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Dynamics of strain bifurcations in a magnetostrictive ribbon
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We develop a coupled nonlinear oscillator model involving magnetization and strain to explain several
experimentally observed dynamical features exhibited by forced magnetostrictive ribbon. Here we show that
the model recovers the observed period-doubling route to chaos as function of the dc field for a fixed ac field
and quasiperiodic route to chaos as a function of the ac field, keeping the dc field constant. The model also
predicts induced and suppressed chaos under the influence of an additional small-amplitude near-resonant ac
field. Our analysis suggests rich dynamics in coupled order-parameter systems such as magnetomartensitic and
magnetoelectric materials.
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I. INTRODUCTION

The rich chaotic dynamics exhibited by sinusoidally driven
nonlinear oscillators is ubiquitous to a large number of systems
such as turbulence in fluid systems [1], chemical oscillators [2],
and cardiac tissues [3]. Manipulated properties of chaos, such
as control of chaos [4] realized in driven nonlinear oscillators,
are also reported in several disciplines, for instance, control of
output of laser system [5], enhanced performance of permanent
magnet synchronous motor [6], and control of cardiac
arrhythmias [7]. Natural to multistate weakly driven oscillators
in the presence of ubiquitous noise is the stochastic resonance
[8], another generic noise-induced cooperative phenomenon
that enhances the signal-to-noise ratio. This phenomenon is
also realized in several disciplines ranging from physics (e.g.,
superconducting quantum interference device magnetometers,
optical, and electronic devises) [9] to biology [10]. However,
it is rare to find such a broad spectrum of dynamical features
in a single system. Surprisingly, physical realization of several
of these features was reported by Vohra et al. [11–15]. In
their study of strain bifurcations in magnetostrictive ribbons
subjected to the combined influence of sinusoidal (ac) and dc
magnetic fields, the authors reported an extraordinarily large
number of dynamical features such as (a) quasiperioidic (QP)
route to chaos when the amplitude of the ac magnetic field
hac was increased in the presence of a dc magnetic field hdc,
(b) period-doubling (PD) route to chaos when hdc was
increased and the ac field was kept fixed [11,12], (c) a
suppression and shift of the period-doubling bifurcation
point [12] and induced subcritical bifurcation under
small-amplitude near-resonant conditions [13], (d) control
of chaos, specifically, suppressed and induced chaos with
the application of a near-resonant perturbation to one of
the subharmonics [14], and (e) stochastic resonance [15].
However, modeling such a rich dynamics exhibited by a
single system in terms of the relevant strain and magnetic
order parameters has remained a challenge.

Vohra et al. emphasized that the �E effect [16], i.e.,
the reversible change in the Young’s modulus with applied
magnetic field, is not responsible for the reported dynamics
as the samples used are unannealed ribbons where the �E

effect is insignificant, unlike the earlier reported PD and QP
routes to chaos in the annealed metallic glass samples [17].
Some of these features have been explained using appropriate

normal forms [18] by appealing to the universal nature of the
bifurcation phenomenon. Our purpose is to develop a model in
terms of magnetic and strain order parameters. In this paper we
focus on three different experimentally observed dynamical
features and show that the model predicts (i) the period-
doubling and (ii) quasiperiodic routes to chaos and (iii) induced
and suppressed chaos in the presence of small-amplitude near-
resonant perturbation. The general nature of these equations
suggest a much richer dynamics in ferromagnetic martensite
samples that possess even stronger elastic and magnetic
nonlinearities [19] and also in magnetoelectric materials [20].
The model also explains some old results on internal friction
studies of martensites [21].

II. THE MODEL

Experiments were performed using a sinusoidal magnetic
field hac of frequency ω in the presence of a dc magnetic
field hdc. Our starting point is to write down the relevant free
energies. In general, the elastic free energy is a function of
all components of the strain tensor. However, considering the
fact that the samples are thin long ribbons (5 cm long) fixed
at one end with the displacement or strain being monitored
at the other end, it would be adequate to use a single strain
order parameter ε. Further, we work in one dimension and
use dimensionless order parameters. We construct a minimal
one-dimensional model with the strain order parameter ε and
magnetic order parameter m. In our model the weak magnetic
nonlinearity is taken to drive the highly nonlinear elastic
degrees of freedom [11]. Then the total free energy has three
contributions, namely, the strain free energy, magnetic free
energy, and magnetoelastic free energy. Thus the total free
energy is FT = Fε + Fm + Fmε .

In one dimension the elastic free energy is given by

Fε =
∫

dy ′
[
flocal[ε(y ′)] + 1

2

(
∂ε

∂y ′

)2]
, (1)

where the strain variable is ε = ∂u(y)
∂y

, flocal is the Landau free-
energy density, and the second term is the gradient free energy.
Guided by the normal forms used [11–15], we use a sixth-order
polynomial for the elastic free energy flocal = θ

2 ε2 − β

2 ε4 +
�
6 ε6. Here β is a positive constant, but θ can take on positive
or negative values. To simplify further, we use � = 1. The
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minima of the free energy are located at ε = ±εs , with εs =
(β +

√
β2 − θ)1/2. The parameters β (of the order of unity) and

θ are sufficient to control the minima. When θ � 3β2/4, ε = 0
is the true minima identified with the high-temperature phase.
At θ = 3β2/4, we have a first-order transition with the free
energy vanishing at ε2 = ±3β/2 and ε = 0. For θ negative,
ε = 0 state is unstable. This behavior can be parametrized
by using θ = T −Ts

Tf −Ts
= τε , where Tf and Ts are the first- and

second-order transition temperatures, respectively.
The magnetic free energy is given by

Fm =
∫

dy ′
[
fmag + 1

2

(
∂m

∂y ′

)2

− m(hdc + hac sin ωt)

]
,

where fmag = τc
m2

2 + m4

4 with τc = T −Tc

Tc
, where Tc is the Curie

temperature of the sample. The nature of the magnetoelastic
free energy is not known, particularly since the ribbon is
a metallic glass sample with a glassy structure. However,
coupling terms either preserve or break the invariance ε → −ε

and m → −m in the elastic and magnetic free energies,
respectively. In the absence of any information, we model
it as a weighted sum of symmetry-preserving and -breaking
terms given by

Fmε= − ξ

2

∫
dy ′[(1 − p)ε(y ′)m(y ′) + pε2(y ′)m2(y ′)], (2)

where ξ is magnetoelastic coupling coefficient and 0 � p � 1
is an adjustable weight factor. Other types of gradient coupling
between ε and m are ignored to keep the model simple. We use
the Rayleigh dissipation function [22] to represent the damping
of oscillating ribbon when the applied field is removed. This
is given by

Fdiss = γ

2

∫ (
∂ε

∂t

)2

dy ′. (3)

The kinetic energy is given by T = 1
2

∫
[ ∂u(y ′)

∂t
]2 dy ′, where

u(y,t) is the displacement variable. Then, using the Lagrangian
L = T − FT and the Lagrange equations of motion

d

dt

(
δL

δu̇(y)

)
− δL

δu̇(y)
= −δFdiss

δu̇(y)
,

we get

∂2ε(y)

∂t2
= ∂2

∂y2

[
τεε(y) − 2βε3(y) + ε5(y) − ∂2

∂y2
ε(y)

+ γ
∂ε(y)

∂t
− ξ

(
pε(y)m2(y) + 1 − p

2
m(y)

)]
.

(4)

Using the equation of motion for the magnetic order parameter
given by ∂m

∂t
= −� δFT

δm
, we get

∂m(y)

∂t
= −�

[
τcm(y) + m3(y) − ∂2m(y)

∂y2
− hdc

−hac sin ωt − ξ

(
pε2(y)m(y) + 1 − p

2
ε(y)

)]
,

(5)

where � is a relevant time scale. Note that this is not a pure
relaxational dynamics as m(y) is subject to sinusoidal and dc

fields. Indeed, ε(y) is being driven through m(y), which is
subject to the sinusoidal field. [Note also the mutual coupling
between m(y) and ε(y).] For a sample that is clamped at
one end, the above equations can be further simplified by
noting that the strain at the free end is small even though
it is in the anharmonic regime. Thus we assume that only
the dominant mode of vibration is supported. We use ε(y,t) =
A(t) sin ky and m(y,t) = B(t) sin ky, where k = π/2L, with L

representing the length of the ribbon. Further, we note that the
dc field induces a finite strain value, which can be determined
by equating the strain energy with the magnetic energy. The
application of the ac magnetic field induces oscillations around
this strain value. Thus we use the dominant mode to represent
deviation from the equilibrium value of the dc field, i.e.,
A = a − adc. Here a is the strain amplitude in the presence
of both magnetic fields and adc is that when only the dc
field is imposed. Transforming Eqs. (4) and (5) into rescaled
variables (τ = kt , � = ω/k, and �′ = �/k) and using only
the dominant mode, we get

Ä(τ ) = −
(

τεA(τ ) + 3βA3(τ ) − 5

8
A5(τ ) + k2A(τ )

+ kγ Ȧ(τ ) + ξ

2
[3pA(τ )B2(τ ) − (1 − p)B]

)
, (6)

Ḃ(τ ) = −�′
(

τcB(τ ) + B3(τ )

2
+ k2B(τ ) − ξ

2
[(1 − p)A

+pA2(τ )B(τ )] − hac sin �τ − hdc

)
. (7)

The overdot now refers to the redefined time derivative.
Equations (6) and (7) constitute a coupled set of nonlinear
nonautonomous ordinary differential equations with several
parameters. We shall use τε , τc, γ , �′, �, and ξ as free
parameters. In addition, both hac and hdc are the experimental
drive parameters. Apart from this, we have no knowledge of
the values of the parameters.

III. RESULTS

The dynamics of the above system of equations is quite
complicated due to the presence of several parameters. Clearly,
interesting dynamics can be expected when τε is in the range
where three or two minima exist and when τc is negative.
Thus we first map the region of the parameter space where
interesting dynamics is seen.

Consider the period-doubling route as a function of hdc for
a fixed hac. Here we keep τε = −1 so that the ε = 0 state is
unstable, although interesting dynamics is also observed for
τε < 3β2/4 as well. Other parameters are fixed at τc = −0.2,
� = 1, γ = 1.592, �′ = 0.09, L = 5, ξ = 0.6, and p = 0.32.

The application of the dc field in the presence of the ac field
has two effects. First, the vibrations are centered around the
strain induced by the dc field. This has already been included
in the definition of A. Second, the free energy for the magnetic
order parameter is tilted to one side. In addition, the shape of
the free energy is also affected due to the presence of nonlinear
magnetoelastic coupling. In particular, note that apart from
the additive B term in Eq. (6), B2 appears multiplicatively
with A (equivalent to parametric forcing). This affects the
shape of the effective elastic free energy. Thus we should
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FIG. 1. (Color online) Period-doubling bifurcation as a function
of hdc for τc = −0.2, τε = −1.0, � = 1, ξ = 0.6, γ = 1.592, �′ =
0.09, hac = 10.5, and p = 0.32.

expect β to be a function of hdc. To understand this, we first
note that in the absence of hdc, increasing the amplitude of
the ac field gives period-doubling bifurcation, as expected
from studies on Duffing-like oscillators [23]. Increasing β

also leads to a period-doubling sequence keeping hdc = 0, but
keeping hac at a value where we find period one. In contrast,
keeping hac at a values where chaos is seen (with β = 1)
and increasing hdc reverses the period-doubling sequence,
reflecting the compensating relationship between β and hdc.
This can be made quantitative by keeping hac = 9.2 (a value
corresponding to a period-four orbit) and increasing both hdc

and β such that we always see the period-four orbit. This gives
a relation β = 1 + 10hdc. However, while β is linear in hdc,
the prefactor depends on the value of hac used.

For further calculations, we use this parametrized form of
β in Eqs. (6) and (7). Then, increasing hdc and keeping hac =
10.5 leads to period-doubling route to chaos. All quantitative
measures are obtained after discarding the first 1.5 × 105 time
steps. A plot of the PD sequence is shown in Fig. 1. The PD
route is seen for a range of parameter values around those used
for Fig. 1.

Now consider the quasiperiodic route to chaos. For this
case we choose the driving frequency to be less than that for
the period-doubling route (� = 1). For the results reported
here � = 0.97, but similar results are obtained for a range
of values of � less than unity. We retain most values of the
parameters as in the PD sequence, but use higher coupling
ξ = 3.2 and γ = 0.0421. In this case, keeping hdc = 0.04
fixed, we sweep hac from 2 onward. We find the first few
harmonic frequencies (as found in the turbulence of a rotating
fluid; see Ref. [1]) in the region hac = 2.5 to 3.8, beyond
which quasiperiodicity is seen until 5.1 with the emergence
of two incommensurate frequencies. A plot of the torus in
the (A,Ȧ,B) space is shown in Fig. 2(a) for hac = 4.8. The
corresponding Poincaré map in the (Ap,Ȧp) plane is shown
in Fig. 2(b). (The largest Lyapunov exponent vanishes in the
regions of quasiperiodicity.) We find three regions of chaos
interrupted by windows of quasiperiodicity in the interval
hac = 2.0–7.5. The first region of chaos is seen between
hac = 5.45 and 5.53 preceded by a phase locked region.
This is followed by a transition to the quasiperiodic regime
(hdc = 5.53–5.64) followed by an abrupt transition to chaos
(hdc = 5.64–5.73). Another region of chaos is seen for hac =
7.3–8.0. The Poincaré map for the chaotic region (hac = 7.4)
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FIG. 2. (Color online) (a) Quasiperiodic orbit in the (Ȧ,A,B)
space for hac = 4.8 keeping τc = −0.2, τε = −1.0, � = 0.97, γ =
0.0421, ξ = 3.2, �′ = 0.09, hdc = 0.04, and p = 0.32. (b) Corre-
sponding Poincaré map in the (Ap,Ȧp) plane. (c) Poincaré map for a
chaotic orbit for hac = 7.4.

is shown in Fig. 2(c). The QP route to chaos is observed for a
range of values of parameters around the values used for Fig. 2.

We next examine the possibility of induced and suppressed
chaos when the system is subjected to small-amplitude near-
resonant perturbation of the form h(τ ) = hr sin �rτ , with �r

close to the first or the second subharmonic. For illustration
we use �r = �/2 − δ, keeping δ small. To do this we first
locate a direct transition from the period-two cycle to chaos
as a function of hdc, keeping the perturbing field hr = 0. We
find that this transition occurs when hdc = 0.040 14 (except
for ξ = 1.0, all other parameters values are the same as for
the PD route). A bifurcation diagram for the strain amplitude
is shown in the inset of Fig. 3. Keeping hdc = 0.040 14, we
apply the perturbing signal hr sin �rτ with δ = 10−6. Even for
small hr we find that the onset of chaos is delayed. Further, the
magnitude of the shift, though small, increases linearly with
hr . Identifying μ0 with the onset of chaos (hdc = 0.040 14)
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FIG. 3. (Color online) Suppressed and induced chaos for δ =
10−6 (�) and δ = 10−2 (◦), respectively, as a function of hr . The inset
shows the bifurcation diagram for τc = −0.2, τε = −1.0, ξ = 1.0,
� = 1, γ = 1.592, �′ = 0.09, hac = 10.5, and p = 0.32.
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when hr = 0 and μ with that for finite hr , the normalized shift
(�) μ−μ0

μ0
for the onset of chaos (obtained by computing the

Lyapunov exponent) as a function of hr is shown in Fig. 3.
We have also studied the influence of δ on the nature of the
dynamics. For instance, for δ = 10−2, we find induced chaos.
The magnitude of the shift in the onset of chaos (◦), which
is significantly higher than that for the suppressed chaos, is
shown in Fig. 3.

IV. SUMMARY AND CONCLUSIONS

In summary, we have developed a coupled oscillator model
where the weak magnetic nonlinearity drives the highly
nonlinear strain order parameter. The model explains several
experimental results on the dynamics of the magnetostrictive
ribbon such as (a) the period-doubling bifurcation as a function
of hdc and keeping hac fixed, (b) the quasiperiodic route
to chaos as a function of hac for a fixed dc field, and
(c) induced and suppressed chaos under the influence of the
resonant perturbing field hr [11–15]. However, the suppressed
chaos seen here is for small δ while the induced chaos is
seen for large δ, which is the opposite of what has been
reported. This may be attributed to the parametric type of
forcing in our equations. Note that the method of control of
chaos is different from traditional methods [4]. The model
demonstrates induced and suppressed chaos in the presence of
near-resonant perturbation. The model exhibits rich dynamics
including transient chaos. For instance, for the symmetry-
restoring crisis [24], we find that the mean time 〈τ 〉 spent
in the precrisis attractor scales as 〈τ 〉 ∼ (hac − hc

ac)−η, where
hc

ac is the critical value, with η ∼ 1.06.
The approach is clearly applicable to any coupled order-

parameter system [19,20] such as magnetomartensites [19],
which exhibits high elastic strain and magnetization, and
ferroelectromagnetic materials, which exhibit magnetization
and electric polarization [20]. Such systems are also described
by polynomial forms of free energy, as used in the model. Our
analysis suggests rich dynamics if experiments are performed
in a similar geometry on these materials. This should encour-
age dynamical experiments in these materials where experi-
ments are traditionally carried out in quasistatic conditions.

The model has been adopted to explain some old unex-
plained results [25] in the internal friction experiments on
samples of nonmagnetic martensite samples of Cu82.9Al14.1Ni3
reported [21,26]. These experiments have also been carried out
in a similar geometry (but transverse drive) near martensite
transformation temperature Tm, where the elastic nonlinear-
ities are significant. Our equations automatically describe
the twinned structure in one dimension when the magnetic
free-energy contribution is dropped [27]. The model recovers
all results [25] including the period-four cycle (which the
authors even fail to recognize; see Fig. 2 of Ref. [21]).

These equations in their present form describe the dy-
namics of magnetomartensites as well [19]. These alloys
undergo a first-order martensitic transformation on cooling
below T = Tm and are also ferromagnetic below the Curie
temperature Tc. Below Tm and Tc they have high degree of
elastic and magnetic nonlinearities. Indeed, the application
of a small amount of magnetic field induces large strains
by the rearrangement of martensite variants [19]. Similarly,
stress also affects magnetization, thereby suggesting strong
magnetoelastic coupling. Thus a rich dynamics is predicted
in magnetomartensites if experiments are performed in a
similar geometry. It would be interesting to verify this
prediction.

Finally, since the application of a magnetic field can
induce large strains (as high as ∼10%), magnetomartensites
are better suited for actuator applications than even the best
magnetostrictive materials (such as Terfenol-D, with a strain of
∼0.2%). Further, these materials should provide more accurate
control of the measurement of dynamic strains compared to
magnetostrictive materials [13].
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