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Electric-field-sustained spiral waves in subexcitable media
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We present numerical evidence that, in the presence of a suitable electric field, an isolated broken plane wave
retracting originally in subexcitable media can propagate continuously and eventually evolve into a rotating spiral.
Simulations for the FitzHugh-Nagumo, the Barkley, and the Oregonator models are carried out and the same
electric-field-sustained spiral phenomena are observed. Semianalytical results in the framework of a kinematic
theory are quantitatively consistent with the numerical results.
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I. INTRODUCTION

Spiral waves are ubiquitous in various biological, chemical,
and physical systems. They have been observed in cardiac
tissue [1], during aggregation of Dictyostelium discoideum
amoebae [2], in the Belousov-Zhabotinsky (BZ) reaction [3,4],
in catalytic oxidation of CO [5], etc. The attractiveness of
investigating the dynamics of spiral waves is not only because
they have a special structure, i.e., the core is regarded as a phase
singularity in mathematical language, but more importantly
they also contribute to an underlying class of cardiac diseases,
such as tachycardia and fibrillation [6–8].

In recent years, spatiotemporal pattern formation in subex-
citable media has gained extensive attention. In these systems,
the medium excitability is sufficient for a plane wave to
propagate but not for a rotating spiral to form, and the
end of a broken plane wave simply retracts steadily [9,10].
Jung and Mayer-Kress [11,12] first proposed the concept
of spatiotemporal stochastic resonance, showing noise can
sustain spiral growth in a subexcitable medium. Besides
spiral waves [13,14], noise can also stabilize propagating
wave segments [15], induce driven avalanche behavior [16],
and sustain pulsating patterns and global oscillations [17] in
subexcitable media. The propagating wave segment that has
two free ends is inherently unstable in subexcitable media,
but can also be stabilized by periodic modulation of [18]
and feedback to the medium excitability [19–21]. Zykov
and Showalter [22] point out that the existence of stabilized
propagating wave segments can be understood by considering
the interaction of the wave front and wave back boundaries.

In Ref. [23], the authors show that electric noise can sustain
propagating waves in subexcitable media at an optimal level
of noise. Electric fields are known to have pronounced effects
on the behaviors of spiral waves in excitable media. Both dc
and ac electric fields can induce the drift of spirals [24–27].
Recently, a circularly polarized electric field (CPEF) has
been proposed theoretically [28,29], and the drift of spiral
waves under the influence of such an electric field is studied
numerically. By applying two ac electric fields perpendicular
to each other with four electrodes (see Fig. 1), the CPEF
has been realized in the Belousov-Zhabotinsky (BZ) reaction
experimentally [30]. Tuning the phase difference between
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those two perpendicular fields, one can produce a clockwise
(π/2) or a counterclockwise (3π/2) rotating CPEF. In this
paper, we report our numerical study on the influence of CPEFs
on an isolated broken plane wave in subexcitable media. We
observe that the broken wave no longer shrinks, but evolves
into a rotating spiral under the influence of a CPEF with
suitable amplitude and frequency. Moreover, semianalytical
interpretation, in the framework of a kinematic theory [10],
for this phenomenon is also discussed, and the obtained results
are quantitatively consistent with the numerical ones.

II. NUMERICAL RESULTS

We consider the following FitzHugh-Nagumo (FHN)
model submitted to an external electric field E [31]:

∂tu = ε∇2u + f (u,v)/ε − E · ∇u, ∂tv = g(u,v), (1)

where f (u,v) = 3u − u3 − v and g(u,v) = u − δ. u and v are
the fast activator and the slow inhibitor, respectively. ε and δ

are parameters characterizing the excitability of the medium.
Through this paper, E = (Ex,Ey) is a counterclockwise
rotating CPEF, where Ex = E0 cos(ωet), Ey = E0 cos(ωet +
3π/2), where E0 is the amplitude of the electric field and ωe is
its angular frequency (see Fig. 1). In our numerical simulation,
we choose (ε, δ) = (0.2, −1.432), which is in the subexcitable
parameter region close to the ∂R boundary, i.e., the boundary
between subexcitable and excitable media [10].

Figure 2 shows the propagation of an isolated broken plane
wave in the system without and with CPEFs. For the CPEF-free
system, the excitation wave shrinks and disappears eventually
[see Figs. 2(a)–2(c)], which is a typical characteristic of a
broken plane wave in subexcitable media. However, the be-
havior of the wave would change dramatically once a suitable
CPEF is applied to the system. For instance, Figs. 2(d)–2(f)
show typical snapshots of a broken plane wave propagating
continuously in the presence of a CPEF with E0 = 0.2 and
ωe = 0.2. The excitation wave does not shrink any more but
continues to propagate and eventually evolves into a spiral
which rotates rigidly in the same direction with the CPEF.

Further study for a large range of the amplitude E0 and the
frequency ωe shows that the dynamical behaviors of excitation
waves crucially depend on the chosen CPEF parameters. As
shown in the phase diagram (see Fig. 3), with different E0

and ωe, the excitation waves perform different behaviors.
Specifically, within the so-called “rigidly rotating spiral”
region in the phase diagram, the broken plane wave can be
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FIG. 1. (Color online) Realization sketch of a counterclockwise
rotating circularly polarized electric field (CPEF). Applying two ac
electric fields with the phase difference 3π/2 perpendicular to each
other, one can get a counterclockwise CPEF.

forced to form a rigidly rotating spiral, whose frequency
is identical to that of the CPEF, i.e., the spiral rotates
synchronously with the CPEF [see Fig. 2(f)]. The rigidly
rotating spiral appears when the amplitude E0 � 0.05 and
the frequency ωe is around 0.03. Numerical results show that
when we further increase the amplitude E0, the range of ωe

for the rigidly rotating spiral will be extended. What is more,
for the case of both E0 and ωe being fixed in this region, the
angle between the tip tangential velocity ct and the electric
field E, θ [refer to Fig. 6(a)], stays constant all the time [see
Fig. 4(a)], while for varied E0 and ωe, the angle θ will be
different accordingly [e.g., see Figs. 4(c) and 4(d)].

FIG. 2. The evolution of an isolated broken plane wave in the
subexcitable system without and with CPEFs in Eq. (1). The top
row shows the case of no CPEF [integration of Eq. (1) without the
gradient term E · ∇u] at (a) t = 0, (b) t = 99, (c) t = 198. The system
consists of 1500 × 3000 grid points. The bottom row exhibits the case
that the broken plane wave is forced to form a rigidly rotating spiral
by a CPEF with E0 = 0.2 and ωe = 0.2 at (d) t = 26, (e) t = 53,
(f) t = 97. The system is comprised of 1500 × 1500 grid points. The
Euler algorithm with the space step �x = �y = 0.066 and time step
�t = 0.0044 is employed to integrate Eq. (1). No-flux conditions are
imposed at the boundaries. Hereafter, in the integration of Eq. (1),
the same simulation method and parameters applied in (d)–(f) will be
used in this paper.

FIG. 3. (Color online) The phase diagram in the E0 − ωe plane
of Eq. (1). The steps of E0 and ωe are 0.025 and 0.01, respectively.

In the “alternative state” region, the excitation wave neither
rotates permanently nor retracts steadily, but rotates and
retracts alternately [for a specific example one can refer to
Fig. 7(a)]. Compared with the case of the “rigidly rotating
spiral” region, where θ stays constant over time [see Fig. 4(a)],
θ here changes periodically as time elapses [see Fig. 4(b)]. This
means the tip tangential velocity ct cannot catch up with the
rotating electric field E any more, then the angle between them
changes periodically over time.

In the “breaking up” region, the excitation wave breaks up
far away from the tip when the electric field strength is above
a threshold value Ec. Furthermore, from the detailed phase
diagram of the “breaking up” region (see Fig. 5), we find
that the threshold value Ec increases with the electric field
frequency ωe.

FIG. 4. (Color online) θ properties in the “rigidly rotating spiral”
region (a), (c), (d), and the “alternative state” region (b). The CPEF
parameters are (a) E0 = 0.2, ωe = 0.236; (b) E0 = 0.2, ωe = 0.244;
(c) E0 = 0.1; and (d) ωe = 0.04.
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FIG. 5. (Color online) The detailed phase diagram of the “break-
ing up” region in the E0 − ωe plane of Eq. (1). The steps of E0 and
ωe are 0.01 and 0.02, respectively.

III. MECHANISM

At present, the breakup of excitation waves in the presence
of intensive electric field has been observed in the BZ reaction,
and its corresponding mechanism has also been discussed
[32,33], and our findings about the breaking up of the excitation
wave agree with the results. In the following, we will reveal the
mechanism of the rigidly rotating spirals and the alternative
state in the subexcitable media under the influence of CPEFs.

In Ref. [34], a kinematical model of wave motion close
to the ∂R boundary (the boundary between subexcitable and
excitable media) is proposed on a phenomenological basis
and has been helpful to rationalize experimental facts. In
Ref. [10], an asymptotic derivation of a kinematic theory
of wave motion close to the ∂R boundary is presented and
has been developed to describe rotating spiral waves, critical
fingers, and retracting fingers. The kinematic description has
provided exact predictions for the drift of spiral waves affected
by dc electric fields. In the following, we attempt to explain
our numerical results using this kinematic theory.

Close to the ∂R boundary, in the absence of any external
field, the tip tangential speed ct of an isolated broken plane
wave can be expressed as [10]

ct = c0 + cB, (2)

where c0 is the plane wave speed; cB = c0(B − Bc)/K, in
which K ≈ 0.63 is a numerical constant; B = 4

√
3ε/�3

characterizes the excitability of the medium, with � = δ3 −
3δ; and Bc = 0.535 is a critical value which distinguishes
the subexcitable media (B > Bc) from the excitable ones
(B < Bc). Namely, if B = Bc, i.e., ct = c0, the tip of a broken
plane wave would never extend or retract, which is called
“critical finger”; and if B > Bc, i.e., ct > c0, the excitation
wave propagates forward. Meanwhile, its tip retracts as shown
in the top row of Fig. 2, and it is named “retracting finger”; only
if B < Bc, i.e., ct < c0, can the excitation wave rotate to be a
spiral. With the chosen parameters ε = 0.2 and δ = −1.432,
according to Eq. (2), we can have B = 0.5515 and thus
B > Bc, i.e., ct > c0.

In the presence of a weak electric field E, Eq. (2) can be
reconsidered in a frame M moving at velocity E and modified
as [10]

ct = c0 + cB + cE. (3)

FIG. 6. (Color online) (a) The sketch of a wave tip submitted to
a CPEF. (b) Results of cB + cE varying with ωe. (c) The comparison
of ct−semianalytical and ct−numerical in the frame M . Both (b) and (c) are
performed within the “rigidly rotating spiral” region shown in Fig. 3
with E0 = 0.1.

Here, cE = γ||E|| + γ⊥E⊥, in which E⊥ = E0 sin θ and E|| =
E0 cos θ are the external field components, respectively,
parallel and orthogonal to ct . γ|| ≈ −0.850 and γ⊥ ≈ 0.929
are numerical coefficients. θ is the angle between ct and E
[see Fig. 6(a)].

In the following, we show that the above observed wave
behaviors under the influence of CPEFs can be attributed to
the change of the tip tangential speed ct caused by the electric
fields. First, we measure c0 numerically in the subexcitable
medium without any external field. For the parameters ε = 0.2
and δ = −1.432, the measured value of c0 is about 0.8887,
and ct is about 0.8912, i.e., ct > c0 for the retracting finger
[see Figs. 2(a)–2(c)]. Second, in the presence of a CPEF, we
measure ct and calculate it in the frame M . The measured
value of ct in the frame M is denoted as ct−numerical. Third,
we numerically measure the value of θ , the angle between
ct and E, then we calculate the value of cE = γ||E0 cos θ +
γ⊥E0 sin θ and the value of cB + cE in the frame M . Finally,
we can obtain the value of ct according to Eq. (3) and denote
it as ct−semianalytical.

Figure 6(b) shows the dependence of cB + cE on ωe in the
“rigidly rotating spiral” region for E0 = 0.1. One can see that
all the values of cB + cE in this region are negative, which
means ct < c0. That is to say, after applying the CPEF to
the subexcitable system, from Eq. (3), the relation between ct

and c0 realizes the transition from ct > c0 to ct < c0 and the
isolated broken plane wave now no longer shrinks, but can
evolve into a rotating spiral, which well explains our observed
numerical results shown in Figs. 2(d)–2(f) and 3. The values of
ct measured directly from numerical simulation and the ones
obtained from Eq. (3) in the “rigidly rotating spiral” region
for E0 = 0.1 are given in Fig. 6(c). The comparison of the
semianalytical results with the direct numerical ones shows
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FIG. 7. (Color online) (a) The trajectory of a wave tip affected
by a CPEF with E0 = 0.1 and ωe = 0.076 in the “alternating state”
region. The snapshot aI shows the rotating spiral and aII shows the
retracting finger. (b) Time evolution of the corresponding results of
cB + cE .

that there is good agreement even for the case where E0 is not
extremely small (in Ref. [10], the dc electric field E = 0.001).

Furthermore, similar analysis based on Eq. (3) can also
be applied to interpret the wave dynamical behaviors in the
“alternating state” region, where the rotating spiral and the
retracting finger arise alternatively. Figure 7(a) shows an
“alternating state” case with E0 = 0.1 and ωe = 0.076. For
a rotating spiral, i.e., in the time region t /∈ [ta,tb], the tip
trajectory is relatively round and the wave shape around
the tip is clearly curly [see Figs. 7(a) and 7(aI)]. For a
retracting finger, i.e., in the time region t ∈ [ta,tb], there is
a shrinking track in the tip trajectory and the wave shape near
the tip is a typical retracting finger (see Figs. 7(a) and 7(aII)].

Correspondingly, the sign of cB + cE which is calculated from
Eq. (3) also changes alternatively [see Fig. 7(b)]. Within the
time region t ∈ [ta,tb], cB + cE > 0 which means ct > c0, and
the excitation wave is expected to be a retracting finger. In
the other time region t /∈ [ta,tb], cB + cE < 0 which leads to
ct < c0, and a rotating spiral is expected theoretically. One can
see that all our semianalytical expectations agree entirely with
the simulation results.

Our further investigations show that the CPEF-sustained
spirals in subexcitable media are also observed in other
reaction-diffusion systems, such as the Barkley model [35]
and the Oregonator model [36]. The transition from ct > c0 to
ct < c0 is also found in these two models, when the retracing
fingers turn into the rotating spirals. We also obtain the phase
diagram of the Barkley model, which is similar to that of the
FHN model shown in Fig. 3. This indicates that our findings
may be model-independent.

IV. CONCLUSION

To conclude, the wave behaviors in subexcitable media
change greatly once CPEFs are applied to the system. One of
the most interesting phenomena, the CPEF-sustained spiral,
indicates that the CPEF can support a broken plane wave to
propagate continuously and eventually form a rotating spiral.
This kind of spiral can be numerically found in the FHN,
the Barkley, and the Oregonator models in our present study.
In the framework of a kinematic theory [10], we provide
semianalytical interpretation for this phenomenon. Finally, we
hope CPEF-sustained spirals can be observed in experiments
such as the BZ reaction.
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[27] A. P. Muñuzuri, C. Innocenti, J.-M. Flesselles, J.-M. Gilli, K. I.
Agladze, and V. I. Krinsky, Phys. Rev. E 50, R667 (1994).

[28] J. X. Chen, H. Zhang, and Y. Q. Li, J. Chem. Phys. 124, 014505
(2006).

[29] L. Y. Deng, H. Zhang, and Y. Q. Li, Phys. Rev. E 79, 036107
(2009).

[30] Q. Ouyang (private communication).
[31] R. FitzHugh, Biophys. J. 1, 445 (1961); J. Nagumo, S. Arimoto,

and S. Yoshizawa, Proc. IRE 50, 2061 (1962).
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Muñuzuri, A. P. Muñuzuri, V. G. Morozov, and V. Pérez-Villar,
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