
PHYSICAL REVIEW E 86, 016211 (2012)

Phase synchronization of bursting neurons in clustered small-world networks
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We investigate the collective dynamics of bursting neurons on clustered networks. The clustered network model
is composed of subnetworks, each of them presenting the so-called small-world property. This model can also be
regarded as a network of networks. In each subnetwork a neuron is connected to other ones with regular as well as
random connections, the latter with a given intracluster probability. Moreover, in a given subnetwork each neuron
has an intercluster probability to be connected to the other subnetworks. The local neuron dynamics has two
time scales (fast and slow) and is modeled by a two-dimensional map. In such small-world network the neuron
parameters are chosen to be slightly different such that, if the coupling strength is large enough, there may be
synchronization of the bursting (slow) activity. We give bounds for the critical coupling strength to obtain global
burst synchronization in terms of the network structure, that is, the probabilities of intracluster and intercluster
connections. We find that, as the heterogeneity in the network is reduced, the network global synchronizability is
improved. We show that the transitions to global synchrony may be abrupt or smooth depending on the intercluster
probability.
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I. INTRODUCTION

The human brain is a complex network consisting of
approximately 1011 neurons, linked together by 1014 to 1015

connections, amounting to nearly 104 synapses per neuron [1].
The connection architecture of the brain is very complicated,
and neurons are neither completely nor randomly connected.
However, neuroanatomic studies reveal that neurons with
similar connectional and functional features are grouped into
clusters with 105 to 106 cells with spatial localization. Such
clusters form structures called cortical areas or subcortical
nuclei [2,3].

Accurate maps of neural anatomic connectivity are difficult
to achieve. Current anatomical data for a few species are
available, for example, the large-scale connectivity between
cortical areas in the macaque monkeys and cats, and the
complete neural connectivity of the worm Caenorhabditis
elegans [4–7]. Another source of data for connectivity studies
relies in the statistical or dynamical relationship between the
patterns of activation of different brain regions as measured
by electroencephalographic (EEG) or neuroimaging methods.
The network analysis of these databases have revealed princi-
ples of organization of the nervous system which are common
across species.

For example, the corticocortical connectivity structure of
the cat brain cortex is composed by 53 cortical areas and
826 axon fibers between them. The connections are weighted
according to the axonal density of the projections [4,5]. The cat
network was found to be organized into four clusters with func-

*Corresponding author: viana@fisica.ufpr.br

tional subdivisions: visual, auditory, somatosensory-motor,
and frontolimbic. In the worm C. elegans, its neurons are
arranged into modules, containing neural circuits which play
a vital role in performing different functions: chemosensation,
thermotaxis, mechanosensation, feeding, etc. [8,9]

The hierarchical structure revealed by the corticocortical
connectivity of the cat suggests that a model for numerical
simulations of this structure can be a clustered network,
or a network formed by interacting subnetworks [10].
The subnetworks stand for the clusters and the neurons in
subnetworks are connected with neurons belonging to the same
cluster and other clusters as well [11,12]. Each such network
has a connection architecture that is neither purely regular
nor completely random, and we assume that they exhibit
the so-called small-world (SW) property, since they display
features of both regular and random lattices [13]. SW networks
have been proposed to be an efficient solution for achieving
modular and global information processing [14]. In fact,
experimental studies in anesthetized cats have identified the
SW properties in functional networks of cortical neurons using
correlation analysis to identify functional connectivity [15].

SW neuronal networks are characterized by a small average
geodetic distance between pairs of neurons and a large
clustering coefficient. Regular lattices have large clustering
values, but they fail to provide nonlocal interactions, which
accounts for a large average distance between pairs of sites.
In contrast, random networks have small average distance
between neurons but fail to display high clustering [16]. This
suggests that SW networks are in between these two limiting
situations.

Networks with the SW property can be obtained from
a regular lattice in which shortcuts are randomly inserted
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according to a given nonlocal shortcut probability [17]. In
a clustered SW network both levels are described by this
type of network, with different nonlocal shortcut probabilities.
We thus have both intracluster and intercluster probabilities,
related to the subnetwork describing one cluster and the
connections among clusters, respectively. Such a hierarchical
network can be used for the numerical investigation of many
collective dynamical phenomena of neuroscientific interest
[18,19]. There are also numerical studies of clustered scale-
free networks, for which the connection probabilities follow a
power-law scaling [20,21]. Scale-free networks exhibit highly
connected neurons, or hubs, which are absent in our model.

The dynamical phenomenon in which we focus in this work
is the synchronization of the bursting activity of neurons. There
are evidences that partial synchronization may be related to a
series of processes in the brain. Synchronized rhythms have
been observed in EEG recordings of electrical brain activity
and are regarded to be an important mechanism for neural
information processing [22]. Experimental observations reveal
synchronized oscillations in response to sensory stimuli in a
variety of brain areas [23,24]. Such synchronized rhythms
reflect the hierarchical organization of the brain and occur
over a wide range of both spatial and temporal scales [25].
Certain neurons in the brain exhibit burst activity: bursts of
multiple spikes followed by a rest state hyperpolarization.
These bursting neurons are important in different aspects
of brain function such as movement control and cognition
[26–28].

If the neurons possess two distinct time scales, such as
spiking and bursting, the bursts (slow time scale) tend to
synchronize at smaller synaptic strengths [29,30]. We regard
two or more neurons to be bursting in a synchronized manner if
they start a given burst at nearly the same time, even though the
fast spikes may not be synchronized. Bursting synchronization
is related to neuron plasticity and memory via Hebbian
plasticity and long-term potentiation [1]. Moreover, bursting
synchronization has been found to be related with a number of
abnormal brain rhythms, like Parkinson’s disease and essential
tremor [31]. In fact, suppression of bursting synchronization
in specific regions of the brain has been proposed as a way to
reduce abnormal neurological rhythms [32].

We want to analyze the collective dynamics of a clustered
network of bursting neurons and give bounds for the smallest
coupling strength needed to achieve global synchronization
on the bursting scale. Many neuron models exhibit two
time scales, ranging from differential equations such as the
Hodgkin-Huxkey [33], Hindmarsh-Rose [34], and Izhikevich
[35] models to simpler two-dimensional maps such as the
Rulkov model [36]. We have chosen the latter one, since its
simplicity allows for extensive computer simulations of many
neurons, but still retaining basic dynamical features of more
complicated models.

In this paper we investigate bursting dynamics on SW
clustered networks. Close to the global synchronized state
the phase dynamics of the burst may be described, to a first
order approximation, by a Kuramoto-like model [37]. Further
investigations in the Kuramoto model allows us to determine
the critical coupling strength for obtaining global bursting
synchronization in terms of the probabilities of intracluster and
intercluster connections. We show that the route to a global

synchronized state reveals two distinct types of transitions
as a function of the intercluster probability. If the latter is
small enough, then the transition to global synchronization
is smooth, as opposed to higher values of the intercluster
probability. In the latter case the network may present an abrupt
transition to global synchronization.

This paper is structured as follows. In Sec. II we present
the model for SW clustered networks, in which the individual
neuron dynamics has a slow time scale representing bursting.
Section III considers global phase synchronization of bursting
neurons and also a discussion on partial phase synchronization.
Section IV contains the phase reduction we perform to obtain
a Kuramoto-like model of coupled phase oscillators. The
transition to phase synchrony and its dependence on the cluster
architecture is treated in Sec. V. The final section is devoted
to our Conclusions.

II. CLUSTERED SMALL-WORLD NETWORKS
(NETWORKS OF NETWORKS)

A. Connection architecture

Neuronal networks typically display the SW property
[15,18]. We construct a clustered network with two hier-
archical levels, a network composed by subnetworks. Each
subnetwork is a SW network obtained from a regular one-
dimensional lattice of neurons with periodic boundary con-
ditions. Each neuron is connected to its nearest and next-to-
nearest neighbors. Then we randomly add new connections
among neurons in the lattice with a given intracluster probabil-
ity pi [17,38]. A small number of neurons in each subnetwork
are additionally connected to neurons in other subnetworks.
These intercluster connections are randomly chosen with an
intercluster probability p0. At this larger scale the network is
not supposed to have the SW property, though, and it is more
properly described as a random network (Erdös-Renyi).

We study a network composed of M SW subnetworks with
L neurons each [Fig. 1(a)]. The two main properties charac-
terizing each subnetwork are the average separation � between
neurons, which is the average number of links necessary to
connect two neurons, and the clustering coefficient C, defined
as the average fraction of pairs of neighbors of a neuron that
happen also to be neighbors of each other. In order to verify the
SW property for each subnetwork, we have computed � and C

as functions of the intracluster probability pi [Fig. 1(b)].
In a SW network the average distance between neurons

must be of the same order as for a random (Erdös-Renyi)
graph, � ≈ �random ∼ ln N , whereas the clustering coefficient
is much greater than for a random graph, C � Crandom ∼ 1/N .
Hence, the results of Fig. 1(b) suggest that the SW property
is well displayed when pi ∼ 10−2. Our intra- and intercluster
probabilities will be chosen using this procedure, depending
on the network size used.

B. Neuron bursting dynamics

Besides the spiking behavior of the action potential through
the neuron membrane, a neuron has also a bursting activity,
characterized by repeated spiking followed by quiescent
periods [29]. Many neurons in the neocortex, hippocampus,
thalamus, and cerebellum, among other examples, exhibit
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FIG. 1. (a) Schematic representation of a SW clustered network
with M = 4 clusters, each of them with L = 8 nodes. (b) Normal-
ized clustering coefficient (open circles) and normalized average
separation between neurons (open squares) as a function of the
intracluster probability pi of nonlocal connections for a SW network
with N = 100 nodes and p∗ = 10−3 is a reference probability.

autonomous or induced bursting [39]. Autonomous bursting
is due to the interplay of fast ionic currents responsible for
spiking activity and slower ionic currents that modulate the
spiking activity [35]. It is currently thought that the bursting
dynamics is essential to understand how a neuron performs
computation and information processing [40].

The existence of both spiking and bursting activities
introduces two distinct time scales in the neuron dynamics,
requiring two different variables to model neuron dynamics:
a fast (vector) variable x, describing the action potential
spikes, and a bursting (vector) variable y representing the
slow modulation of the spiking activity. Several mathematical
models have been introduced to study this behavior, with either
continuous (differential equations) or discrete time (maps)
[34,41].

Since our work mainly aims to investigate the impact of
connection properties of the network, we have chosen one
of the simplest models which retain the essential features of
spiking and bursting dynamics, the two-dimensional Rulkov
map [42,43],

x(n + 1) = f (x(n),y(n)) = α

1 + [x(n)]2 + y(n), (1)
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FIG. 2. Time evolution of the (a) fast x(n) and (b) slow y(n)
variables in the Rulkov map (1) and (2) for α = 4.1, σ = β =
0.001.

y(n + 1) = g(x(n),y(n)) = y(n) − σx(n) − β, (2)

where x(n) and y(n) are the fast and slow dynamical variables,
respectively.

The parameter α affects directly the spiking time scale and
is chosen so that the time series of x(n) presents an irregular
sequences of spikes [Fig. 2(a)]. Since neurons typically exhibit
some diversity, we model this feature by choosing randomly
some parameters over a limited range, as long as we still
have a bursting regime. In our case we consider randomly
the values of α within the interval [4.1,4.4] according to a
uniform distribution. The parameters σ and β take on small
values, describing the slow time scale represented by bursts,
in accordance with the results obtained to model the action of
an external bias current and the synaptic inputs on an isolated
neuron [42]. The slow variable y(n) is a slow modulation of
the fast variable x(n) spiking behavior such that a given burst
(i.e., the repeated sequence of spikes) begins when y(n) has a
local maximum and terminates when it is at a local minimum
[Fig. 2(b)]. The recovery of y(n) marks the quiescent period it
takes before the next burst begins.

From Fig. 2(b) we see that the amplitude of the slow
variable is less than 10% of that for the fast variable.
Hence, in order to understand the existence of repeated
bursting activity, we may approximate y(n) by a constant
value γ in Eq. (1). The resulting one-dimensional map,
x(n + 1) = [α/(1 + x(n)2)] + γ , can have one, two, or three
fixed points x∗

1,2,3, depending on the value of γ . As the
latter approaches a critical value γSN , the fixed points x∗

1,2
(one stable and another unstable) undergo a saddle-node
bifurcation; that is, for γ � γsn the fixed points x∗

1,2 disappear.
For values of γ > γCR there is also a chaotic attractor that,
provided γCR < γ < γSN , coexists with the stable fixed point
attractor. Actually, at γ = γCR the chaotic attractor collides
with the unstable fixed point x∗

1 and is destroyed through a
boundary crisis. The bursting regime appears to be due to a
hysteresis behavior between the stable fixed point (quiescent
evolution) and the chaotic oscillations (fast sequence of
spikes) [41].
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C. Chemical synapses

Given the connection architecture we propose for the
clustered network and the type of local neuron dynamics, the
last ingredient in the model is the implementation of chemi-
cal synapses. Chemical synaptic connections represent most
neuronal connections in the neocortex [44]. A depolarized
presynaptic neuron releases chemical messengers (neurotrans-
mitters) that bind to the receptors of the postsynaptic neurons.
There are excitatory and inhibitory neurons that occur in an
approximate 3 : 1 ratio in the cortex. For simplicity, we have
chosen excitatory chemical synapses in our model. Inhibitory
connections in the brain are known to be short-ranged and
all the long-range connections are excitatory. Therefore, if
inhibitory connections shall be included in a model like the
present one, they should be only between neurons in the same
subnetwork and connections between two subnetworks should
be all excitatory.

The coupling can be implemented in the discrete-time
model just described by forming a network, where xi(n) and
yi(n) stand for the fast and slow variables, respectively, of the
ith neuron (i = 1,2, . . . ,N ) at time n. In our clustered network
we have N = ML, where M is the number of clusters and L

is the number of neurons in each cluster (supposed to be equal
for simplicity).

The coupling is performed on the fast variable x(i) in the
form

xi(n + 1) = f (xi(n),yi(n)) + εIi(n), (3)

yi(n + 1) = g(xi(n),yi(n)), (4)

where the coupling term Ii(n) represents a total synaptic
current to the ith neuron, which is the sum of spikes from
all presynaptic neurons at time n, connected to i according
to the connection topology chosen, and ε > 0 is an overall
coupling strength.

The response from the excitatory chemical synapses must
include two effects: (i) a nonlinear response from the neuron
and (ii) the difference between the membrane action potential
of a postsynaptic neuron [which we represent by x(i)] and
a reversal potential Vs . Hence, we model the total synaptic
current acting on a neuron as

Ii(n) =
N∑

j=1

aijS(xj (n))(xi(n) − Vs), (5)

where aij is the connectivity matrix, whose elements are 1 or
0 if the postsynaptic neuron i and the presynaptic neuron j are
(are not) connected. In our model of a clustered SW network
the matrix is obtained from the procedure previously described
in this section.

The reversal potential is chosen such that Vs > xi(n) for any
xi(n), in such a way that the chemical synapse is excitatory.
The nonlinear response of the neuron is modeled by a static
sigmoidal nonlinear input-output function with a threshold λ

and a saturation parameter 	s [45]

S(x) = 1

1 + e−λ(x−	s )
, (6)

where 	s is chosen such a way that every spike within a single
neuron burst can reach the threshold.

The model describing our neural network is thus

xi(n + 1) = αi

1 + [xi(n)]2 + yi(n)

+ ε

ML∑
j=1

aij

xi(n) − Vs

1 + exp[−λ(xj (n) − 	s)]
, (7)

yi(n + 1) = yi(n) − σxi(n) − β. (8)

In the numerical simulations we shall use the following values
for the parameters: λ = 10, 	s = −0.25, Vs = 2.0, σ = β =
0.001.

III. PHASE OF BURSTING OSCILLATORS

A. Bursting phase

Since we consider that the coupled neurons have small yet
nonzero mismatches in their parameters, namely α, they are
nonidentical and, as a consequence, complete synchronization
of chaotic spiking behavior is not possible. However, there
may be a weaker form of synchronization, occurring when the
coupled neurons burst approximately at the same times, with a
similar matching of their quiescent periods as well. This type
of behavior is referred to as bursting synchronization, which
is actually a type of phase synchronization, as we explain in
this section.

Bursting repeats itself with a slightly variable periodicity,
which enables us to introduce a phase to describe the evolution
during a given burst. Since neuron spiking and bursting have
an underlying chaotic dynamics, a phase cannot always be
unambiguously defined. Different ways to introduce a phase
are possible, each one being chosen according to the particular
case studied [46,47]. In our case, however, there is a simple
way to define the phase φ by considering that, at φ = 0, a burst
begins and evolves until, at φ = 2π , another burst follows.

In practice, it suffices to track the time instants for which
the slow variable y(n), which presents nearly regular saw-teeth
oscillations, has a local maximum, in well-defined instants of
time we call nk [Fig. 2(b)]. The duration of the chaotic burst,
nk+1 − nk , depends on the variable x(n) and, accordingly,
fluctuates in an irregular fashion as long as x(n) undergoes
a chaotic evolution [48]. We define a phase describing the
time evolution within each burst, from nk to nk+1,

φ(n) = 2πk + 2π
n − nk

nk+1 − nk

, (nk � n < nk+1), (9)

where nk denotes the time occurrence of the kth burst [49].

B. Phase synchronization

In this way, when two or more neurons burst synchronously,
their phases are approximately equal. The collective behavior
of the network may also be captured by the network mean
field,

〈x〉μ(n) = 1

ML

ML∑
i=1

xi(n), (10)

in such a way that the emergence of the collective behavior
enhances the mean field dynamics. Specially, if the bursts
are synchronized, the mean field exhibits large-amplitude
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FIG. 3. (Color online) Behavior of the mean field for a clustered
SW network as a function of the overall coupling parameter with
fixed pi = 10−2, po = 10−3, M = 4, L = 100, and (a) ε = 0.01, (b)
0.04, (c) 0.10. The fast variable evolution of a selected neuron is the
green (light gray) curve in (a).

oscillations, even though the spikes may be practically uncor-
related. On the other hand, if there is no synchronization, the
contributions of individual neurons nearly cancel out and the
mean field presents only small-amplitude noisy oscillations.

To illustrate the mean field dependence on the synchro-
nization, we consider a clustered network with M = 4 and
L = 100, each subnetwork being a SW network with pi =
10−2 and po = 10−3. For small values of the overall coupling
parameter ε, like 0.01, the neurons burst in a nonsynchronized
fashion. In fact, for this case the mean field is a noiselike
signal, fluctuating around some value [Fig. 3(a)]. As the
overall coupling increases, the mean field begins oscillating
[Fig. 3(b)].

For higher values of coupling, the mean field oscillates in a
similar way to the individual neurons [Fig. 3(c)]. Comparing
these oscillations with those exhibited by uncoupled Rulkov
neurons [such as depicted in Fig. 3(a)], we see that the
mean field has a repeating behavior, first exhibiting fast
fluctuations akin to the spikes produced by neurons, followed
by a slower decay which is comparable with the quiescent
period of bursting. Hence, the mean field bursting phase
behaves similarly to the bursting phases of individual neurons.
Complete equality is not possible, though, since the neurons
have slight parameter mismatches. This state is called hereafter
global phase synchronization. Near this state the mean field
already echoes the bursting dynamics, while the fast oscillation
due to the spike are filtered out. Intermediate states like in
Fig. 3(b) exhibit partial phase synchronization. In fact, the
difference between partial and complete synchronization is
not so clear by inspecting Fig. 3, but we consider this point in
more detail in the following.

C. Order parameter

Global and partial phase synchronization can be distin-
guished from nonsynchronized states by a suitable numerical
diagnostic, the complex order parameter introduced by Ku-
ramoto [37]. Let {φi(n)}ML

i=1 be the phases of the N neurons at
time n. If we relate these phases to phasors, the order parameter
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FIG. 4. Time averaged order parameter magnitude as a function of
the overall coupling strength for pi = 10−2, L = 100: (a) M = 2 and
(b) M = 4. In both figures we have po = 0 (circles), po = 1.6 × 10−4

(squares), and po = 2 × 10−3 (triangles).

gives the magnitude R(n) and the angle �(n) of a centroid
phase vector:

z(n) = R(n)ei�(n) ≡ 1

N

N∑
j=1

eiφj (n), (11)

and we usually compute its time-averaged magnitude R =
limT →∞(1/T )

∑T
n=1 R(n).

In a global phase synchronized state the bursting phases
nearly coincide, and so their phasors add coherently and
R approaches unity. In contrast, if the state is completely
nonsynchronized the bursting phases are practically uncor-
related, and the phasors cancel out, such that R ≈ 0. In the
thermodynamical limit, that is, the limit of infinite neurons,
we have R = 0. Between values of R thus characterize partial
phase synchronized states.

We choose as the free parameters of our neural network
model the overall coupling strength ε and the intra- and
intercluster probabilities (pi and po, respectively) related to
the SW structure of the neural network. We compute R for the
network as a whole; that is, we set N = ML in Eq. (11).

In Fig. 4 we show the dependence of R on ε, for fixed
pi = 10−2 and L = 100 and varying po. In the case of M = 2
clusters and a value of po large enough, R [triangles in
Fig. 4(a)] behaves in a similar way to a phase transition:
For small p0 the neurons are very weakly coupled, and the
bursting phases are practically nonsynchronized (R ≈ 1/M).
In particular, for the limiting case ε = 0 results that R ∝
(ML)−1/2 so if L � 1 or M � 1, then R ≈ 0.

When po = 0, the value of R increases for nonzero ε and
even reaches a value of approximately 0.6. This is because, as ε

increases, some clusters internally synchronize and, therefore,
although they are not coupled, their dynamical behaviors look
similar. Indeed, the mean field of each independent cluster
would show oscillatory behavior. It is for these reasons that
each cluster apparently get partially synchronized. This is not,
though, a dynamical feature of the network, since the clusters
are themselves uncoupled for po = 0.
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As the ε increases, R also increases in a sigmoid shaped
curve, and R ≈ 1 if ε is large. In practice, we get an almost
global phase synchronized behavior if a threshold, say R̄ =
0.95, is achieved. The minimum ε to get to this threshold
is called the critical coupling strength εc. If we decrease
the intercluster probability p0, R [squares in Fig. 4(a)] also
increases with ε, but achieves global synchronization at a
higher value than before.

It would appear that the effect of po could be only to
postpone global phase synchronization, but we see that this
is not the case, because for po = 0 [circles in Fig. 4(a)]
the network does not synchronize at all, even for larger ε.
Increasing the number of clusters [Fig. 4(b)] leads essentially
to the same conclusion. For a network that contains many
clusters, a larger value of po is required to achieve global
synchronization.

The existence of a critical coupling strength is a well-known
feature of the Kuramoto model of globally coupled oscillators
[50]. One of the advantages of this model is that it displays
a transition to phase synchronization with a εc which can
be predicted on quite general grounds. Hence, in order to
study εc in clustered SW networks, we consider in Sec. IV a
Kuramoto-type model of clustered networks in order to get an
analytical prediction for εc in terms of pi , po, and N .

D. Dynamical modularity

Global phase synchronization of bursting neurons is a large-
scale collective effect. On the other hand, in very large neuronal
networks such global synchronization is not so interesting as
transient synchronization between parts of the system. These
situations are not captured by the mean field and are thus
reflected as a weaker form of synchronization characterized by
situations in which the subnetworks are locally synchronized
but the network as a whole is still not. We may call this a
modular, or partial, phase synchronization to distinguish it
from the global synchronization we have discussed so far.

In this case we can restrict the computation of the mean field
just to a few subnetworks (say, two of them). Hence, we may
think of situations for which the modules (or subnetworks)
are internally synchronized, but the global mean-field is still
very weak. In such cases, synchronization of these modules
may be far more interesting than synchronization of the entire
network.

A quantitative characterization of clustered behavior in
networks of networks is the dynamical modularity introduced
by Gómez-Gardeñes et al. [51], which compares the degree of
modular synchronization within subnetworks with the average
dynamical correlation among the subnetworks. The average
self-correlation of subnetworks is computed by using the
order parameter magnitude for the subnetwork μ only, denoted
as Rμμ, whereas the average intercluster cross-correlation is
obtained from the order parameter magnitude computed by
taking into account the subnetworks μ and ν, here denoted
as Rμν . In a network with M subnetworks the dynamical
modularity DM is defined as

DM =
∑

μ Rμμ/M∑
μ �=ν Rμν/[M(M − 1)]

. (12)
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FIG. 5. (a) Time-averaged global order parameters and (b) dy-
namical modularity, as a function of the coupling strength, for
a clustered network with M = 2, L = 100, pi = 0.2, and po =
2.5 × 10−3. Results in (a) for each subnetwork are marked with
triangles and squares, and for the entire network we used circles.

The dynamical modularity presents values above unity when
the network presents a behavior consistent with clustered
behavior and modular phase synchronization is possible. On
the other hand, DM is near (or less) to unity when the network
behavior is not consistent with a clustered structure and global
phase synchronization is more important.

In Figs. 5(a) and 5(b) we show R and D, respectively, as a
function of ε, for a clustered network of M = 2 subnetworks.
The squares and triangles in Fig. 5(a) stand for individual
subnetworks, whereas the circles stand for the entire network.
We can distinguish three ε intervals with qualitatively different
behavior, in terms of the modular synchronization.

In Region I (0 < ε < 0.046) all the values of R are less than
0.95; hence, neither the networks nor the subnetworks are
phase synchronized. The distinctive behavior of the clusters
is captured by the dynamical modularity, since DM � 1.2.
In Region II (0.046 � ε < 0.059) the subnetworks have R >

0.95; thus, they are synchronized, but the entire network is
not, although it is nearly synchronized; hence, DM decreases
and tends to values near unity. In fact, in Region III (0.059 �
ε � 0.1) all values of R are higher than 0.95, indicating global
phase synchronization and, accordingly, DM takes on values
near unity.

IV. REDUCTION TO A KURAMOTO-LIKE MODEL

Phase synchronization, unlike complete synchronization,
has relatively fewer mathematical results on which we rely
for rigorous statements. However, there is an outstanding
exception represented by the Kuramoto model of globally
coupled oscillators, for which the transition to synchronized
behavior is fairly well understood in some cases [50]. It turns
out that our system of coupled neurons can be subjected to a
phase reduction such that it reduces to a Kuramoto-like model,
and this allows us to use some results already developed for
this class of models in clustered networks [52].
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In Eq. (9) we defined a phase φ(n) to describe the bursting
activity. A similar phase, which we denote as ϕ(n), can be
also derived from the Kuramoto phase reduction techniques,
which leads to an approximate phase equation to describe the
collective phase dynamics of the neuron ensemble [37,53].
Moreover, we suppose that the time interval is short enough
such that we may use a continuous time approximation,
describing the phase change by a time derivative ϕ̇(t) ≈
φ(n + 1) − φ(n).

A. Phase reduction near global phase synchronization

Before considering the case of coupled bursting neurons,
we present general results of phase reduction for a general D-
dimensional flow, with some dynamical requirements which
are mild enough to allow their application here. Let the
dynamics of a single oscillator be given by a differential
equation of the form

dx
dt

= F(x), (13)

where x is a D-dimensional vector. We assume that there is a
stable period-T orbit of this D-dimensional flow, such that

x0(t) = x0(t + T ). (14)

In this case, the “slow” dynamics along this periodic orbit can
be described by a phase ϕ(x) such that

d

dt
ϕ(x) = ∇xϕF(x) = 1. (15)

Now let us consider a network of coupled oscillators with
a slight mismatch in their parameters described by

ẋi = F(xi) + fi(xi) + ε
∑

j

aij V(xi ,xj ), (i = 1,2, . . . ,N ),

(16)

where fi is different for each oscillator and stands for the
vector field part containing slightly mismatched parameters, ε
is again the coupling strength, aij the adjacency (connectivity)
matrix, and V(xi ,xj ) is a coupling function.

From (15), the slow phase ϕi of the coupled oscillators is
implicitly defined by the function

Z(ϕi) = ∇xϕ(x0(ϕi)), (17)

where x0 is a period-T stable orbit. The time evolution of the
phase so defined is governed by

ϕ̇i = 1 + ε
∑

j

aij Z(ϕi)V(xi ,xj ) + Z(ϕi)fi(xi), (18)

for i = 1,2, . . . ,N .
By introducing the auxiliary phase ψi = ϕi − t and using a

time average over a period T , keeping ψi fixed, we can write
in a first-order approximation an equation governing the time
evolution of ψi :

ψ̇i = w̃i + ε
∑

j

aij�(ψi,ψj ), (19)

where

w̃i = 1

T

∫ T

0
Z(t + ψi)fi(xi)dt, (20)

�(ψi,ψj ) = 1

T

∫ T

0
Z(t + ψi)V(x0(t + ψi),x0(t + ψj ))dt,

(21)

play the roles of frequencies and coupling functions, respec-
tively, for the auxiliary phases ψi .

If we are close to a global phase synchronized state, for
which ϕi ≈ ϕj for any pairs of oscillators (i,j ), we get an
approximate form for the coupling function �. Introducing
the time-dependent variable ζ = t + ψj and supposing that
ψj � T there results

�(ψi,ψj ) = 1

T

∫ T +ψj

0
Z(ζ + ψi − ψj )

× V(x0(ζ + ψi − ψj ),x0(ζ + ψj ))dζ. (22)

By expanding the coupling function V in a power series
and assuming that Z is nearly constant over the periodic orbit
x0, we get

�(ψi,ψj ) ≈ a + b(ψi − ψj ), (23)

where

a = 1

T

∫ ψj +T

ψj

ZV(x0(ζ ),x0(ζ ))dζ, (24)

b = 1

T

∫ ψj +T

ψj

Z(∇xV(x,y))x=y=x0(ζ )
∂x0

∂ζ
dζ, (25)

Notice that this approximation holds whenever

∇xV(x,y) �= 0 (26)

for any x and y belonging to the periodic orbit x0.
Substituting (23) into (19), we yield

ψ̇i ≈ w̃i + sia + εb
∑

j

aij (ψi − ψj ), (27)

where si = ∑
j aij is the intensity of the ith node of the

network. Since we are dealing with SW networks, which are
almost regular—with the exception of some nonlocal shortcuts
randomly added with a small probability—the intensities si

present only a small variation over the network. Hence, we
can take si as practically constant, that is, independent of i.

Moreover, since we are, by hypothesis, near a global phase
synchronized state, the phase difference ψi − ψj is small
enough to justify the replacement ψi − ψj ≈ sin(ψi − ψj ),
in such a way that the equation governing the time evolution
of the auxiliary phases (near a phase-synchronized situation)
is a Kuramoto-like model,

ψ̇i ≈ wi + ε
∑

j

aij sin(ψi − ψj ), (28)

where wi = w̃i + asi and ε = εb.

B. Phase reduction for bursting neurons

We next apply the general results for phase reduction near
the phase-synchronized state to the case of bursting neurons,
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provided some approximations are made. We can describe the
dynamics of a single neuron by a differential equation like
(13), where x is a D-dimensional vector containing both the
fast (spiking) and slow (bursting) dynamics. In addition, F can
be, for example, the Hindmarsch-Rose equations (D = 3) or
a similar model with two time scales.

For bursting neurons we have described a phase φ by
Eq. (9). Even though the spiking (fast) dynamics is chaotic
and generally uncorrelated, numerical simulations show that
there may be global phase synchronization even in this case.
This phenomenon can be regarded as being a kind of phase
coherence, which is a more general situation for it may hold
even when a chaotic compact attractor A exists in the phase
space.

Let � be the phase defined over A, and let τ be the return
time of an orbit to the surface of section given by � = 0.
Taking for convenience �(0) = 0, the phase is said to be
coherent if

|�(0) − �(τ )| < η � 1. (29)

In this case, the orbit in A is chaotic but it may resemble a
periodic orbit for times less than tmax ∼ o(1/η). If such a phase
� exists, then it is possible to introduce a coordinate change
� → φ such that φ̇ = 1 + δ, where δ is a noise term. We have
chosen the model parameters so that the bursts are slightly
irregular. Hence, the bursting phase defined in (9) is coherent
in the mathematical sense given by (29).

The terms fi in Eq. (16), which are different for each
neuron, stand for the vector field part containing the slightly
mismatched parameters (which are, in the Rulkov map, the
αi’s). Moreover, the sigmoid function (6) giving the nonlinear
response of the chemical synapses is such that the condition
(26) for applying the phase reduction procedure is satisfied. In
particular, since the bursting dynamics is coherent near global
phase synchronization, it is possible to introduce a coordinate
change such that the phase of the ith neuron reads

φi(t) = 1 + ψi(t) + ζi(t), (30)

where ψi satisfies a Kuramoto-like model (27) and ζ is a noise
term standing for small fluctuations caused on the bursting
dynamics by the chaotic dynamics in the spiking behavior
[46,54].

C. Critical coupling for the global phase-synchronized state

Once we make a phase reduction such that the bursting
phase satisfies Eq. (28), we can use recent theoretical results
on clustered networks described by the Kuramoto model,
obtained by Guan et al. [52]. We start from a modified
version of the order parameter (11), which is called local
order parameter, since it depends on the network site being
considered

zi = Rie
i�i ≡

N∑
j=1

aij 〈eiψj (n)〉n, (i = 1,2, . . . ,N ), (31)

where aij is the adjacency matrix considered in the Kuramoto-
like model(28), and 〈· · · 〉 stands for the time average (hence,
zi is already a time-averaged quantity).

Using this definition, Eq. (28) reads

ψ̇i ≈ wi − εRi sin (ψi(n) − �i) + εhi(n), (32)

where �i is the time-averaged phase of the ith node and

hi(n) = Im

⎡
⎣e−iψi (n)

N∑
j=1

aij e
−iψj (n)〈eiψj (n)〉n

⎤
⎦ , (33)

In the nearly phase-synchronized system, the latter quantity is
the sum of si uncorrelated random terms (si is the intensity of
the ith node) and can be neglected for SW networks where the
sites are poorly connected in general.

The global phase-synchronized state is the stable fixed point
of Eq. (32) without the term hi(n), which is

ψ0
i = �i + arcsin

(
wi

εRi

)
. (34)

For ε = εc we have �i ≈ �j and the value of R for the ith
node reads

Ri ≈
N∑

j=1

aij

√
1 −

(
wj

εcRj

)2

. (35)

This expression has been approximately evaluated in
Ref. [52] in terms of the frequency distribution function g(w).
As we approach the global phase-synchronized state, this
frequency distribution becomes increasingly narrow, and the
square root in (35) reduces to Rj times a constant which
does not depend on the intercluster probability p0. In a
clustered network the intracluster connections are dense and
the intercluster connections are sparse, such that Ri ≈ Rj .

Finally, the summation in (35) is evaluated in the following
way: Since each node is connected to the nearest and next-to-
nearest neighbors, a given node is connected with L − 5 nodes
in the same cluster with probability pi . Moreover, this node is
also connected with other N − L nodes from different clusters
with probability po, for N = ML. Hence,

N∑
j=1

aij = pi(L − 5) + p0(N − L),

and we get an analytical expression for εc with respect to the
inter- and intracluster probabilities [52]

εc = C

pi(L − 5) + po(N − L)
, (36)

where the constant C depends on the threshold value of the
global order parameter. The latter is essentially the same as
we defined in Eq. (11), since it holds for the entire network
and not for a particular node. In our numerical computations
we have used this threshold as a fitting parameter, namely
Rthresh = 0.95.

Fixing a given intercluster probability po, we compute the
time-averaged order parameter as a function of ε and determine
its critical value when R ≈ 0.95. In Fig. 6 we plot εc as a
function of po for two different numbers of clusters, keeping
both pi and L constant. The solid lines represent the theoretical
prediction given by Eq. (36), where C = 0.07 for M = 2 and
C = 0.112 for M = 4 clusters.
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FIG. 6. Critical coupling strength for global phase synchroniza-
tion of bursting neurons εc vs intercluster probability po for a network
with L = 100, pi = 10−2, and (a) M = 2 and (b) M = 4. The
circles are numerically determined from a threshold value of 0.95
for the global order parameter, whereas the solid lines stand for the
theoretical prediction given by Eq. (36).

The theoretical prediction is in very good agreement
with the numerical results for M = 2 clusters and in good
agreement for high intercluster probability in the case M = 4.
In both cases εc decreases with po. In fact, the larger is po,
the more connected are the bursting neurons in the network
and thus the easier it is to get global phase synchronization.
Hence, εc is expected to decrease with increasing po.

V. INTERMITTENT TRANSITION TO PHASE
SYNCHRONIZATION

The transition of our system to global phase synchroniza-
tion occurs in an intermittent fashion: For ε just before its
critical value εc the global order parameter, as a function of
time, alternates between a state where it is near unity and
another one for which it is substantially less than 1. Here it is
also convenient to adopt a threshold value of 0.95 and consider
as a laminar state, the interval for which R(n) > 0.95.

For ε smaller than εc these laminar states are relatively rare
and R(n) takes on small values. However, as ε tends to εc

these laminar states become more frequent until they subside
for all times. In order to quantify this intermittent behavior, we
introduce

F = 1

s

s∑
n=1

Nn

�n

, (37)

where Nn is the number of time intervals for which R(n) >

0.95 during a certain total time span �n. Since the SW net-
works were constructed probabilistically, we take an average
over a number s of different configurations of the connections
distributed with the determined probability po.

Thus, F can be interpreted as the fraction of global
synchronization in a given time interval. If F = 1 we have a
permanent global phase-synchronized state, whereas any value
less than unity represents an intermittent state. The value of F

depends on the coupling strength ε and may present distinct
behaviors according to the intercluster probability po. In Fig. 7
we depict the dependence of F on ε for two values of po.

0 0.05 0.1 0.15 0.2
ε

0

0.2

0.4

0.6

0.8

1

F

FIG. 7. Fraction of time where the clustered network has laminar
states (order parameter higher than 0.95) vs the coupling strength
for po = 10−1 (circles) and po = 10−2 (squares). The remaining
parameters are L = 100, M = 2, pi = 10−2, and s = 20.

As a matter of fact, for small ε the value of F is so small
that there are no laminar states at all; that is, no intermittency
occurs. As we increase ε there is an abrupt transition to
global phase synchronization beginning at ε1 ≈ 0.05 and
ending at ε2 ≈ 0.07 (for po = 10−1). This kind of transition
to global phase synchronization is similar in many aspects to
the bubbling transition to synchronization, which occurs for
coupled identical oscillators (where it is meant to describe
complete synchronization, not just in the phases, though) [55].

The bubbling transition is based on the identification of the
erratic behavior between laminar states as a chaotic transient,
similarly to that occurring when a chaotic attractor suffers a
crisis by collision with an unstable periodic orbit. This crisis
generates an invariant nonattracting set, called chaotic saddle
[56]. Trajectories in a chaotic saddle wander erratically but
eventually decay to some other state. In the case of coupled
chaotic oscillators, this state may be the synchronized state
(or manifold, viewing this state in terms of the corresponding
phase space).

A necessary condition for bubbling is that there is a chaotic
attractor in the synchronized state [57]. The natural measure
of this chaotic trajectory is supported by an infinite number of
unstable periodic orbits embedded in this chaotic trajectory.
If all of these periodic orbits are transversely stable, that is,
they are stable with respect to infinitesimal displacements
along transversal directions, there are no episodes of non-
synchronized behavior and the system stays for an arbitrary
time in the synchronized state. This explains the absence of
nonsynchronized behavior for ε > ε2 in Fig. 7.

However, in spite of some unstable orbits embedded in the
synchronized state being transversely unstable, the synchro-
nized state itself may remain transversely stable. Therefore,
trajectories off but very near the synchronized state experience
intermittent excursions due to the presence of the chaotic
saddle, but eventually decay to the synchronized state. This
explains the existence of intermittent behavior for ε1 < ε < ε2

in Fig. 7.
As the synchronized state as a whole loses transversal

stability, though, the trajectories stay for an arbitrarily long
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time in the chaotic saddle experiencing an erratic behavior,
and no laminar states exist whatsoever. This corresponds to the
absence of laminar states when ε < ε1 (Fig. 7). We point out,
however, that this explanation is essentially qualitative, since
bursting neurons with slightly mismatched parameters are not
expected to display complete synchronization, but rather phase
synchronization (which is a milder form of synchronization).
In this case, this description is not so simple, since we cannot
rigorously define a synchronization manifold with the stability
properties necessary to apply the bubbling transition scenario.

The limitations inherent to this description are apparent in
Fig. 7, when we consider a smaller intercluster probability,
namely po = 10−2. For such a network the intercluster
connections are more sparse than in the previous case, and
we did not observe global phase synchronization (at least for
a 0.95 threshold for the global order parameter). In spite of
this, we can still observe traces of a bubbling transition, since
there is a ε1 ≈ 0.07. Moreover, if we lower the order parameter
threshold, we could still give meaning to a ε2, but this time
with no obvious connection with the previous case.

Instead of invoking a bubbling transition scenario, however,
we can also regard the behavior of F for small po as a
qualitatively distinct kind of transition. Whereas in the larger
po case the transition was abrupt (thanks to the bubbling
mechanism), in the small po case the transition is smooth.
The latter behavior can be understood heuristically in terms of
the synchronization properties of each isolated cluster.

If po is small enough, each cluster is almost independent.
Hence, each subnetwork tends to synchronize by itself.
So, as we increase ε, each cluster becomes intermittently
synchronized and only after such a condition is achieved we
may observe global synchronization, what leads to a smooth
transition. On the other hand, if po is large, then the collective
dynamics of each subnetwork is strongly affected by the rest
of the network. Hence, when phase synchronization occurs in
one subnetwork, this effect quickly spreads over the whole
network, leading to an abrupt transition. In this situation the
bubbling scenario may hold, since it was originally conceived
for a single network.

VI. CONCLUSIONS

We have presented a clustered network model for bursting
neurons. The clustered structure is a prototype for a modular
structure of the cortex, as laboratory evidence suggests for
mammals like cats or macaque monkeys. Given the fact that
chemical synapses are dominant for neuronal networks, we
have described this clustered network as having the SW
property, and for the individual neuron dynamics, we have
chosen a two-dimensional map presenting evolution over both
fast (spiking) and slow (bursting) time scales.

We have described a kind of collective behavior of
the clustered network called global phase synchronization.
Since we have chosen slightly different neurons there cannot be
complete synchronization of chaotic spiking. However, since
neurons spike repeatedly over a burst, they may synchronize
the times they start to burst collectively. The bursting can
be given a phase, such that the collective effect is phase
synchronization.

A clustered SW network has two kinds of connection
probabilities: inter- and intracluster. We have presented nu-
merical results that support the conclusion that global phase
synchronization is possible only if the intercluster probability
is large enough. Then the transition from nonsynchronized to
synchronized behavior is abrupt, and it occurs for a coupling
strength larger than a critical value.

This critical value can be theoretically predicted by consid-
ering a clustered network where the coupled phase oscillators
obey a Kuramoto-like model. We have performed such a
phase reduction for the bursting neurons and have yielded a
Kuramoto-like model with the required properties. In this case
the numerical results we have yielded for the critical coupling
strength are in good agreement with the theoretical prediction
given by the Kuramoto-like model.

We have also shown that, as we approach the transition
to global phase synchronization, the system undergoes in-
termittent excursions between the synchronized and nonsyn-
chronized states. We have conjectured, based on results valid
for complete synchronization of chaos, that this is due to a
bubbling transition whose underlying dynamics is the presence
of a synchronized state and a chaotic nonattracting invariant
set in the phase space.

In the bubbling transition the synchronized state is thought
of as a chaotic attractor containing infinitely many unstable
periodic orbits. If some of these orbits become transversely
unstable, intermittency between bursts and laminar states
occurs due to the existence of the chaotic saddle. A permanent
synchronized state would be possible only if no periodic orbit
is transversely unstable.

On the other hand, if the intercluster probability is too
small, this scenario of an abrupt transition to global synchro-
nization may not apply, and we have a smooth transition to
synchronization. In this scenario, the clusters are so weakly
connected that global synchronization for the network is
achieved only after all the clusters (subnetworks) have reached
a phase-synchronized behavior. In this smooth transition case
the bubbling scenario does not apply in its original form.

Our results suggest that phase synchronization is a phe-
nomenon that can occur in models of neuronal networks, with
distinctive characteristics with respect to the more usually
considered complete synchronization. The latter, although be-
ing mathematically easier to describe and with many rigorous
results, are somewhat idealized behaviors that are not likely to
occur in realistic neuronal network. Phase synchronization, on
the other hand, being a milder form of synchronized behavior,
is more likely to occur in neuronal networks and has a robust
characterization, although rigorous mathematical results are
scarce. One of them though, is the transition to synchronized
behavior in the Kuramoto model, which turns out to be a
reduced model of more complex neuronal networks, as we
have shown in our paper.

One important improvement to the present model would be
the inclusion of inhibitory connections, since it is estimated
that 25% of the synapses in the connectome are inhibitory.
It is believed that the interplay of excitatory and inhibitory
neurons is what generates the typical oscillations observed in
the EEG data (e.g., α and β rhythms). That is the basis of
the neural-mass models. With inhibitory neurons we might
observe oscillations within each of the subnetworks, including
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yet another time scale. However, this will probably depend in
the particular position and connections between the neurons
within each of the SW subnetworks.
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[43] G. Schmidt, G. Zamora-López, and J. Kurths, Int. J. Bifurcat.

Chaos 20, 859 (2010).
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