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Analysis of interface conversion processes of ballistic and diffusive motion in driven superlattices
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We explore the nonequilibrium dynamics of noninteracting classical particles in a one-dimensional driven
superlattice which is composed of domains exposed to different time-dependent forces. It is shown how the
combination of directed transport and conversion processes from diffusive to ballistic motion causes strong
correlations between velocity and phase for particles passing through a superlattice. A detailed understanding
of the underlying mechanism allows us to tune the resulting velocity distributions at distinguished points in the
superlattice by means of local variations of the applied driving force. As an intriguing application we present
a scheme how initially diffusive particles can be transformed into a monoenergetic pulsed particle beam whose
parameters such as its energy can be varied.
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I. INTRODUCTION

Dynamical systems and their transport properties have been
studied extensively over the last decades [1], whereas the topic
stimulated a vast amount of research when the possibility of
directed currents in the absence of a mean force was realized
[2–4]. Since the second law of thermodynamics forbids such
transport phenomena in equilibrium, these systems have to be
constantly driven out of equilibrium. Early works [2–4] were
based on noise, that is, statistical external fields, in combination
with spatially asymmetric so-called “ratchet” potentials to
overcome the limitations formulated by the second law of
thermodynamics and thus to evoke a particle current. These
types of systems are of particular interest because they outline
a working principle for biological systems such as molecular
motors [5,6] or quantum motors [7].

However, it was soon realized that directed currents can
very well be obtained with deterministic external fields, as long
as certain spatial and temporal symmetries in the equations
of motion are broken [8], which was investigated afterward
in a vast amount of literature (see [9–15] and references
therein). These deterministic ratchets are of particular interest
since they might have remarkable applications in nanoscale
devices such as electron pumps or transistors [16]. First
experimental realizations included semiconductors or semi-
conductor microstructures where a combination of laser fields
has been applied which led to directed currents in electron
ratchets [17,18]. Directed currents also became a subject
of interest in experiments concerning cold atoms in optical
lattices [19–22], where additional ac forces are applied to drive
the system out of equilibrium and at the same time break the
required symmetries that would otherwise prevent transport
phenomena. These type of experiments are of particular
interest since they allow for a precise control over the system
parameters and provide extensive tunability in the used ac
drivings [20,22].

While the so far mentioned works focus on only time-
dependent ac forces, it was found recently that a spatial
dependence of these ac forces leads to a diversity of dynamical
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phenomena [23–25]. The latter studies address the classical
dynamics of particles in a lattice with a site-dependent driving.
In [23] it is demonstrated how a phase-modulated lattice
allows for directed transport even though the driving of each
barrier on its own does not break the relevant symmetries [8].
Reference [24] shows how a ramping of the potential height in
combination with a site-dependent driving leads to a patterned
deposition of particles. A specific realization of a lattice with
a site-dependent driving is the one of a block lattice (BL)
as introduced in [25], which is reminiscent of semiconductor
heterostructures and superlattices. Indeed, only recently the
possibility of ratchet effects in superlattices of semiconductor
heterostructures with a superimposed periodic potential was
reported [26,27]. In the case of [25], the superlattice consists
of different blocks containing many inidvidual barriers where
the barriers of each block are governed by a certain time
dependence, that is, driving law, whereas different blocks
exhibit, in general, different driving laws. The long time
transient dynamics in such a superlattice shows intriguing
phenomena like the formation of spatial density oscillations.
The latter were explained and analyzed by means of conversion
processes from diffusive to ballistic (and vice versa) motion at
the positions where two neighboring blocks connect, that is, at
the interfaces of two blocks. However, a detailed analysis of the
processes occurring in a unit cell of such a superlattice—that
is a system containing only two blocks each equipped with
one of the used driving laws—is still missing and is therefore
subject of the present work. In this sense we investigate the
diffusive to ballistic motion conversion processes in detail and
explore their influence on the dynamics of particles leaving
the two block system. As a result, we obtain peaked velocity
distributions for outgoing particles even though their initial
conditions are chosen exclusively within the chaotic sea of
the underlying phase space. By adjusting parameters in the
driving we are able to manipulate these velocity distributions
in a controlled manner. Finally, we demonstrate how the
insights gained from the two block system enable us to exploit
the conversion processes in superlattices built up of many
blocks, each equipped with a unique driving law. In doing so
an initially diffusive particle ensemble is converted into an
ensemble with a velocity distribution containing a single peak,
whereas both the width as well as the peaks mean velocity can
be tuned.
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FIG. 1. (Color online) Sketch of a lattice that consists of dif-
ferently laterally driven blocks, where the barriers with NB � i <

(B + 1)N are equipped with the same driving law dB (t).

The present work is structured in the following way. In
Sec. II we introduce the setup of a BL. In Sec. III the dynamics
of a single block is discussed. We explore the conversion of
diffusive to ballistic motion at distinguished positions in the
BL in Sec. IV. Additionally, the influence of these processes
for outgoing particles in a simple two block system is discussed
in Sec. V. Finally, we investigate the dynamics of superlattices
containing several hundred blocks in Sec. VI. Section VII
contains our brief conclusions.

II. SETUP AND HAMILTONIAN

The system investigated is a one-dimensional driven lattice
consisting of laterally oscillating square potential barriers of
equal height V0 and length l, as sketched in Fig. 1. Each barrier
is characterized uniquely by its index i.

Furthermore, the barrier positions are time dependent and
described by the so-called “driving law” d(t), which is chosen
such that the ith barrier remains at all times within an interval
of length L expanding from iL to (i + 1)L. Additionally, the
lattice is divided into blocks such that different driving laws
dB(t) (introducing the “block index” B) are used. In doing
so, each dB(t) governs the barrier motions for the sites NB �
i < (B + 1)N where N denotes the number of barriers within
one block and is set to 104 throughout this work. The general
structure of the driving law is a biharmonic function dB(t) =
AB[cos(ωBt) + sin(2ωBt + ��B)] with three parameters AB ,
ωB , and ��B which depend on the block index B. Hence, the
resulting classical Hamiltonian for noninteracting particles is
given by

H (x,p,t) = p2

2m
+

B=NBl−1∑

B=0

(B+1)N∑

i=BN

×V0�(l/2 − |x − X0,i − dB(t)|), (1)

with NBl being the number of considered blocks and X0,i

the equilibrium position of the ith barrier (chosen such that
the barrier oscillates symmetrically within its unit cell, that
is, min|X0,i + dB(t) − iL| = min|X0,i + dB(t) − (i + 1)L|).
Additionally, we set the mass m = 1 without loss of generality
and keep V0 = 1.0, L = 5.0, and l = 1.0 constant throughout
this work.

III. DYNAMICS IN A SINGLE BLOCK

Even though the focus of this work is on composite systems
consisting of multiple blocks exposed to different driving laws,
these blocks are considered to be large in a sense that the
dynamics of a particle within one block can be described by

FIG. 2. (Color online) (a), (c) PSS for a uniformly driven lattice
with parameters A ≈ −0.57,�� = 0 and ω = 1.0. (b), (d) PSS for
A ≈ 0.57,�� = 0 and ω = 1.0. (a), (b) Position x taken modulo L

as well as the velocity at times ωt mod 2π = 0. (c), (d) Phases and
velocities recorded at positions x mod L = 0.

the Poincaré surfaces of section (PSS) as obtained by extending
this block to an infinite uniformly driven lattice. It is therefore
sensible to discuss the dynamical features such as the transport
properties as well as the appearance of the PSS of the uniformly
driven lattice. It is well established that the PSS for a uniformly
driven lattice can be obtained by exploiting the temporal
symmetry of the Hamiltonian: H (x,t) = H (x,t + T ). Thus,
an appropriate choice for the PSS is given by M = {(x(t +
kT ) mod L, p(t + kT )) | k ∈ N}, with T = 2π

ω
being the tem-

poral period. According to this, we record the position taken
modulo L and the velocity at certain times 2πk, k ∈ N (and
call this “position velocity section”). Such a PSS for ω = 1.0,
A ≈ 0.57 and �� = 0 is shown in Fig. 2(b) and features the
typical mixed phase space [28], that is, Kolmogorov–Arnold–
Moser (KAM) islands embedded in a chaotic sea which is
bounded by the first invariant spanning curve (FISC). Note that
the white rectangle is caused by adding the potential energy for
particles which are within a barrier at times when position and
velocity are recorded. This is done to avoid discontinuities in
the PSS caused by the discontinuous potential V (x,t) (cf. [23]).
For later usage we show additionally the position velocity
section for parameters ω = 1.0, A ≈ −0.57, and �� = 0 in
Fig. 2(a). Note that Figs. 2(a) and 2(b) show the PSS of the
left block and right block, respectively, of the corresponding
two block system (see Sec. IV).

A second possibility to illustrate the phase space of a
uniformly driven lattice is given by the “phase velocity section”
which exploits the spatial symmetry of the Hamiltonian:
H (x,t) = H (x + L,t). To this end we record the phases and
velocities at certain positions iL. Hence, the PSS is obtained
from the set of points M = {(t(x + kL) mod T , p(x +
kL)) | k ∈ N} and the resulting plot is shown in Fig. 2(d)
[again, the PSS for parameters as in Fig. 2(a) is shown
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FIG. 3. (Color online) Numerically determined transport velocity
as a function of �� in an infinite uniformly driven lattice with A ≈
0.57 and ω = 1.0.

additionally in Fig. 2(c) for later usage]. Apparently, it features
qualitatively the same domains as the position velocity section
[Fig 2(b)], that is, ballistic islands which are embedded in
a bounded chaotic sea. However, in contrast to the previous
case the chaotic sea appears to be nonuniformly filled with
trajectories. This seeming contradiction to ergodicity can be
resolved easily: According to ergodicity the chaotic sea in
Fig. 2(b) can assumed to be filled with a uniform measure.
Hence, the number of particles �N that pass xi = iL and
therefore contribute to the phase velocity section per time
�t and velocity interval �v is given by �N

�t
= ρ �x

�t
�v =

ρv�v, where �x denotes the distance a particle travels
in time �t and ρ is the number of particles per phase
space interval. Therefore, the number of particles passing xi

per velocity interval is �N
�v

= ρv�t and hence proportional
to v. We now comment on the transport properties within a
single block. For ��B �= nπ

2 (n ∈ Z) the biharmonic driving
law breaks the time-reversal invariance as well as the parity
symmetry of the Hamiltonian and the driven lattice allows
for directed transport phenomena [8]. The transport as a
function of �� with fixed A ≈ 0.57 and ω = 1.0 is deter-
mined numerically by simulating 105 particles in a uniformly
driven lattice for 106 barrier oscillations and calculating their
average velocity after a certain transient time. The results
are shown in Fig. 3 and appear to be in good agreement
with the results of a symmetry analysis (cf. [8,29]) which
yields vtransport ∝ − cos (��). However, there are noticeable
deviations, for example, the reversed sign close to ��B = π/2
and ��B = 3π/2. Note that these deviations from a pure
sinusoidal behavior should not surprise us, since a dependence
of the transport on �� as vtransport ∝ − cos (��) as derived
in [8], is obtained from a first-order perturbative analysis of
a system with a smooth potential instead of discontinuous
potential barriers. As a matter of fact, the extension of the
chaotic sea to positive or negative velocities, and hence the
transport velocity, is a discontinuous function of any of the used
parameters of the driving law and features “jumps” whenever
a so far invariant torus is transformed into a penetrable chain
of cantori under a small variation of one of the parameters of
the driving law.

For a more detailed analysis of the dynamics in a uniformly
driven lattice, we refer to [23] where this was done in great
detail.

IV. INTERFACE CONVERSION IN THE TWO
BLOCK SYSTEM

In Ref. [25] it was argued that a BL, as introduced in Sec. II,
offers the opportunity for conversion processes from diffusive
to ballistic motion and vice versa at interface positions where
the driving law changes. These types of processes will be
analyzed in detail throughout this section. We demonstrate
in particular their influence on the velocity distribution of a
particle ensemble.

A. Interface conversion

Let us introduce the simplest possible finite BL which
is built up of only two blocks (i.e., NBl = 2) equipped with
different driving laws. Such a system extends from xmin = 0
to xmax = 2NL (so the simulation is stopped for a particle
once it passes either of these positions) and the driving laws
are d0(t) for x < xmid = NL and d1(t) for x � xmid. The
parameters of d1(t) are chosen as before (ω1 = 1.0, A1 ≈ 0.57
and ��1 = 0) and thus the dynamics within the “right block”
(RB) can be described by the two PSS in Figs. 2(b) and
2(d). Moreover, Fig. 3 reveals that the used driving law
induces a negatively directed current. For the “left block”
(LB) we chose ω0 = 1.0, A0 ≈ −0.57, and ��0 = 0 yielding
d0(t) = −d1(t). Hence, the corresponding position-velocity
section is given by Fig. 2(a) and the phase-velocity section
is the one shown in Fig. 2(c). The induced current in the LB is
therefore of the same magnitude as in the RB, but positively
directed.

To understand how this setup allows for conversion pro-
cesses it is helpful to consider the dynamics of a particle
with initial conditions in the chaotic sea of the LB’s phase
space. Due to the positively directed current, this particle is,
on average, transported toward xmid and the chaotic sea for
positive velocities in the corresponding phase velocity section
[Fig. 2(c)] marks all possible phase space coordinates (vD,φD)
at which the particle can reach xmid diffusively, while the
coordinates belonging to ballistic motion (i.e., within ballistic
islands or regular spanning curves above the FISC) (vB,φB)
are prohibited. However, once the particle passes the interface
at xmid its dynamics is no longer governed by the LB’s phase
space, but by the phase space of the RB, which is appropriately
described by the PSS in Fig. 2(d). The crucial observation is
that some of the coordinates (vD,φD) belonging to diffusive
motion in the LB correspond to ballistic motion in the RB.
This is best seen by means of a concrete example: Imagine the
particle reaches xmid with (v = 0.8,φ = 3π/2), which is inside
the chaotic sea of the LB’s PSS [Fig. 2(c)]. For x > xmid the
particles dynamics is described by the RB’s PSS [Fig. 2(d)],
where these coordinates correspond to a ballistic island. Hence,
this initially diffusive particle would have become ballistic
at the interface and we refer to this process as diffusive
to ballistic motion conversion. Besides being injected into
ballistic islands, the particles can equally well be injected
into regular curves above the RBs FISC, because the FISC
for positive velocities in the LB is at higher velocities as it is
in the RB. To state a general rule, initially diffusive particles
can be injected into every regular structure of the RB’s PSS
which has at least some “overlap” with the chaotic sea of
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the LB’s PSS. An example of a regular structure in which no
injection can occur is the chain of ballistic islands at v ≈ 3.2
in the RB’s PSS [Fig. 2(d)]. These islands are “covered” by a
chain of larger islands at the same velocity in the LB’s PSS
[Fig. 2(c)].

B. Density evolution in the two block setup

After having discussed the process of interface conversion
in BLs, we will explore their influence on the time evolution
of the particle density in the following.

To this end we propagate the dynamics of a particle
ensemble in the two block system, which we introduced in
Sec. IV A. As initial conditions we chose uniform distributions
for the particles positions as well as their velocities with
0.4NL < xini < 0.6NL and −0.1 < vini < 0.1, respectively.
Hence, the particles are symmetrically distributed around the
LB’s center and started in the chaotic sea of the phase space.
Naively one might expect that due to the oppositely directed
currents in the LB and the RB an accumulation of particles
might happen at the interface at xmid. As we see in the
following, this does not occur due to the previously introduced
conversion processes.

Figure 4 shows snapshots of the normalized particle density
at different times. Figure 4(a) shows the particle density ρ(x)
for t = 0. For t > 0 the particle distribution starts to spread and
reaches a Gaussian-like shape at t = 104 [Fig. 4(b)]. Afterward
the ensemble drifts in positive x direction and once a sufficient
amount of particles arrives at xmid = 5 × 104 (marked by the
red dashed line in Fig. 4) a sharp decrease of the density
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FIG. 4. (Color online) Particle density at different times in the
two block setup (NBl = 2) and N = 104, yielding xmid = 5 × 104

(indicated by the red dashed line) and xmax = 105. The two driving
laws are d0(t) with ω0 = 1.0, A0 ≈ −0.57, and ��0 = 0 for x < xmid

and d1(t) = −d0(t) for x > xmid. All densities are normalized to the
initial particle number 105. Snapshots of the particle density are shown
for t = 0 (a), 104 (b), 105 (c), 1.8 × 105 (d), 3 × 105 (e), and 5.5 × 105

(f).

emerges at this position [Figs. 4(c) and 4(d)]. This effect
outlasts until t ≈ 5.5 × 105 [Figs. 4(e) and 4(f)]. Finally at
t ≈ 106, all particles have left the system at either x = xmin or
x = xmax and thus the density in the system is zero.

The broadening of the peak within the LB can be explained
by underlying diffusion processes, because all particles are
initially restricted to the chaotic sea. In fact, as long as
the particles have not reached x = xmid the ensemble is
superdiffusive [23], leading to a fast expansion. On the one
hand, the observed average drift of the ensemble in the LB is
explained easily by the positively directed transport in the LB.
On the other hand, the fast density decrease is—as mentioned
before—somewhat counterintuitive. However, this effect is a
straightforward consequence of the in Sec. IV A introduced
conversion processes at xmid. According to our discussion, the
initially diffusive particles can be injected from the chaotic
sea of the LB’s PSS into regular structures of the RB’s PSS
which leads to a fast ballistic motion away from xmid. If
the particle remains diffusive, the directed transport brings
it back to the interface and an injection from the chaotic
sea of the RB to regular structures of the LB is possible.
Hence, this process is repeated until an injection occurs and
the particle leaves the system at xmax (or xmin) within a regular
structure of the RB (or the LB). The fact that we do not
observe a particle accumulation at the interface demonstrates
that the conversion process from diffusive to ballistic motion
happens on a sufficiently fast time scale to overcompensate
accumulation effects caused by the directed currents.

C. Analysis of escaping particles in the two block setup

In the present section we investigate the conversion
processes from diffusive to ballistic motions further and
illustrate an intriguing hallmark of these processes, namely
their influence on the particles phase-velocity distribution.

The starting point is the same two block setup as before
and the initial conditions are chosen as before, too. However,
instead of discussing the particle positions at certain times as
we did in Sec. IV B, we now record the particle velocities and
phases at distinguished positions: xmin and xmax. To this end
the phase φ and the velocity v for every particle at xmax are
recorded and the result is shown in Fig. 5(a). In the low velocity
regime (v � 3.0) a distinguished island structure is apparent,
whereas for higher velocities (v � 3.5) the particles possess all
possible phases from φ = 0 to φ = 2π . In between (3.0 � v �
3.5) the particles appear to have randomly distributed phases
and velocities, but do not occupy certain islands.

The islands in the low velocity regime are evidently a
consequence of the diffusive to ballistic motion conversion
processes. Once a particle which comes from the LB is injected
at x = xmid into a regular structure of the RB, it cannot become
diffusive again and travels to x = xmax ballistically. Moreover,
it is unlikely for a diffusive particle to reach xmax, and indeed
impossible if the length of the block tends to infinity, because
the local current in the RB is negative. Hence, almost every
particle in the velocity regime v � 3.0 in Fig. 5(a) is a ballistic
one. Note that the island structures can easily be identified
with the ballistic islands in the RB’s PSS [Fig. 2(d)]. In an
analogous way we can understand the velocity regime v � 3.5:
These particles are injected into surface spanning curves above
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FIG. 5. (Color online) Properties of the escaping particles for the
two block setup with the same parameters as in Fig. 4. (a) Phases and
velocities at x = xmax and (c) at x = xmin. (b),(d) The corresponding
normalized velocity distributions ρ(v). The inset in (b) shows the
velocity distribution for particles which arrive at x = xmid for their
first time.

the RB’s FISC at xmid. Accordingly, they are not restricted to
certain phases.

The explanation why certain islands in the velocity regime
3.0 � v � 3.5 are avoided by particles at xmax can be given
straightforwardly after our previous discussions on the conver-
sion process. As already mentioned in Sec. IV A, these islands
correspond to regular structures of the PSS in the RB which
have no overlap with the chaotic sea of the LBs phase space
and hence no injection occurs.

Finally, we turn our focus on the spread particles with
3.0 � v � 3.5: A comparison with the corresponding PSS
[Fig. 2(d)] reveals that these particles are located within
the chaotic sea. Thus, they have indeed passed the RB
contrariwise to the directed current. To understand why this
occurs predominantly in this velocity regime, a short detour
on the typical length of Lévy flights in the driven lattice
is necessary. To this end we have simulated particles in a
uniformly driven lattice with driving law d1(t) starting at x = 0
with 2 × 106 different initial conditions covering the phase
space interval (0 � φini � 2π, − 5 � vini � 5). For every
initial condition the number of barriers that the particle passes,
before the sign of its velocity changes, is recorded and shown
in Fig. 6 (initial conditions leading to regular motion were
excluded and are shown in white). Apparently, the number
of passed barriers before the velocity is reversed can differ by
several orders of magnitude and strongly depends on the initial
condition. Most interesting for our purpose is the observation
that particles started in the velocity regime 3.0 � v � 3.5
exhibit extraordinarily long “ballisticlike” flights, which can
be on the order of a few thousand barriers. Hence, it is more
likely for a particle that remains diffusive once it passes xmid

to reach xmax before being transported back to xmid if it is
within this region of extraordinarily long Lévy flights. Indeed,
a comparison of Fig. 6 with Fig. 5(a) reveals that the regions

FIG. 6. (Color online) Length of Lévy flights for particles
exhibiting chaotic dynamics in a uniformly driven lattice with driving
law d1(t) [parameters as in Fig. 2(d)]. The white regions correspond
to initial conditions leading to regular motion.

of long Lévy flights coincide with the ones where diffusive
particles reach xmax.

Even though the overall appearance of the plot shown in
Fig. 6 does strongly depend on the used parameters in the
driving law, it is—for later usage—worth emphasizing that
the tendency for fast particles to exhibit much longer Lévy
flights than slower ones is a rather general feature in the driven
lattice. This is mainly caused by two facts: First, the lattice
becomes a smaller perturbation for faster particles. Hence, the
average velocity change at a collision with a barrier is small
for a particle which is close to the FISC (note that it is indeed
zero for particles on the FISC) and as a consequence it takes
many collisions with the barrier before a notable impact on the
particle velocity occurs. Second, for particles with large initial
velocities it is likely to become sticky to the FISC which—
according to the discussions in [23]—leads to long ballistic
flights.

Besides leaving the system at xmax, there is also the
possibility for a particle to leave the system at xmin. Again,
phase and velocity at this particular position are recorded
and shown in Fig. 5(c). This plot features qualitatively the
same occupied domains as the one for xmax but now mirrored
at v = 0: distinguished island structures belonging to a
regular ballistic dynamics for less negative velocities, particles
obeying chaotic dynamics which avoid ballistic islands for
−3.5 � v � −3.0, and particles on regular spanning curves
with velocities v � −3.5. The main difference appears to be
the larger amount of spread diffusive particles for velocities
with v � −3 which do not correspond to ballistic islands.

Both the difference as well as the similarity to the xmax plot
can be understood intuitively: Since the ensemble is initially
located around the center of the LB, the number of barriers
that these particles have to pass diffusively and opposite to the
direction of the local current is roughly 5000, while it would
be 10 000 for particles that have reached xmid. Consequently,
most of the spread diffusive particles seen in Fig. 5(c) are
particles which have never reached xmid. In contrast to this,
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the particles reaching xmin within either ballistic islands or
regular spanning curves have obviously passed xmid at least
twice, because otherwise they could not be injected into the
corresponding regular structures of the LB. Note that once a
particle reaches xmid, it is injected into the PSS of the RB with
d1(t) for positive velocities and into the PSS of the LB with
d0(t) for negative velocities. Since we chose d0(t) = −d1(t),
the ballistic islands apparent in Fig. 5(c) are the same as in
Fig. 5(a), but mirrored at v = 0.

D. Injection probabilities into different regular structures

So far we have seen that the two block system allows
for diffusive to ballistic motion conversion processes. In this
section we further investigate this phenomenon and discuss
how likely injections into different regular regimes such as
ballistic islands or spanning curves above the FISC are.

To get some insight it is instructive to compare the
normalized phase integrated velocity distributions at xmax

[Fig. 5(b)] with the one at xmin [Fig. 5(d)]. For our purpose
crucial observation is that the peak at high velocities (|v| � 3)
is less pronounced at xmin and that the peaks corresponding to
the ballistic islands appear slightly more populated (hardly
visible) compared to the peaks in the distribution at xmax.
This effect can partially be explained by the larger number
of diffusive particles at xmin, leading to a broadening of the
high velocity peak, but is also caused by certain character-
istics of the injection process at xmid, as we explain in the
following.

A further understanding can be obtained by considering the
velocity distributions for outgoing particles for a given number
of times a particle has crossed xmid before it leaves the system
(in the following we refer to this number as ncr) as shown
in Fig. 7. Apparently, for ncr = 1 [Fig. 7(a)] the distribution
features a very pronounced peak at velocities between 3 and 4,
which appears stronger populated compared to the peak in the
total velocity distribution at xmax shown in Fig. 5(b). On the
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FIG. 7. (Color online) Normalized and phase integrated velocity
distributions at xmax in (a) and (c) and at xmin in (b) and (d) for the
subset of the ensemble which has crossed xmid ncr times (a) ncr = 1,
(b) ncr = 2, (c) ncr = 3, and (d) ncr = 4. Parameters are as in Fig. 4.

contrary, the peaks corresponding to ballistic islands at smaller
velocities are clearly more weakly pronounced. In the ncr = 2
case it is less apparent, but the islands at small velocities are
still less pronounced as for the total distribution in Fig. 5(d).
For ncr = 3 this effect is reversed and the low velocity peaks
contain relatively more particles than they do in the total
velocity distribution. Finally, particles leaving the system with
ncr = 4 are very similar to the ones with ncr = 3 and no
obvious deviation in the velocity distributions is observed. It
will become clear later that this behavior is strongly correlated
with a different effect which is worth mentioning at this point:
Not only do the normalized distributions differ for different
ncr, but the probabilities for a particle to leave the system after
a certain number of crossing ncr are different as well. Hence,
the injection probabilities into any kind of regular structure
pncr has to be different for different ncr and we indeed found
numerically that the probability for a particle to be injected
into a regular structure while it passes xmid for the first time
is p1 ≈ 0.49, while it is p2 ≈ 0.24 for the second passing of
xmid and approximately pi ≈ 0.15 for ncr > 2.

To understand both the different overall injection probabili-
ties pncr for different ncr as well as the different appearances of
the corresponding velocity distributions, an argument which
combines the length of Lévy flights in different regions of the
phase space (as discussed before and shown in Fig. 6 for the
RB and to be mirrored at v = 0 for the LB) together with
the ergodicity property is required: Due to ergodicity parts of
the phase space corresponding to long ballistic flights must be
visited less frequently, but once a particle gets there, it stays
for a comparably long time. Hence, a particle initially started
very close to xmid with a small velocity, reaches the interface
after only a few collisions and, as a consequence, it is unlikely
to reach the high velocity regime for such a particle. On the
contrary, for a particle that started far—say some thousand
barriers—away from xmid, it is likely that the particle reaches
this high velocity domain at some point. Once it possesses such
a high velocity, the length of its Lévy flight is of the same order
as its distance from xmid and the particle typically reaches the
interface while being still confined to this domain of phase
space. We remark that this effect can easily be observed in
the velocity distribution at xmid for particles which reach this
position for their first time as shown in the inset of Fig. 5(b).
Apparently, the distribution reveals a strongly pronounced
peak at velocities close the LBs FISC, in agreement with
the previous discussion. Since these fast particles in the LB
have velocities v � 3.5 they are injected into regular spanning
curves above the FISC of the RB, which explains why particles
at the first injection process have extraordinarily high velocities
and consequently why p1 is extraordinarily large. Additionally,
it illustrates why this domain appears to be strongly populated
for ncr = 1 [cf. Fig. 7(a)].

Following the same arguments, the velocity distribution for
ncr = 2 as well as the slightly enhanced value of p2 compared
to pi with i > 2 can be understood too. Because the particles
are extraordinarily fast at their first arrival at xmid, a comparably
large fraction of particles which remain diffusive is injected
into the part of the RBs PSS corresponding to long Lévy flights
(cf. Fig. 6). Hence, they surpass a large number of barriers in
the RB, which is on the order of 103 before their velocity
is reversed for the first time. Afterward, they are most likely
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transported toward xmid due to the negatively directed current
in the RB. Now the same argument as before holds: Because
these particles are relatively far away from xmid, they reach
xmid predominantly with a high velocity. Hence, this domain
is still strongly populated for the ncr = 2 injection process and
p2 is slightly enhanced. By now most of the fast particles have
left the system and the still diffusive ones are transported back
to xmid after only a few collisions. Consequently, the injection
probability into the high velocity domain is suppressed for
larger ncr.

V. CONTROLLING THE VELOCITY DISTRIBUTION

We have seen in Sec. IV that a BL consisting of differently
driven blocks allows for the conversion of diffusive to ballistic
motion and vice versa at interfaces where the driving law
changes. As a hallmark of these processes, we obtained
velocity distributions with pronounced peaks at the velocities
associated with regular structures in the underlying phase
space. In this section we provide an overview of the question
as to what extent these conversion processes can be exploited
to modulate the velocity distribution for outgoing particles by
adjusting parameters in the driving law.

Again we focus on the two block setup (NBl = 2, N = 104)
with two different driving laws d0(t) for x < xmid and d1(t)
for x � xmid. The parameters in d0(t) remain as before and
thus a positively directed current is induced in the LB. On
the contrary, each parameter in d1(t) is varied separately and
its influence on the velocity distributions at xmax and xmin is
studied. To this end we propagate an ensemble of 105 particles
(initial conditions as in Sec. IV) until all particles left the two
block system. The phase integrated velocity distributions for
particles which leave the system at xmax are shown as color
plots for three different parameter regimes in Fig. 8.

For a varying frequency ω1 (and fixed A1 and ��1), the
results are shown in Fig. 8(a). Evidently, the particles arrive at
xmax within a broad range of velocities for small frequencies
in the RB, while they are restricted to certain comparably
narrow velocity intervals at higher values of ω1. A similar
behavior can be observed for variations in the amplitude of the
driving [Fig. 8(b)]. Analogous to the frequency dependence,
the particles cover a broad velocity interval (1.5 � v � 4.0) for
small amplitudes. With increasing A1 this interval decreases
and additional narrow velocity intervals emerge. However,
these velocity intervals are rather unaffected by changes in
A1, which is in contrast to the frequency domain where their
mean velocities tend to increase linearly with ω1 [cf. Fig. 8(a)].
This difference can be understood by the fact that these
velocity intervals correspond to ballistic islands in the RB’s
PSS (as explained in Sec. IV). Furthermore, these ballistic
islands correspond to trajectories synchronized with the barrier
oscillations in a way that every collision with the barrier occurs
at distinguished phases. Each island is thereby characterized
by its winding number n, which is defined (within a block) as
the number of unit cells the particle passes within one period
T . Hence, the average velocity of a particle trapped in such an
island is given by vn = Ln

T
= Ln

2π
ω1 and thus proportional to

ω1 and—at least within this simple picture—independent of
A1.

FIG. 8. (Color online) Phase-integrated velocity distributions at
xmax (setup as as in Fig. 4) on a logarithmic scale for variations of (a)
ω1, (b) A1, and (c) ��1. Remaining parameters are as in Fig. 4.

Finally, Fig. 8(c) shows the velocity distribution as a
function of ��1 and reveals an increasing amount of diffusive
particles for ��1 close to ��1 = π compared to ��1 = 0
(or ��1 = 2π ). This is a consequence of the dependence
on �� of the direction of the current in the RB (cf. Fig. 3),
which is positively directed for ��1 = π while it is negatively
directed for ��1 = 0. Hence, more diffusive particles manage
to traverse the RB for ��1 ≈ π .

At this point we would like to stress that from the discussion
given in Sec. IV, the transmission through the RB with
arbitrary parameters can be understood by means of its PSS in
the following way: Assuming a negatively directed current
in the RB, we can expect that the particles arrive at xmax

predominantly within either ballistic islands or regular curves
above the FISC corresponding to the RBs phase space. Hence,
the phase velocity distributions at xmax provide an “image”
of all the regular structures in the PSS of the RB which have
overlap with the chaotic sea of the LB’s PSS [Fig. 2(c)]. In
addition to the ballistic particles some diffusive particles are
expected to reach xmax if the underlying phase space of the
RB possesses regions of long Lévy flights. In the case of a
positively directed current in the RB, one has to take into
account, that a large amount of particles traverses the RB
diffusively.

VI. VELOCITY DISTRIBUTIONS IN SUPERLATTICES

In the previous sections we have demonstrated how a setup
built up out of two blocks with different driving laws allows for
conversion processes from diffusive to ballistic motion. Even
more, we were able to control the velocity distributions for
outgoing particles at xmax by adjusting parameters in the RB.
In the following we argue how the so far gained insights can
be exploited to maintain monoenergetic pulsed particle beams
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out of diffusive particle ensembles in superlattices containing a
few hundred blocks. The general outline of the used scheme is
as follows. We start with an initially diffusive particle ensemble
in the B = 0 block (with B being the block index; cf. Fig. 1)
which is transported toward a first interface where particles
can be injected into ballistic islands of the B = 1 blocks phase
space. The parameters in the driving laws are chosen such
that these now ballistic particles travel opposite to the directed
currents and thus we obtain a peaked velocity distribution at
the end of the B = 1 block. For the following blocks with B =
2, . . . ,100 we show how the width of each peak in the velocity
distribution can be tuned by adjusting the amplitude of the
barrier oscillation blockewisely. As a last step, we demonstrate
how an appropriate choice in the driving laws for B > 100
makes it possible to preserve one of the peaks in the velocity
distributions while the other peaks are subsequently removed.
Thus, we obtain a monoenergetic particle beam for outgoing
particles in the superlattice. Moreover, the beam is pulsed in a
sense that the particles leave the systems only at distinguished
phases.

A. Interface dynamics of ballistic particles

Before we start a detailed discussion of the physics in the
BL containing a few hundred blocks, let us again consider
the simple case of a two block setup to introduce a new type
of conversion processes which occurs in larger BL namely
ballistic to ballistic or ballistic to diffusive conversion. To
make our discussion more concrete we consider again a
setup with driving laws as in Sec. IV. Hence, the PSS for
the LB is shown in Fig. 2(c) and the PSS for the RB is
shown in Fig. 2(d). In contrast to the previous discussions
we explore the possible conversion processes for a ballistic
particle arriving at the interface. For example, consider a
particle beam started at xmin which uniformly occupies the
ballistic island at (v = 1.8,φ = 3π/2) [in Fig. 2(c)] and passes
ballistically the LB. Apparently, these particles would be
entirely injected into the chaotic sea of the PSS in the RB
once they pass xmid. Due to the negatively directed transport
in the RB the particles are transported back to xmid where they
can again be injected into any regular structures of the PSS
corresponding to the LB, or after several passings of xmid into
regular structures of the RB. Hence, the outgoing particles
at xmax for this initially monoenergetic beam would occupy
all accessible regular structures of the PSS of the RB and
the corresponding velocity distribution at xmax would contain
multiple peaks.

As a second example we consider a particle beam (again
started at xmin) which passes the LB by uniformly occupying
the ballistic island at (v = 3.2,φ = 3π/2). In this case, some
particles are injected into the ballistic island in the RBs PSS
at similar coordinates, while others become diffusive. The
particles which remain ballistic traverse the RB and cause
a dominant peak in the velocity distribution at xmax. For the
particles which become diffusive the same arguments hold as
before. Thus, these particles lead to less pronounced peaks
in the velocity distribution at velocities corresponding to any
kind of regular structure in the RB. Accordingly, the initial
particle beam was converted into a particle beam with a smaller
width, because the ballistic island in the LB, that is, for the

initial beam, is larger than the island in the RB in which these
particles are injected. In addition to this, peaks in the velocity
distribution emerge due to injection of diffusive particles after
multiple crossings of xmid.

B. Amplitude variations in superlattices

In the following section we demonstrate how the previously
discussed interface dynamics of ballistic particles can be
exploited to narrow the velocity distribution of particles
in an appropriately designed superlattice. To this end we
consider a setup built of NBl = 101 blocks (whereas each block
contains N = 104 barriers) which expands from xmin = 0 to
xmax = NLNBl. Accordingly, the positions of the interfaces,
that is, the positions where the driving laws change, are
given by xB = NLB with B = 1, . . . ,100. For the B = 0
block the driving law is d0(t) with parameters as in Fig. 2(c)
inducing a positively directed current. For B = 1, . . . ,100 the
driving laws are dB (t) = AB[cos(2.2t) + sin(4.4t)] with AB =
0.3 + 0.07 × B (i.e., the amplitude is slowly increased from
0.3 to 1.0), inducing negatively directed currents. The initial
conditions for the simulated ensemble are t = 0, 0.4NL <

x < 0.6NL and −0.1 < v < 0.1. Hence, the particles are
located within the chaotic sea of the B = 0 block with driving
law d0(t) and transported toward the first interface at x1 = NL.
At this point they can be injected into ballistic islands of
the phase space in the B = 1 block. Since the local current
in this block is negatively directed, it is hard to surpass for
diffusive particles and we obtain a peaked velocity distribution
at x2 = 2NL [Fig. 9(a)] which is is dominated by a peak at
v ≈ 3.5 and a less pronounced one at v ≈ 1.8. The phase
velocity distribution at x2 = 2NL [Fig. 10(a)] reveals that
the dominant peak (v ≈ 3.5) can be related to an island with
winding number n = 2, while the second peak (v ≈ 1.8) is
associated with a n = 1 island.

In the following blocks the amplitude of the barrier oscilla-
tion is subsequently increased and as a result we obtain a veloc-
ity distribution with two narrow peaks at the same velocities as
before for particles at xmax = 101NL [Fig. 9(b)]. Additionally,
we observe some particles with velocities v > 4.5. The reason
for the two dominant peaks is that the amplitude has (as
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FIG. 9. (Color online) Velocity distributions at positions (a)
x2 = 2NL and (b) xmax = 101NL. Parameters in d0(t) are as in Fig. 4.
For 0 < B � 100 we set dB (t) = AB [cos(ωBt + ϕB ) + sin(2(ωBt +
ϕB ))] with ωB = 2.2, ϕB = 0, and AB = 0.3 + 0.07(B − 1). The
inset in (a) shows ρ(v) at x = 200NL with ωB = 2.2, AB = A101,
and ϕB = π (B − 1) for 100 < B � 200. The inset in (b) shows ρ(v)
at x = 500NL with ωB = 2.2, AB = A101, and ϕB = 0.02π (B − 1)
for 100 < B � 500.
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FIG. 10. (Color online) Phase velocity distributions at (a) x =
2NL and (b) x = 101NL. Orange lines indicate the FISC (parameters
as in Fig. 9).

argued in Sec. V) only little influence on the position of
ballistic islands in phase space. Thus, most particles remain
ballistic at each interface. However, the amplitude does have a
notable influence on the size of the islands and by choosing the
amplitude appropriately, one can tune the width of the velocity
distribution by adjusting the size of the corresponding ballistic
islands. In the present setup we exploit that an increasing
amplitude leads to a decreasing size of the islands for the
used parameters. Hence, the velocity distribution is squeezed
when the particles propagate further into the superlattice. The
fast particles with v > 4.5 correspond to particles in ballistic
islands of the underlying phase space which is best seen in the
phase velocity distribution at x = 101NL [Fig. 10(b)]. In fact,
these are the peaks in the velocity distribution discussed in
the previous section that emerge due to injection of diffusive
particles after multiple crossings of an interface.

C. Peaked velocity distributions in superlattices

The last step to a monoenergetic particle beam is to
remove one of the peaks in Fig. 9(b) without losing too many
particles in the other one. This can be done by exploiting
the symmetries of both islands, which is achieved by adding
more blocks to the superlattice with driving laws: dB(t) =
1.0[cos(2.2t + ϕB) + sin(4.4t + 2.2ϕB )] for 101 < B < 201,
with ϕB = π (B − 1). Before we show the resulting velocity
distributions, let us briefly discuss the idea behind the chosen
driving laws: On the one hand, we have seen that the peak
at v ≈ 3.5 corresponds to a n = 2 island and consists of two
island structures at the same velocity but at different phases (cf.
Fig. 10). Hence, an additional phase shift ϕ = π in the driving
law “maps” both islands into each other and most particles
remain ballistic. On the other hand, the n = 1 island which is
responsible for the peak at v ≈ 1.8 is “mapped” into the chaotic
sea for such a phase shift and particles in it become diffusive.
Even though some of these now diffusive particles might be
reinjected into a ballistic island of the following block, the
majority is transported away. Consequently, after performing
this procedure multiple times, one obtains a monoenergetic
particle beam. The resulting velocity distribution is shown in
the inset of Fig. 9(a) and reveals that we obtain indeed the
desired form of a monoenergetic particle beam.

At this point we remark that the described technique of
removing peaks according to the symmetry of their associated
ballistic island works for a wide range of different parameter

values, as well as for ballistic islands with higher winding
numbers. Unfortunately, it does not apply for the n = 1 island
and thus we cannot use it to remove the peak at v ≈ 3.5 while
keeping the one at v ≈ 1.8. However, we can exploit that for a
large amplitude the n = 1 island tends to cover a larger range
of phases in the PSS. Hence, a small phase shift in the driving
law removes relatively fewer particles in the n = 1 island
compared to the ones with higher n. Following this idea, we
choose dB(t) = A101[cos(2.2t + ϕB) + sin(4.4t + 2.2ϕB )] for
101 < B < 501 with ϕB = 0.02π (B − 100) and the resulting
velocity distribution at x = 500NL is shown in the inset
of Fig. 9(b). Again, we obtain the desired distribution of a
monoenergetic particle beam.

VII. CONCLUSION

We have explored the classical nonequilibrium dynamics
of particles in a one-dimensional driven superlattice which
consists of blocks, each containing many individual barriers.
While similar systems that are usually studied in this context
consist of lattices where all barriers are governed by the same
time-dependent force, that is, driving law, we allowed for a
different driving in each block. In doing so we show that the
thus obtained variability leads to remarkable new dynamical
phenomena. To this end we analyzed in detail how the
blockwise variation of the driving law gives rise to conversion
processes from diffusive to ballistic motion and vice versa at
the interfaces, that is, the positions in the superlattice where
the driving law changes. The combination of directed transport
and these conversion processes enabled us to obtain peaked
velocity distributions in a simple system containing only two
blocks with different driving laws providing oppositely di-
rected currents. Additionally, we observed strong correlations
between the phases and velocities for the escaping particles,
even though the initial particle ensemble is of exclusively
diffusive character. Even more, we found that the velocity
distributions as well as the correlations can be modified in a
controlled manner by adjusting parameters such as frequency
or amplitude in the driving. Finally, we present a scheme
for superlattices containing a few hundred blocks by which
a diffusive particle ensemble can be converted into a pulsed
particle beam, whose mean energy and width in momentum
space can be adjusted. Since this scheme mostly depends on
simple symmetry arguments it is viable over a wide range of pa-
rameters. Thus, it should be applicable to experimental setups,
such as layered semiconductor heterostructures with different
ac drivings or even to cold atom experiments in which counter-
propagating laser beams can create a one-dimensional lattice
potential. By passing the laser beams through two acousto-
optical modulators the desired ac drivings can be obtained.

As a future perspective it would be intriguing to explore—
both theoretically as well as experimentally—the analogs of
the presented effects in the quantum regime.
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