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Cluster and group synchronization in delay-coupled networks
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We investigate the stability of synchronized states in delay-coupled networks where synchronization takes place
in groups of different local dynamics or in cluster states in networks with identical local dynamics. Using a master
stability approach, we find that the master stability function shows a discrete rotational symmetry depending on
the number of groups. The coupling matrices that permit solutions on group or cluster synchronization manifolds
show a very similar symmetry in their eigenvalue spectrum, which helps to simplify the evaluation of the master
stability function. Our theory allows for the characterization of stability of different patterns of synchronized
dynamics in networks with multiple delay times, multiple coupling functions, but also with multiple kinds of local
dynamics in the networks’ nodes. We illustrate our results by calculating stability in the example of delay-coupled
semiconductor lasers and in a model for neuronal spiking dynamics.
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I. INTRODUCTION

The scientific field of synchronization in coupled systems
has evolved rapidly in the last decades [1–7]. Complete or
isochronous synchronization of coupled chaotic units [8–11]
as well as of time-periodic systems has been extensively
studied [12–14]. In general, more complicated synchronization
patterns may be observed including cluster, group, and
sublattice synchronization [15–19]. Cluster synchronization,
where certain clusters inside the network show isochronous
synchronization, will be investigated in this paper. Addition-
ally, we describe the stability of group synchronization, i.e.,
a generalization of cluster synchronization where the local
dynamics of the nodes in each group differ.

The characterization of stability of isochronous synchro-
nization has been widely studied, and the ground-breaking
work by Pecora and Carroll [20] which allows for a separa-
tion of network topology and local dynamics of the nodes
was recently also applied to networks with delays in the
links [11,21–24]. Such delay times can greatly change the
synchronization properties and appear in many natural coupled
systems. For example, in optical applications delay times arise
from the finite speed of light and in neuronal networks delays
play a role due to finite distances between interacting neurons,
but also due to processing lags in the neurons.

For group and cluster synchronization, attempts have been
made to treat stability within a master stability approach.
Sorrentino and Ott [25] considered two groups of nodes
governed by different local dynamics. In the present paper,
we show how this can be generalized to a higher number of
groups and what restrictions for the topology of the network
arise. Moreover, our framework allows us to have multiple
delay times in the network. Making use of a separation of
the topologies into multiple coupling matrices we can lift the
restriction that no coupling may exist inside groups or clusters,
i.e., a restriction to multipartite topologies. This makes our
theory accessible for a wide range of topologies.

After introducing the notion of cluster and group dynamics
in Sec. II, we derive the master stability function and show
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the restrictions that arise upon the topology in Sec. III. In
Sec. IV we investigate the symmetries that group and cluster
synchronization impose on the master stability function. In
Sec. V, we demonstrate this symmetry for networks of delay-
coupled lasers. Multiple coupling matrices are introduced in
Sec. VI, where we use a hierarchical network structure as
an example. The effect of different delay times is shown for
the example of neuronal networks in Sec. VII. Finally, we
conclude with Sec. VIII.

II. CLUSTER AND GROUP DYNAMICS

In a network consisting of N identical nodes, we refer
to cluster synchronization as a state where clusters of nodes
exist that show isochronous synchronization internally, but
synchronization between these cluster does not occur, or is of
nonisochronous type, i.e., there may be a phase lag between
clusters [26,27].

Group synchronization describes a similar state of syn-
chrony, but the node dynamics–determined by the functional
form of the local dynamics–differs from cluster to cluster. We
refer to these clusters as groups. As cluster synchronization
is a special case of group synchronization, we use the more
general notion of groups in the following.

Assume the number of groups to be M , where k = 1, . . . ,M

numbers the individual groups. The dynamical variables of
the nodes in each group are then given by x(k)

i ∈ Rdk with
i = 1, . . . ,Nk , where Nk denotes the number of nodes in
the kth group. The dimension dk of the x(k)

i is given by
the particular node model, e.g., the complex Hopf normal-
form (Stuart-Landau) oscillator [26], the two-dimensional
FitzHugh-Nagumo model [28], or the three-dimensional Lang-
Kobayashi equations [29].

In general the dimension dk of the nodes x(k)
i may be

different for each group k. Consequently, also the local
dynamics F(k)(x(k)

i ) can be different for each group, but must
be identical for all nodes i = 1, . . . ,Nk in a given group
k. For example, consider a network of neurons, where one
group contains inhibitory neurons and another group contains
excitatory ones. The local dynamics will be different for each
group, and depending on the model used to describe both types
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of neurons also the dimension of the node dynamics may be
different.

Let σ (k) be the coupling strength for the coupling from
the (k − 1)th to the kth group. In the same sense, let A(k)

be an Nk−1 × Nk coupling matrix, such that its entries {A(k)
ij }

represent the coupling of node j [which is in the (k − 1)th
group] to node i (which is in the kth group). By this
construction we obtain a multipartite topology in which one
cluster has incoming links from only one neighbor while
having outgoing links to another one. The stability analysis
performed in this section works for these topologies; but we
will lift this restriction by allowing multiple coupling matrices
in Sec. VI. Without loss of generality we assume the row sums
of the coupling matrices A(k) to be unity, which corresponds
to the condition of unity or constant row sum needed in the
special case of complete isochronous synchronization [20]. If
a coupling matrix A(k) has an arbitrary nonzero but constant
row sum, a unity row sum can easily be obtained by rescaling
the corresponding coupling strength σ (k).

As coupling schemes H(k) we introduce dk−1 × dk matrices,
given that dk−1 and dk are the dimensions of x(k−1)

i and x(k)
i ,

i.e., the dimensions of the local dynamics in the (k − 1)th
and kth group, respectively. Note that, as a generalization,
nonlinear coupling functions H(k) : Rdk−1 → Rdk may also be
used instead of matrices [20,25].

Finally, we allow the coupling delays τ (k) to be different
for any pair (k,k − 1) of groups being connected. A schematic
diagram of the variables and matrices is shown in Fig. 1(a). At
this point we consider only multipartite topologies, i.e., only
the dashed arrows in the figure.

The dynamics of any single node in the network can then
be described by the differential equation

ẋ(k)
i = F(k)

(
x(k)

i

) + σ (k)
Nk−1∑
j=1

A
(k)
ij H(k)x(k−1)

j (t − τ (k)) (1)

x(2)
sx(1)
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FIG. 1. (Color online) (a) Schematic diagram of two groups
visualizing parameters and dynamical variables as in Eq. (1) for
multipartite topologies (dashed arrows only, σ

(k)
A ≡ σ (k)) and as in

Eq. (18) for multiple coupling matrices (dashed and solid arrows).
(b) The corresponding synchronization manifold according to Eqs. (2)
and (19).

for i,j = 1, . . . ,Nk , k = 1, . . . ,M . This type of coupling is
applicable for optical systems [30] and electronic circuits.
In other cases, for instance neural dynamics, a diffusivelike
coupling term of the form

∑Nk−1
j=1 A

(k)
ij H(k)[x(k−1)

j (t − τ (k)) −
x(k)

i (t)] is used. Both forms are equivalent since the local
dynamics can be transformed by F(k)(x(k)

i ) → F(k)(x(k)
i ) −

σ (k)H(k)x(k)
i . In the following, we will use the form of Eq. (1).

The group synchronization manifold is then given by

ẋ(k)
s = F(k)

(
x(k)

s

) + σ (k)H(k)x(k−1)
s (t − τ (k)), (2)

which follows by inserting x(k)
i = x(k)

j ≡ x(k)
s into Eq. (1)

(∀i,j = 1, . . . ,Nk , ∀k = 1, . . . ,M). For the example of two
groups, Fig. 1(b) illustrates the synchronization manifold,
where Eq. (2) corresponds to the dashed arrows only.

Note that each group k may exhibit different synchronous
dynamics. Even if the functions F(k), the coupling matrices
H(k), and the delay times τ (k) are identical for each group,
different initial conditions can lead to different dynamics.

III. STABILITY OF GROUP SYNCHRONIZATION

In order to investigate the stability of the synchronous
state, we linearize Eq. (1) around the group synchronization
manifold x(k)

s (k = 1, . . . ,M):

δẋ(k)
i = DF(k)

(
x(k)

s

)
δx(k)

i

+σ (k)
Nk−1∑
j=1

A
(k)
ij H(k)δx(k−1)

j (t − τ (k)). (3)

Now assume that for each group k = 1, . . . ,M each of the Nk

solutions of Eq. (3) can be written in the form

δx(k)
i = c

(k)
i δx̄(k), (4)

with time-independent scalars c
(k)
i ∈ C. We show that the

vectors formed from the possible combinations of the
c

(1)
i1

, . . . ,c
(M)
iM

(i1 = 1, . . . ,N1; . . . ; iM = 1, . . . ,NM ) span a

space of dimension
∑M

k=1 Nk , thus the form (4) yields all
solutions of Eq. (3) as linear combinations. Using the form
(4), Eq. (3) becomes

c
(k)
i δ ˙̄x(k) = c

(k)
i DF(k)

(
x(k)

s

)
δx̄(k) (5)

+
⎛
⎝Nk−1∑

j=1

A
(k)
ij c

(k−1)
j

⎞
⎠ σ (k)H(k)δx̄(k−1)(t − τ (k)).

Equation (5) can be rewritten as

δ ˙̄x(k) = DF(k)
(
x(k)

s

)
δx̄(k)

+C(k)σ (k)H(k)δx̄(k−1)(t − τ (k)), (6)

assuming that

C(k) = 1

c
(k)
i

Nk−1∑
j=1

A
(k)
ij c

(k−1)
j (7)

is independent of i = 1, . . . ,Nk . This is the case if a set of
M linearly independent vectors c(k) = (c(k)

1 ,c
(k)
2 , . . . ,c

(k)
Nk

), k =
1, . . . ,M , can be found, which we show in the following. Using
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these vectors c(k), the conditions (7) can be written as

A(k)c(k−1) = C(k)c(k). (8)

One particular solution c(k−1),c(k) of Eq. (8) [and equivalently
of Eq. (6)] is obtained when setting C(1) = C(2) = · · · =
C(M) = γ :

A(k)c(k−1)
0 = γ c(k)

0 . (9)

Introducing M − 1 rescaling factors z1, . . . ,zM−1 and a fixed
zM = 1, this can be rewritten as

A(k)zkc(k−1)
0 = γ zkc(k)

0 . (10)

Substituting c(k) = zk+1c(k)
0 , Eq. (10) becomes

A(k)c(k−1) = γ
zk

zk+1
c(k). (11)

Setting C(k) = γ zk/zk+1, it follows that Eq. (11) yields all
possible solutions of Eq. (8) assuming that z1, . . . ,zM−1 are
free parameters and zM = 1.

The scaling factors z1, . . . ,zM−1 change only the magnitude
of the variational vectors, thus their particular choice is
not important for the stability of synchronization. Therefore
setting δx̃(k) = zk+1δx̄(k) in Eq. (6) yields

δ ˙̃x(k) = DF(k)(x(k)
s

)
δx̃(k) + γ σ (k)H(k)δx̃(k−1)(t − τ (k)), (12)

which, in conclusion, qualifies as a master stability equation
for this network topology. Here, γ is chosen from the set of
eigenvalues of the block matrix

Q =

⎛
⎜⎜⎜⎜⎜⎝

0 · · · · · · 0 A(1)

A(2) 0 · · · · · · 0
0 A(3) 0 · · · 0

0
. . .

. . .
. . . 0

0 · · · 0 A(M) 0

⎞
⎟⎟⎟⎟⎟⎠, (13)

because Eq. (9) is equivalent to the eigenvalue problem
Q(c(1)

0 , . . . ,c(M)
0 ) = γ (c(1)

0 , . . . ,c(M)
0 ).

The largest Lyapunov exponent � calculated from Eq. (12)
as a function of the parameter γ ∈ C is called the master
stability function (MSF). It determines the stability of group
synchronization if evaluated at the eigenvalues of Q.

IV. SYMMETRY OF THE MASTER STABILITY FUNCTION

Note that the master stability equation (12) (k = 1, . . . ,M)
is of dimension

∑M
k=1 dk and thus independent of the sizes of

the individual groups and the particular coupling topologies
A(k). Because of the structure of Q, there always exist M

eigenvalues γk = exp(2πik/M) corresponding to dynamics
inside the group synchronization manifold. We will refer to
these as longitudinal eigenvalues.

Besides these longitudinal eigenvalues, the spectrum of Q
shows a more general symmetry: For a given eigenvalue γj

of Q, γj exp(2πik/M) is also an eigenvalue of Q for any
k = 1, . . . ,M . See the Appendix for a detailed survey on the
spectrum of the coupling matrix Q.

Looking closely at the master stability equation (12), we
find another symmetry. The equation is invariant with respect

to the transformation γ → exp(−2πi/M)γ :

δ ˙̃x(k) = DF(k)
(
x(k)

s

)
δx̃(k)

+ γ σ (k)H(k)e−2πi/Mδx̃(k−1)(t − τ (k)) (14)

⇔ e2kπi/Mδ ˙̃x(k) = DF(k)
(
x(k)

s

)
e2kπi/Mδx̃(k)

+γ σ (k)H(k)e2(k−1)πi/Mδx̃(k−1)(t − τ (k)).

(15)

With the basis transformation δx̃(k) → exp(−2kπi/M)δx̃(k),
which leaves the Lyapunov spectrum unchanged, the orig-
inal equation is regained. Consequently, the master sta-
bility equation is invariant with respect to rotations γ →
exp(−2πi/M)γ .

Combining both results—the invariance of the MSF and
the spectrum of Q against rotations of 2π/M—we can
conclude that it is sufficient to evaluate the MSF in an angular
sector given by arg(γ ) ∈ [0,2π/M). In the next section, we
demonstrate this symmetry and calculate the MSF for the
example of delay-coupled laser networks.

V. EXAMPLE: LASER NETWORKS

For semiconductor lasers subjected to optical feedback, the
Lang-Kobayashi (LK) model [30] is a paradigmatic model.
This model is based on simple rate equations and includes as
variables the carrier inversion n and the complex electric field
E, which is reduced to its slowly varying envelope. The LK
model in its dimensionless form includes the local dynamics

F(x) =
⎛
⎝ 1

T
[p − n − (1 + n)(x2 + y2)]

n
2 (x − αy)
n
2 (αx + y)

⎞
⎠ , (16)

where x = (n,x,y) denotes the excess carrier density n and
the complex electric field E = x + iy. T denotes the ratio
of carrier and photon lifetimes, p is the normalized pump
current in excess of the laser threshold, and α is the linewidth
enhancement factor. The dynamics of a solitary laser—without
any feedback or coupling—is described by ẋ = F(x(t)).
Coupling M groups of lasers in a network of the form Eq. (1),
we consider identical local dynamics F(k)(x(k)) = F(x(k)) and
focus on all-optical coupling, thus

H(k) =
⎛
⎝ 0 0 0

0 1 0
0 0 1

⎞
⎠ . (17)

The cluster synchronization manifold and thus the master
stability equation (12) are 3M dimensional. Figure 2 shows
the MSF for one, two, three, and four clusters in panels (a),
(b), (c), and (d), respectively. The black asterisks mark the
position of the longitudinal eigenvalues γk = exp(2πik/M),
k = 1, . . . ,M , of Q. Clearly visible in panels (a)–(d) is the
symmetry with respect to discrete rotations of 2π/M as
discussed in the last section. In particular, the Lyapunov
exponent �(γk) is identical at all longitudinal eigenvalues
γk = exp(2πik/M), k = 1, . . . ,M . Note that this result is
independent of a particular topology. Choosing any topology
that has the structure (13), its eigenvalue will always show the
discrete rotational symmetry discussed in Sec. IV.
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FIG. 2. (Color online) Master stability function (MSF) in terms
of largest Lyapunov exponent �(γ ) from Eq. (12) for M = 1, 2, 3,
and 4 groups of delay-coupled lasers (16) in panels (a) and (e), (b)
and (f), (c) and (g), and (d) and (h), respectively. Asterisks mark the
position of the longitudinal eigenvalues. Left: τ (k) ≡ τ = 1; right:
τ (k) ≡ τ = 1000. Other parameters: σ (k) ≡ σ = 0.12, T = 200, p =
0.1, α = 4.

For large delay, as shown in the right part of the figure, the
MSF has a circular shape for one cluster [panel (e)]. This was
recently shown to be a universal feature of networks where
the coupling delay is large compared to the time scale of the
local dynamics [22]. Due to the discrete rotational symmetry
discussed above, the circular shape cannot change when
increasing the number of clusters, hence the shape of the MSF
is independent of the number of clusters for large coupling
delay [see Figs. 2(f)–2(h)], but we observe that the size of the
disc of stability is shrinking with increasing number of clusters.
This shrinking can be explained as follows: The dimension of
the synchronization manifold Eq. (2) is proportional to the
number of clusters. Since the blocks of the matrix Q are
arranged in a unidirectional ring, the dynamics inside the
synchronization manifold lives inside such a unidirectional
ring. Hence, the time that a signal takes to travel through
this ring scales linearly with the number of groups M . This

FIG. 3. (Color online) Master stability function (MSF) in terms
of largest Lyapunov exponent �(γ ) for two groups of delay-coupled
lasers (16). The pump current is chosen as p = 0.1 in the first group
and p = 0.4 in the second group. (a) τ (k) ≡ τ = 1, (b) τ (k) ≡ τ =
1000, other parameters as in Fig. 2.

signal traveling time can be seen as an effective time delay
governing the degree of chaos, i.e., the longitudinal Lyapunov
exponent. As was shown in Refs. [22,23], a larger longitudinal
Lyapunov exponent yields a smaller radius of the stable
region.

The above example used identical local dynamics in all
of the groups, which corresponds to the case of cluster
synchronization. In order to illustrate our theory for group
synchronization, we now consider two groups of lasers, where
the pump current is p = 0.1 in the first group and p = 0.4 in
the second group. Figure 3 shows the resulting master stability
function for delay times τ = 1 and τ = 1000 in panels (a) and
(b), respectively. Compared to Figs. 2(b) and 2(f), only the
pump current in one of the groups is increased. In the case of
a small delay time [Fig. 3(a)] this does not change the master
stability function, because both groups still lock to the same
dynamics. In the case of a large delay time [Fig. 3(b)], the stable
region shrinks compared to Fig. 2(f) due to the higher pump
current in one of the groups leading to a larger longitudinal
Lyapunov exponent �(γ = ±1) [22,23]. Note that the discrete
symmetry of the master stability function is also present for
group synchronization.

VI. BEYOND MULTIPARTITE TOPOLOGIES

So far we have developed a master stability formalism to
determine the stability of group and cluster synchronization.
In order to utilize the master stability framework, one major
restriction has been made: Each group must receive input from
one and only one other group, i.e., the network topology has to
be multipartite. More complex topologies beyond multipartite
structures like, for instance, lattices [15,16] could not be dealt
with. In the following we will derive the master stability
equation for group synchronization with multiple coupling
matrices. Thereby some of the former stringent restrictions
can be dropped.

The network dynamics for group synchronization with one
coupling matrix has been written in the form of Eq. (1), and
the synchronization manifold and the master stability equation
were given by Eqs. (2) and (12), respectively. Generalizing this
to two coupling matrices yields for the network dynamics of
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M groups

ẋ(k)
i = F(k)

[
x(k)

i (t)
] + σ

(k)
A

Nk−1∑
j=1

A
(k)
ij H(k)x(k−1)

j (t − τ (k))

+ σ
(k)
B

Nnk∑
j=1

B
(k)
ij H(k)x(nk )

j (t − τ (k)), (18)

where the matrix A(k) describes the coupling from the (k − 1)th
to the kth group as before and B(k) describes the coupling from
the nkth to the kth group. That is, the kth group now receives
input from two groups, k − 1 and nk . The row sums of all A(k)

and B(k) must be unity. Any constant nonzero row sum can be
rescaled by means of the coupling strengths.

For the sake of simplicity and readability, we use identical
coupling schemes and identical time delays for both coupling
terms. In general, our framework works for different time
delays and coupling schemes. The sum of σ

(k)
A and σ

(k)
B must

yield the overall coupling strength σ (k) used before in order
to arrive at the same dynamical regime: σ

(k)
A + σ

(k)
B = σ (k).

Figure 1(a) shows schematically the coupling parameters and
matrices that are present in Eq. (18). In the case of two groups
shown here, B(1) and B(2) represent the coupling within the
groups, depicted by solid arrows.

From the above, the synchronization manifold is obtained
as

ẋ(k)
s = F(k)[x(k)

s (t)
] + σ

(k)
A H(k)x(k−1)

s (t − τ (k))

+ σ
(k)
B H(k)x(nk )

s (t − τ (k)) (19)

for k = 1, . . . ,M . See Fig. 1(b) for a schematic diagram of the
synchronization manifold for the example of two groups. The
coupling inside a group translates into a self-feedback loop,
depicted by solid arrows. Let QA be the matrix containing
the blocks A(kn) at positions (k,k − 1) and QB the matrix
containing the blocks B(k) at positions (k,nk). If QA and QB

commute, i.e., [QA,QB] = 0, it is possible to obtain a master
stability equation

δ ˙̄x(k) = DF(k)
(
x(k)

s

)
δx̄(k)(t) + σ

(k)
A γ (1)H(k)δx̄(k−1)(t − τ (k))

+ σ
(k)
B γ (2)H(k)δx̄(nk )(t − τ (k)) (20)

for k = 1, . . . ,M , where γ (1) and γ (2) are chosen from the
eigenvalue spectrum of the matrices matrices QA and QB ,
respectively. These eigenvalues have to be evaluated in pairs
corresponding to one eigenvector. Since QA and QB commute
they always have a set of identical eigenvectors.

A. Example: Two groups

Let us first consider the simplest example, namely only two
groups. Above, we have shown results for synchronization in
two groups using a single coupling matrix of the form

QA =
(

0 A(1)

A(2) 0

)
, (21)

where the matrices A(1) and A(2) describe the coupling from
the second to the first group and vice versa, respectively; see
also Ref. [25]. We will now elaborate what happens when we

FIG. 4. (Color online) Master stability function for two commut-
ing matrices with the structures QA as in Eq. (21) and QB as in Eq. (22)
with coupling strengths σ

(1)
A = σ

(2)
A = 0.05σ and σ

(1)
B = σ

(2)
B = 0.95σ

with σ = 0.12. The pairs (Reγ (1),Reγ (2)) plotted as black (blue) dots
correspond to eigenvalues of the hierarchical network with matrices
(24) and (25) using a link probability p = 0.5 in the Erdős-Rényi
graph (25). Other parameters: T = 200, p = 0.1, α = 4, τ = 1000.

introduce a second coupling matrix

QB =
(

B(1) 0
0 B(2)

)
, (22)

i.e., n1 = 1 and n2 = 2. Figure 4 shows the master stability
function for the structure given by these matrices QA and
QB and for laser parameters in the regime of low-frequency
fluctuations with T = 200, p = 0.1, α = 4. The coupling
strengths are chosen as σ

(1)
A = σ

(2)
A = 0.05σ and σ

(1)
B = σ

(2)
B =

0.95σ with σ = 0.12. This resembles strong coupling in the
clusters, but weak coupling between clusters. We use only one
time delay τ = 1000 for simplicity. For the same reason, we
investigate cluster synchronization, i.e., the local dynamics F
and the coupling scheme H are identical for both groups in this
example. We consider matrices with real eigenspectrum only
and set Imγ (1) = Imγ (2) = 0. The eigenvalue pairs depicted
by the black (blue) dots correspond to a particular network
topology that will be discussed below.

Using the forms (21) and (22), the commutation relation
[QA,QB] = 0 is equivalent to{

A(1)B(2) = B(1)A(1),

A(2)B(1) = B(2)A(2).
(23)

These conditions are fulfilled for certain classes of matrices
only. We will give an example of hierarchical coupling that
yields matrices which fulfill these conditions.

B. Towards hierarchical networks

A hierarchical network usually consists of topological
clusters that are densely coupled inside, while links to other
such topological clusters are sparse. The hierarchy is then built
by larger topological clusters that contain the smaller ones
[31,32]. This procedure can be continued over many levels
of hierarchy. It is important to distinguish these topological
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FIG. 5. (Color online) Schematic view of a simple hierarchical
network structure according to Eqs. (24) and (25) with N = 30 nodes.
The two topological clusters are separated for illustration. Solid (blue)
and dashed (red) arrows correspond to links inside (QB ) and between
(QA) the clusters, respectively.

clusters from the dynamical cluster states that are investigated
in this paper.

The simplest hierarchical structure consists of just two
topological clusters. Figure 5 illustrates this in a schematic
sketch of a graph of N = 30 nodes with two topological
clusters, N1 = N2 = N/2. Solid (blue) arrows correspond to
links inside one cluster while dashed (red) arrows denote links
between both clusters. In this section we will show that each
cluster can exhibit isochronous synchronization under certain
conditions. In this sense, the notions of topological cluster and
of dynamical cluster coincide at this point.

The graph in Fig. 5 is modeled by the coupling matrices

QA =
(

0 1N/2

1N/2 0

)
(24)

and

QB =
(

B 0
0 B

)
, (25)

where 1N/2 is the identity matrix and B is an undirected
N/2 × N/2 Erdős-Rényi random graph with a certain link
probability p. The undirectedness is necessary to obtain
a real-valued eigenvalue spectrum. Then it is sufficient to
calculate the master stability function in the (Reγ (1),Reγ (2))
plane as done in Fig. 4.

In order to comply with the link density of a hierarchical
network, we choose the coupling strength for the two matrices
QA and QB to be different as used for the calculation of the
master stability function in Fig. 4. The coupling strengths σ

(1)
A

and σ
(2)
A are chosen as σ

(1)
A = σ

(2)
A = 0.05σ , where σ = 0.12

is the overall coupling strength corresponding to the regime of
low-frequency fluctuations of the laser dynamics. The coupling
strengths corresponding to QB are chosen as σ

(1)
B = σ

(2)
B =

FIG. 6. (Color online) Master stability function for two commut-
ing matrices with the structures QA as in Eq. (21) and QB as in Eq. (22)
in the (Reγ (2),σA/σ ) plane. Reγ (1) = 1, Imγ (1) = Imγ (2) = 0, σB =
σ − σA, σ = 0.12. The dashed black (blue) lines form the boundary
of the parameter range where no two-cluster exists. Parameters:
T = 200, p = 0.1, α = 4, τ = 1000.

0.95σ . For a high link probability p in the random matrix B,
the matrix QB contains comparatively more links than QA,
which has only one link per row. Given that both matrices are
renormalized to unity row sum, it is therefore a reasonable
choice that σ

(1)
B and σ

(2)
B are significantly larger.

The black (blue) dots in Fig. 4 show the eigenvalue pairs
(γ (1),γ (2)) of the hierarchical example given by Eqs. (24) and
(25) using a link probability of p = 0.5 in the random matrix
B for N = 30. It can be seen that this network shows stable
synchronization in this two-cluster state. That is, each topolog-
ical cluster exhibits synchronization internally. All eigenvalue
pairs transversal to the synchronization manifold are inside the
stable region, while the longitudinal eigenvalue pairs (1,1) and
(−1,1) do not affect the stability of synchronization. For any
choice of QB the eigenvalues will always be lined up on the
dotted vertical lines, which are determined by the matrix QA

being constructed from identity-matrix blocks.
The link probability p = 0.5 is just above the threshold of

stable synchronization. Using lower values, some eigenvalues
will cross the boundary of the stable region of the master
stability function, leading to desynchronization.

Since the eigenvalues are always aligned along the lines
Reγ (1) = ±1 in this example, the stability for other choices of
the coupling strength can easily be obtained by evaluating the
master stability function at a fixed value of Reγ (1) = 1 as a
function of Reγ (2) and σA or σB . The other value Reγ (1) = −1
yields identical results and therefore need not be considered,
which is a result of the symmetry discussed in Sec. IV and
observable also in Fig. 4.

Figure 6 shows the master stability function in the
(Reγ (2),σA/σ ) plane, where σA ≡ σ

(1)
A = σ

(2)
A . The other

coupling strength is set using the relation σB ≡ σ
(1)
B = σ

(2)
B =

σ − σA, where the overall coupling strength is chosen as
σ = 0.12 corresponding to the laser regime of low-frequency
fluctuations. This relation ensures that the overall coupling
strength leads to an operation in this regime.
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The dashed black (blue) lines enclose the region where no
two-cluster state can exist. This can be seen by considering the
two-node network motif described by

x(k)
s = F

[
x(k)

s

] +
2∑

j=1

Ĝkj Hx(j )
s (t − τ ), (26)

k = 1,2, where the coupling matrix

Ĝ =
(

σ
(1)
B σ

(1)
A

σ
(2)
A σ

(2)
B

)
(27)

describes the behavior on the two-cluster synchronization
manifold. For coupling strengths between the black (blue)
lines, this motif shows stable synchronization for the chosen
laser parameters and thus the dynamics in both clusters will
be identical. The stability of the two-cluster state is therefore
only meaningful below the lower and above the upper dashed
black (blue) line.

The boundaries of stability for the two-cluster state are
nearly independent of σ1/σ in the lower range of σ1/σ <

0.175, which corresponds to a high coupling strength inside
the clusters, but a low coupling strength between clusters.
The upper range of σ1/σ > 0.825, which corresponds to low
coupling strength inside the clusters but high coupling strength
between them, also allows for the existence of the two-cluster
state, but this state cannot be stable for any topology. In
conclusion, the coupling strength must be comparatively large
inside the clusters to allow for a stable two-cluster state.

VII. EXAMPLE: NEURAL NETWORKS

Synchronization in the brain can be related to cognitive
capacities [33] as well as to pathological conditions, e.g.,
epilepsy [34]. Therefore, there has been tremendous interest
in the study of synchronization in neural networks [35–38].
The master stability approach has been applied to the study of
synchronization patterns independently of a specific network
topology [28,39,40]. The brain is organized in different brain
areas leading to different delay times between neurons of
different areas and neurons within the same area. Furthermore,
different types of neurons exist, corresponding to different
local dynamics. Therefore we propose that the master stability
function for group synchronization introduced here will be
especially useful for investigating complex neural synchro-
nization phenomena.

Here we apply our method to a neural network where the
nodes are modeled as FitzHugh-Nagumo (FHN) systems. As
in the last section we consider a network of two groups coupled
via two coupling matrices QA (intergroup coupling) and QB

(intragroup coupling). We use a diffusivelike coupling. As
discussed above this can be transformed to the coupling used
in the previous sections by transforming the local dynamics of
the ith node in the kth cluster as follows:

F
(
x(k)

i

) =
(

1
ε

(
u

(k)
i − 1

3u
(k)
i

3 − v
(k)
i

)
u

(k)
i + a

)

+(
σ

(k)
A + σ

(k)
B

)
Hx(k)

i , (28)

with x(k)
i = (u(k)

i ,v
(k)
i ) and k = 1,2. Here u and v denote the

activator and inhibitor variables, respectively. The parameter

FIG. 7. (Color online) (a)–(c) Master stability function for net-
works of FitzHugh-Nagumo oscillators governed by Eq. (28) in the
(Reγ (1),Reγ (2)) plane for Imγ (1) = Imγ (2) = 0 and different delay
times. The black dots denote the location of the eigenvalue pairs for
the example topology (29). (d)–(i) Time series of the dynamics in the
first (dark dashed red) and second (light solid blue) group. Parameters:
(a),(d),(e) in-phase synchronization (τ (k)

B = 3); (b),(f),(g) antiphase
synchronization (τ (k)

B = 2); (c),(h),(i) synchronized bursting (τ (k)
B =

3.2). Other parameters: σ (k)
A = σ

(k)
B = 0.5,τ

(k)
A = 3, ε = 0.01, a = 1.3

(groups k = 1,2).

a determines the threshold of excitability. A single FHN
oscillator is excitable for a > 1 and exhibits self-sustained
periodic firing beyond the Hopf bifurcation at a = 1. We will
focus on the excitable regime with a = 1.3. The time-scale
parameter ε is chosen as ε = 0.01. The synchronized dynamics
and the master stability equation are then given by Eqs. (19)
and (20), respectively. We assume the coupling scheme H(1) =
H(2) ≡ H = ( 1/ε 0

0 0 ).
The cluster synchronized dynamics is equivalent to a system

of two coupled nodes with self-feedback. In Ref. [41] it
was shown that depending on the delay times, the coupling
strength, and the strength of the self-feedback different
dynamical scenarios, i.e., in-phase synchronization, antiphase
synchronization, or bursting can arise. Figure 7 shows the
master stability function in panels (a)–(c) for in-phase synchro-
nization, antiphase synchronization, and for synchronization
in two bursting groups, respectively. The right-hand panels of
Fig. 7 depict the corresponding time series: panels (d), (f), and
(h) for the activator variables and panels (e), (g), and (i) for
the inhibitor for in-phase, antiphase, and bursting dynamics,
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respectively. Because the different dynamical scenarios yield
distinctively different stable regions, topologies might arise
which show stable synchronization for one of the patterns but
not for the others. However, for all scenarios the stable region
contains the unity square, i.e., (γ1,γ2) ∈ [−1,1] × [−1,1].
With Gershgorin’s circle theorem [12] it can easily be shown
that the eigenvalues of symmetrical matrices with positive
entries and unity row sum are always contained in the
interval [−1,1]. Thus, if QA and QB have only positive
entries, i.e., if the coupling is excitatory, synchronization is
stable for the dynamics and parameters shown here. As a
consequence, only the introduction of inhibitory links can lead
to desynchronization. In Ref. [28] it has been shown that for
σ

(k)
A = σ

(k)
B = σ and τ

(k)
A = τ

(k)
B = τ this is the case for all σ

and τ for which the synchronized dynamics is periodic. A
detailed study of these phenomena for the eight-dimensional
parameter space of σ

(k)
A ,σ

(k)
B ,τ

(k)
A ,τ

(k)
B (k = 1,2) is beyond the

scope of this paper. Note that the symmetry discussed in
Sec. IV does not show up in Fig. 7(a), because both clusters
synchronize to x(1)

s = x(2)
s and the invariance of Eq. (14) does

not hold in this case of in-phase synchronized spiking.
As an example of a network with inhibitory links which

will exhibit stable synchronization only in one of the patterns
discussed above, but not in the other ones, we choose QA and
QB as

QA =
(

0 A
A 0

)
, QB =

(
B 0
0 B

)
, (29)

where A = aij with aij = 1 ∀i,j = 1, . . . ,N is an all-to-all
coupling matrix with self-coupling, and B is an undirected
random matrix with both excitatory (positive entries) and
inhibitory links (negative entries). The matrix B describes a
fixed node degree with 12 excitatory and 9 inhibitory links for
each node. The number of nodes is chosen as N = 100. The
black dots in Fig. 7 denote the corresponding eigenvalue pairs.
In panels (a) and (b) some eigenvalues are located outside
the stable region, while in panel (c) they are all inside, which
means that the zero-lag and antiphase synchronized solutions
will be unstable in such a network, while synchronization in
the bursting state will be stable.

VIII. CONCLUSION

Based on a master stability approach, we have studied
patterns of cluster and group synchronization in delay-coupled

networks and determined their stability. We have shown that
the master stability function applied to cluster and group
synchronization exhibits a discrete M-fold rotational sym-
metry for M dynamical clusters. This reduces the numerical
effort, such that for a larger number of clusters the master
stability function must be evaluated only on a smaller angular
sector in the complex plane. Within our approach we can
treat a wide range of multipartite network topologies. Using
multiple commuting coupling matrices, we have generalized
our stability analysis beyond multipartite topologies, for
instance towards hierarchical network structures. As concrete
examples we have focused on delay-coupled lasers and neural
networks. The interplay of complex topologies, multiple delay
times, and possibly different local dynamics and different
coupling functions extends the scope of the master stability
framework and is a step towards understanding complex
patterns of synchronization in real-world networks.
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APPENDIX: SPECTRUM OF THE COUPLING MATRIX

We investigate the eigenvalue spectrum of the coupling
matrix

Q =

⎛
⎜⎜⎜⎜⎜⎝

0 · · · · · · 0 A(1)

A(2) 0 · · · · · · 0
0 A(3) 0 · · · 0

0
. . .

. . .
. . . 0

0 · · · 0 A(M) 0

⎞
⎟⎟⎟⎟⎟⎠. (A1)

Q has at least n0 zero eigenvalues, where

n0 =
∑

k

|Nk − Nk−1| (A2)

arises solely due to the block structure of Q: if all A(k) have
maximum rank min(Nk,Nk−1), there are exactly those n0 zeros.
In general, the exact number of zeros is given by

∑
k(Nk −

rankA(k)), which may be larger than n0 due to the particular
structure of the A(k).

Consider the matrix QM , which is of block diagonal
structure

QM =

⎛
⎜⎜⎜⎜⎜⎜⎝

A(1)A(M)A(M−1) · · · A(2) 0 · · · 0

0 A(2)A(1)A(M)A(M−1) · · · A(3) . . . 0

0
. . .

. . . 0

0 · · · 0 A(M)A(M−1) · · · A(1)

⎞
⎟⎟⎟⎟⎟⎟⎠. (A3)
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Note that each block on the diagonal is a product of all A(k),
only the order differs.

Assume that the groups are arranged such that N1 �
Nj (j = 2, . . . ,M), which can always be achieved by an
index permutation, and that each A(k) has maximum rank
min(Nk,Nk−1).1 Then of the blocks in QM , (QM )11 has lowest
rank, since it is an N1 × N1 matrix. The nonzero eigenvalues
of a matrix product are invariant against exchange of the
factors, their number (including degeneracy) equals the rank
of the product with lowest rank, i.e., (QM )11 in our case. As
a consequence, the nonzero eigenvalues of QM are given by
the nonzero eigenvalues {λ1, . . . ,λN1} of (QM )11. As there are
M blocks yielding exactly these eigenvalues, each of them is
M-fold degenerate. In particular, since the row sum of QM is
unity, there is an M-fold unity eigenvalue.

The nonzero eigenvalues of Q are then given by the Mth
roots of the nonzero eigenvalues of QM , and the whole
spectrum � = {γj }j=1,...,

∑
Nk

of Q reads

� = {0, . . . ,0︸ ︷︷ ︸
n0

} ∪
M⋃

k=1

{ M
√

|λ1|e[arg(λ1)+2πk]i/M,

. . . , M
√

|λM |e[arg(λM )+2πk]i/M}. (A4)

Note, in particular, that the eigenvalue λ = 1 of QM corre-
sponds to the M longitudinal eigenvalues γk = exp(2πik/M)
of Q, which are related to directions longitudinal to the group
synchronization manifold. Their existence can already be seen

1The latter assumption simplifies the argument regarding the zero
eigenvalues, but the final result is valid for arbitrary ranks of the block
matrices.

solely by looking at Q itself, because its eigenvectors

vk =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

exp(−2πik/M)
...

exp(−2πik/M)

⎫⎪⎬
⎪⎭ N1

exp(−4πik/M)
...

exp(−4πik/M)

⎫⎪⎬
⎪⎭ N2

...
exp(−2πik)

...
exp(−2πik)

⎫⎪⎬
⎪⎭NM

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (A5)

where each vk corresponds to the longitudinal eigenvalue γk =
exp(2πik/M), do not depend on the inner structure of the
blocks A(k).

Given that the MSF is invariant with respect to ro-
tations γ → exp(2πi/M)γ and that each of the multiple
roots of λ1, . . . ,λM are also rotations by multiples of
2π/M with respect to the roots { M

√|λ1| exp[i arg(λ1)/M],. . .,
M
√|λM | exp[i arg(λM )/M]}, we can restrict ourselves to eval-
uating the master stability function at the location of the
eigenvalues

{ M
√

|λ1| exp[i arg(λ1)/M], (A6)

. . . , M
√

|λM | exp[i arg(λM )/M],0},
which lie all inside the angular sector arg(γ ) ∈ [0,2π/M).
Note that the zero eigenvalue is only added here if n0 > 0,
i.e., if at least one block A(k) differs from the others in
size.
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