, like least squares, are suboptimal when
forecast errors are non-Gaussian, even if the observational
uncertainties are normally distributed. One aim of this paper
is to stress that fact given the common, and often unguarded,
use of least squares. Several methods have been proposed to
address the shortcomings of traditional methods: McSharry
and Smith [8] estimate model parameters by incorporating the
global behavior of the model into the selection criteria; Crevel-
ing et al. [9] and Maybhate and Amritkar [10] have exploited
synchronization for parameter estimation; Smith et al. [11]
focused on the geometric properties of trajectories; Heald and
Stark [12] include estimation of the noise model. Recently
Quinn and Abarbanel [13] demonstrated that parameter and
state can be estimated via evaluation of a discrete time path
integral in model state space. They also note applications
in a number of fields including neurobiology, atmospheric
and oceanic sciences, cell biology, chemical engineering,
wastewater treatment, and biochemistry. There are also vari-
ational approaches [14], multiple shooting methods [15], and
sequential methods based loosely on the Kalman filter [15–18].
Several of these alternative approaches are contrasted with the
MI approach in the conclusion section.

Results of MI parameter estimation are presented and
critically examined for three chaotic systems: the logistic map,
the Henon map, and the 12-dimensional (12-D) Lorenz96
flow. MI is shown to outperform linear least squares in these
systems when the nonlinearities are relevant; at small lead
times and low noise levels MI and LS are comparable. The MI
method does not solve the problem of nonlinear parameter
estimation completely, but it does highlight the failure of
common linear methods and allow significant progress in some
nonlinear cases, progress which may generalize beyond the
perfect model scenario.

II. TECHNICAL PROBLEM STATEMENT

Parameter estimation is a ubiquitous problem in scientific
modeling [1,8,9,11–13,19,20]. While well understood in linear
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systems [21–23], challenges remain in nonlinear systems [24].
Discussions of parameter estimation typically assume the
following: dynamical systems are linear (or can be linearized),
the mathematical structure of the model is perfect (thus “true”
parameter values exist), and the statistics of observational
uncertainty are known (the “noise model” is perfect). A more
complete discussion is provided by Tarantola [24], who in
Fig. 3.2 sketches six schematic examples, four that are linear
or linearizable, one requiring fully nonlinear methods, and one
too complex for his methods to be used. Problems of the fifth
category in the context of prediction, the so-called “forward
problem,” are approached here.

Assume the evolution of a system state xi ∈ Rm is governed
by a finite dimensional, discrete time, deterministic nonlinear
dynamical system:

xi+1 = F (xi ,a), (1)

where x ∈ Rm and the model’s parameters are contained in
the vector a ∈ Rl . For m = 1, the state xi is a scalar. For
simplicity, forecasts are evaluated on a scalar observation
below, even when m > 1. Assuming additive measurement
noise δi yields observations si = xi + δi . A set of l + 1
sequential measurements si,si+1, . . . ,si+l would, in general,
be sufficient to determine a in a noise free setting (i.e., δi = 0
∀i) [8]. With noise, the task is somewhat harder.

Given model structure F (x,a) and observations generated
by a particular parameter a0 (the “true” parameter value),
one can identify values for a consistent with the available
information. Parameter estimates are made on the basis of
the skill of the probability forecast. To ease comparison with
previous work [8,11], the approach is illustrated using three
nonlinear models: the one-dimensional logistic map,

F (x,a) = 1 − ax2, (2)

the two-dimensional Henon map,

xi+1 = 1 − ax2
i + yi,

yi+1 = bxi, (3)

and a 12-D Lorenz96 flow [25].

III. MINIMUM IGNORANCE PARAMETER ESTIMATION

The least squares (LS) method estimates parameters by
minimizing the root mean square error of a point forecast.
Even given infinite data, the optimal LS solution is biased when
applied to the logistic map [8]. The LS method fails because the
assumption of independent normal distributed (IND) forecast
errors does not hold, even with IND observational noise. This
is to be expected in nonlinear models.

A point value based on an imperfectly observed initial
state is incomplete as a forecast [26]; given observational
uncertainty, an ensemble of initial states of the system
consistent with given observations [27] is required to propagate
this initial uncertainty, suggesting probabilistic forecasts via
Monte Carlo ensembles.

A. Scoring probabilistic forecasts

A probabilistic skill score is a function S(p(y),Y ), where
Y is the outcome and p(y) is a probability forecast [28]. The

ignorance score [29,30] is given by

S[p(y),Y ] = −log2[p(Y )]. (4)

Ignorance is the only proper local score for continuous
variables [31,32]. In practice, given N forecast-outcome pairs
(pi(y),Yi,i = 1, . . . ,N)), the empirical ignorance is

SEI[p(y),Y ] = 1

N

N∑
i=1

−log2[pi(Yi)] − Sclim, (5)

where Sclim is defined using the unconditional probability or
“climatology” of y, denoted pc(y); this is simply the natural
measure projected onto the forecast variable. The zero skill of
ignorance is then

Sclim =
∫

−pc(y)log2[pc(y)]dy. (6)

While other proper skill scores might be used in this context,
ignorance is the only proper local skill score for continuous
variables; it is invariant under smooth changes of coordinates.
Ensuring these properties is desirable in parameter estimation.

B. Ensembles and probability forecasting

An ensemble forecast is based on a collection of simulations
simultaneously. There are many methods for forming an
ensemble of initial states [33–35]. Perhaps the simplest method
is to add draws from the inverse of the observational noise to the
observation to define ensemble members. In that case ensemble
members are equally weighted, as each ensemble member is an
independent draw. With this inverse noise method, the initial
states are unlikely to be consistent with the long term model
dynamics (e.g., they are not “on the attractor” should one
exist).

Continuous forecast distributions can be produced from
an ensemble by kernel dressing its members. Standard kernel
dressing is used below (see [28,30] for more details and [36]
for a Bayesian approach). Define an Ne member ensemble at
time i to be Xi = [x1

i , . . . ,x
Ne

i ] and treat all ensemble members
as exchangeable: the ensemble interpretation methods used do
not depend on the ordering of the ensemble members [28].
Standard kernel dressing transforms the ensemble members
into a probability density function pm where

pm(y : X,κ) = 1

Neκ

Ne∑
j=1

K

(
y − xj

κ

)
. (7)

In this case the forecast distribution is a sum of Gaussian
kernels K(·), the j th ensemble member being replaced by a
kernel centered at xj . For each value of a, the kernel width, κ , is
chosen to minimize the empirical ignorance defined in Eq. (5)
above [28]. There remains the chance that the verification lies
outside the range of any finite ensemble, even if the verification
is selected from the same distribution as the ensemble itself; the
probability of this happening is � 2

Ne
. Given the nonlinearity

of the model, these points may be very far from the ensemble
and appear as “outliers” or “bad busts.”

Given a sample climatology of the system from historical
data, probabilistic forecasts may be improved out of sample by
blending the dressed ensemble with the sample climatology
[28], thereby allowing both narrower kernels and fewer

016213-2



PARAMETER ESTIMATION THROUGH IGNORANCE PHYSICAL REVIEW E 86, 016213 (2012)

1.7 1.75 1.8 1.85 1.9 1.95 2
−5

−4.5

−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

parameter a

ig
n

o
ra

n
ce

(r
el

at
iv

e 
to

 c
lim

at
o

lo
g

y)

(a)

 

 

noise level=1/8
noise level=1/16
noise level=1/32
noise level=1/64
noise level=1/128

1.7 1.75 1.8 1.85 1.9 1.95 2
−5

−4.5

−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

parameter a

ig
n

o
ra

n
ce

(r
el

at
iv

e 
to

 c
lim

at
o

lo
g

y)

(b)

 

 

noise level=1/8
noise level=1/16
noise level=1/32
noise level=1/64
noise level=1/128

FIG. 1. (Color) Minimum ignorance parameter estimation for logistic map with a = 1.85; initial condition ensembles are formed by inverse
noise. Five different noise levels are tested, each given 1024 forecasts. (a) Ignorance as a function of a for τ = 1; the minima are marked with
an “x.” (b) Ignorance as a function of a for τ = 4.

bad busts. Blending with climatology yields the forecast
distribution

p(y) = αpm(y) + (1 − α)pc(y), (8)

where pm reflects the ensemble and pc the climatology. The
probability forecast obtained will be a function of a. Values of
a with small empirical ignorance are deemed better.

Comparing forecast performance of different models is not
a fair comparison without blending climatology. It might be
the case that without blending climatology model A outscores
model B, while after blending climatology model B scores
higher than model A. Since the sample climatology is available
to any model, the comparison should include this information.

IV. EVALUATION AND RESULTS

Figures 1 and 2 show the empirical ignorance scores as a
function of lead time τ and parameter value a for the logistic
map and for the Henon map. Figure 1 shows five different noise
levels σ , for two lead times. In panel (a) τ = 1 and in panel (b)

τ = 4. The vertical line marks the “true” parameter value of
1.85; Fig. 2 reports results from the Henon map showing how
a MI approach outperforms a LS method. The “ + ” in each
panel reflects the “true” values of a and b. Panel (a) shows the
inferiority of the LS error.

Returning to Fig. 1(a), note the bias away from the “true”
value. MI estimates at longer τ [Fig. 1(b)] tend to provide
less biased estimates. The small τ bias is due to imperfections
in the initial ensemble: neither the observation itself nor the
initial ensemble formed by inverse noise are consistent with the
long time dynamics. The natural measure of the logistic map
is not uniform; for some parameter values it may be fractal.
A dynamically consistent ensemble is an ensemble of initial
conditions which are not only consistent with the observational
noise but also consistent with the natural measure.2 Figure 3

2Note that for a structurally perfect model the dynamically consis-
tent ensemble will approach a perfect ensemble [27] at the “true”
parameter value when a long window of observations is considered.
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FIG. 2. (Color) Parameter estimation for Henon map (a = 1.4; b = 0.3), noise level equals 0.05, given 1024 forecasts at lead time 4. (a)
Cost function based on LS. (b) Cost function based on forecast ignorance.
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FIG. 3. (Color online) Parameter estimation for logistic map with a = 1.85 using dynamically consistent ensembles. Contrast the (improved)
ignorance value relative to Fig. 1 where the same lead times and noise level are used.

shows that using a more dynamically consistent ensemble
of initial conditions (in this case merely consistent with the
current observation3) produces less biased results at short τ

and also improves larger τ .
To demonstrate that the advantage of MI parameter estima-

tion need not vanish in higher dimensional systems, the single
parameter Lorenz96 system [25] is considered with m = 12
and the parameter F = 17, using inverse noise ensembles.
Nonlinear effects are reduced at smaller lead times τ and lower
noise levels σ . In Lorenz96, the estimation errors of LS and MI
are roughly the same with τ = 0.5 and σ = 0.1 (this is ∼0.2%
of the range of the data). Increasing the noise level to σ = 1,
the estimation error from LS is approximately eight times that
of MI. Alternatively keeping σ = 0.1 and increasing to τ = 1
yields an error in the LS estimate approximately three times
larger. For any smooth F (x) the linear approximation will hold
in the limit of infinitesimally small observational noise; even
in this limit MI estimation will outperform linear methods
which, like variants of the Kalman filter, fail to respect the
natural measure of F .

V. IMPERFECT MODEL SCENARIO

In the statistics literature, parameters within the perfect
model scenario, where a “true” value is thought to exist but is
unknown, are sometimes referred to as “quantities with a well
defined physical meaning” (see, for instance, [19]). Here the
distinction is made between fitting parameters in a “physical
model” and a “curve fitting model,” where in the second case
parameters are defined only relative to some goal. As will be
demonstrated below, if the mathematical structure of the model

3Here the dynamically consistent ensemble of initial conditions is
only consistent with the current observations; requiring consistency
with a series of observations would result in more informative en-
sembles. To locate states also consistent with more past observations
is much more costly.

is imperfect there is no unique value of the parameter that is
“optimal”; the “best” parameter may vary with application
(the lead time of the forecast, for example). Within the perfect
model scenario the “true” or optimal parameter value exists
but is unknown; outside the perfect model scenario this value
is not unknown but undefined, and one is dealing not with
uncertainty but with ambiguity [5].

All analysis techniques including LS are limited to ex-
ploring the information contained in the data; large forecast-
outcome archives and lower observational noise levels contain
more information and thus allow better parameter estimates
when the model structure is perfect. When the model class
does not admit an empirically adequate model, the notion of
a “true” parameter value is lost. The MI approach remains
useful for identifying the best parameter in an imperfect
model if a notation of “best” is defined in terms of forecast
performance.

Next consider a system-model pair in the imperfect model
scenario. The Quartic system is defined as

G̃(x̃) = ã

[
(1 − ι̃)x̃(1 − x̃) + 4ι̃

5
x̃(1 − 2x̃2 + x̃3)

]
. (9)

The model in this case is

G(x) = ax(1 − x), (10)

which is just the logistic map in another form [37]. At ι̃ = 0
the model is perfect (as ι̃ → 0 the model has structural error);
ι̃ = 0.1 is considered here. Given the observations generated
by the system with additive noise, the goal is to estimate the
parameter of the (imperfect) model. Figure 4(a) shows the
empirical ignorance scores as a function of parameter value
for the logistic model at lead time 1; following Fig. 1 five
different noise levels are examined. In Fig. 4(b) the noise
level is fixed while five different lead times are examined.
Note that the dashed black line reflects the parameter ã used
in the Quartic system which need no longer be the target of
the model parameter value a. Results for three independent
experiments are shown, indicating that the bias away from the
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FIG. 4. (Color online) Parameter estimation for logistic model in the imperfect model scenario, with parameter ã = 4 of the Quartic
system, using inverse noise ensembles. Results from three independent realizations are shown, each given 1024 forecasts; note the consistency
in locating the minimum (×). The similarity of these three lines indicates the result is robust. (a) Empirical ignorance scores as a function of
the parameter value for lead time 1 forecast at several noise levels. (b) Empirical ignorance scores as a function of the parameter value and lead
time given at noise level 1/128.

system parameter value is robust. Figure 4 shows that the MI
estimate varies with lead time and noise level. In both cases the
notation of “best” is defined in terms of forecast skill given an
inverse noise initial condition ensemble. The system parameter
value ã is not equal to the best model parameter value a.

VI. FURTHER DISCUSSION

Minimum ignorance parameter estimation considers the
entire forecasting scenario; once the notion of “best” is
defined any alteration of the forecasting scheme may alter
the best parameter value. In this section, effects of ensemble
formation and kernel dressing are discussed, and an alternative
to “potential predictability” is suggested.

The variance of the standard kernel dressed ensemble is of
course always larger than the variance of the raw ensemble, no
matter how the kernel width is actually determined [38]. More
complicated dressing methods exist (Brocker and Smith [28]
for example introduced an improved kernel dressing, called
“affine kernel dressing,” that is more flexible and robust).
Standard kernel dressing is used here as it is straightforward
to understand, easier to implement, and fit for our purpose.
More advanced data assimilation methods may yield more
informative ensembles (for example indistinguishable states
[34] and Monte Carlo methods [13,33]). If it is costly to
run the model (as with weather or climate models), inverse
noise provides a much faster and cheaper first-pass estimate.
There are also alternative low cost distributions one can
use to blend with the dressed ensemble forecast other than
the unconditional climatology, for example a dynamical
climatology ensemble based on analogs to the current state (see
the discussion of eRAP in [27]). The MI approach generalizes
beyond estimating “physical” parameters as it can be used
for structural parameters as, for example, in delay space
reconstructions (see Farmer and Sidorowich [39] and citations

thereof) and model reduction [40]. Finally, note that it is also
possible to estimate the parameters of the noise model(s) [12]
within the MI framework.

“Potential predictability” reflects the utility an existing
forecast system would have if it were perfect [41]. Interpreting
this as utility carries some risk, of course, as the actual
system may be much more predictable (or much less) than the
dynamics of the current generation of models. An alternative
approach which can quantify the (historical) impact of model
inadequacy is to contrast the empirical ignorance with the
implied ignorance, defined as∫

−pm(y)log2[pm(y)]dy. (11)

The implied ignorance is the ignorance one would expect to
observe if in fact the probability forecast was perfect. The
difference between empirical ignorance and implied ignorance
reveals an information deficit (in bits), which exposes short-
comings anywhere in the forecast methodology. In contrast
with the so called “estimate” of skill from “potential pre-
dictability” experiments which assumes the model is perfect,
the information deficit quantifies just how far the predictability
of the current model is from (its internal) perfection. Within
the perfect model scenario, the implied ignorance can approach
the empirical ignorance for the “true” parameter values (if and
only if the entire ensemble forecasting package is perfect).
Even when the model structure is mathematically correct, the
empirical ignorance may be greater than the implied ignorance,
indicating that the model probability density function is an
incomplete reflection of the expected uncertainties.2 Indeed
the information deficit provides quantitative information on
second order uncertainty. Figure 5 illustrates this in both the
perfect model case [Figs. 5(a) and 5(c)] and the imperfect
model case [Figs. 5(b) and 5(d)]. In the perfect model case, the
empirical ignorance and implied ignorance should converge
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FIG. 5. (Color) Empirical ignorance and implied ignorance as a function of parameter value with noise level σ = 1/128 for lead time 1.
Curves for both inverse noise ensemble and dynamically consistent ensemble. 1024 forecasts are considered in each case. (a) Perfect model
scenario with the logistic map: F (x,a) = 1 − ax2. (b) Imperfect model scenario with system-model pair of Eqs. (9) and (10). (c) Information
deficit in the perfect model scenario. (d) Information deficit in the imperfect model scenario.

to within sampling error at the “true” parameter when a
(many step) dynamically consistent ensemble is employed.
In Figs. 5(a) and 5(b), the upper blue line shows the empirical
ignorance for an inverse noise ensemble; the lower green line
shows the empirical ignorance for a (one step) dynamically
consistent ensemble. The upper red line and lower purple
line correspond to the implied ignorance for each ensemble
formation strategy, respectively. Figures 5(c) and 5(d) show
that the information deficits correspond to Figs. 5(a) and 5(b).
The information deficit will remain nonzero as long as inverse
noise is used. In Figs. 5(a) and 5(c) the information deficit for
dynamically consistent ensembles remains nonzero because
these dynamically consistent ensembles are only consistent
with one observation; as the window of dynamical consistency
increases and the ensemble size increases the information
deficit will approach zero. On the other hand, in the imperfect
model case [Figs. 5(b) and 5(d)] the information deficit will
remain nonzero no matter what one may do due to the model
inadequacy.

Also note in Fig. 5 that the information deficit of the
inverse noise ensemble is smaller than that of the dynamically
consistent ensemble. This is somewhat misleading, in the same
way that potential predictability is consistently misleading.
Confusion can be avoided by noting that forecasts using the
(one step) dynamically consistent ensemble provide almost
two bits more information beyond those from the inverse noise
ensembles.

VII. CONCLUSION

Although widely popular, the method of LS is optimal only
in a narrow context, a fact stressed by Kalman [42]; LS is
often applied well outside its mathematical remit. While a
general account of parameter estimation remains lacking, the
straightforward minimum ignorance approach introduced here
is shown to yield good parameter estimation in several chaotic
systems. Initial experiments suggest that the MI approach is
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also useful for identifying the best parameter in an imperfect
model as long as the notion of “best” is well defined.

MI is expected to perform well against the myriad of mod-
ern alternatives. The initial value approach [14] is reminiscent
of four-dimensional variational assimilation [43] (4DVAR),
minimizing the cost function not only for the initial condition
but also for the parameter values; like 4DVAR it is compu-
tationally expensive and suffers from local minima. These
variational methods differ from the LS method, inasmuch
as LS fails fundamentally while the initial value approach
fails numerically. Simply put, the root of this failure lies in
chaotic likelihoods [44]. Voss [15] applied a multiple shooting
method to address the local minima problem in the initial
value approach, an initial value approach in short windows
resembling a similar spin up procedure applied to 4DVAR [45];
the approach remains expensive and Voss’s examples show
varying success. MI might be considered as a useful prefilter
for the method of [15]; even then that method requires ad hoc
continuity constraints.

Sequential (recursive) methods provide an alternative ap-
proach. Kalman filter methods are most often applied to state
estimation; to estimate the parameter one may simply add
the parameter vector to the state vector [15]. For weakly
nonlinear systems the extended Kalman filter [18] can be
used. For strong nonlinear systems, Voss [15] introduced
the unscented Kalman filter. Notice that for such sequential
methods the parameter vector is allowed to evolve in time;
expectation maximization algorithms [16] account for this.
Each of these methods perform better where the Gaussianity
assumption holds more strongly. MI does not require any
Gaussian constraints whatsoever.

MI parameter estimation also has the advantage that it
is easy to use. Methods which contrast the natural measure
of the model with the observations [8] are significantly
more complicated and grow more so as the dimensionality

of the model increases. Alternative methods which contrast
shadowing times of the model as a function of parameter values
[11] are significantly more computationally expensive. MI
estimation using inverse noise ensembles is straightforward to
implement and relatively inexpensive computationally. It will
fail to indicate the “true” parameter value when the ensemble
is not distributed consistently with respect to the model’s long
term dynamics (natural measure), but the parameter value MI
suggests will give better probabilistic forecasts than the “true”
parameter value as long as the flawed ensemble formation
scheme is used. Investing more in data assimilation is shown
to improve parameter estimates. When the mathematical
structure of the model is incommensurate with the structure
of the system generating the observations, the ultimate goal
of parameter estimation is unclear. As illustrated above, the
“optimal” parameter value may, for example, vary with lead
time. In such cases, MI can still provide useful parameter
estimation as long as the goal (“optimal”) is well defined.

MI parameter estimation by ensemble prediction provides
a useful tool, avoiding the shortcomings of other approaches.
The information deficit reflected in the implied ignorance
can reveal forecast system inadequacies and quantify the
predictability in a more informative manner than “potential
predictability” does. We are optimistic that this framework
will allow some progress outside the perfect model scenario.
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