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The Potts model is a powerful tool to uncover community structure in complex networks. Here, we propose
a framework to reveal the optimal number of communities and stability of network structure by quantitatively
analyzing the dynamics of the Potts model. Specifically we model the community structure detection Potts
procedure by a Markov process, which has a clear mathematical explanation. Then we show that the local
uniform behavior of spin values across multiple timescales in the representation of the Markov variables could
naturally reveal the network’s hierarchical community structure. In addition, critical topological information
regarding multivariate spin configuration could also be inferred from the spectral signatures of the Markov
process. Finally an algorithm is developed to determine fuzzy communities based on the optimal number of
communities and the stability across multiple timescales. The effectiveness and efficiency of our algorithm are
theoretically analyzed as well as experimentally validated.
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I. INTRODUCTION

Community structure detection [1-3] is a main focus of
complex network studies. It has attracted a great deal of
attention from various scientific fields. Intuitively, commu-
nity refers to a group of nodes in the network that are
more densely connected internally than with the rest of the
network. In the early stage, these studies were restricted to
the regular networks. Recently, inspired by several common
characteristics of real networks [4], for example the scale-free
property, the majority of the studies focus on networks with
practical applications. In this meaning, community structure
may provide insight into the relation between the topology and
the function of real networks and can be of considerable use
in many fields.

A well-known exploration for this problem is via the
modularity concept, which is proposed by Newman et al. [1-3]
to quantify a network’s partition. Optimizing modularity is
effective for community structure detection and has been
widely used in many real networks. However, as pointed out
by Fortunato et al. [5], modularity suffers from the resolution
limit problem, which concerns about the reliability of the
communities detected through the optimization of modularity.
In Ref. [6], the authors claimed that the resolution limit
problem is attributable to the coexistence of multiple scale
descriptions of the network’s topological structure, while
only one scale is obtained through directly optimizing the
modularity. In addition, the definition of modularity only
considers the significance of the link density from the static
topological structure, and it is unclear how the modularity-
concept-based community structure is correlated with the
dynamics behavior in the network.

Complementary to modularity concept, many efforts are
devoted to understanding the properties of the dynamical
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processes that take place in the underlying networks. Specifi-
cally, researchers have begun to investigate the correlation be-
tween the community structure and the dynamics in networks.
For example, Arenas et al. pointed out that the synchronization
reveals the topological scale in complex networks [7]. In
addition, the Markov process on a network was also exten-
sively studied and used to uncover community structure of the
network [8—11]. In [9,10], the Markov process on a network
is introduced to define the distances among network nodes,
and an algorithm is then proposed to partition the network
into communities based on these distances. In [8], the authors
proposed to quantify and rank the network partitions in terms
of their stability, defined as the clustered autocovariance in the
Markov process taking place on the network.

The Potts dynamical model has also been applied to
uncover community structure in networks. Detecting com-
munity by using the Potts model [12], also known as the
superparamagnetic clustering method, has been intensively
studied since its introduction by Blatt et al. [13]. In the
model, the Potts spin variables are assigned to nodes of
a network with community structure, and the interactions
exist between neighboring spins. Then the structural clusters
could be recovered by clustering similar spins in the system,
which have more interactions inside communities than outside.
The physical aspects of the method, such as its dependence
on the definition of the neighbors, type of interactions,
number of possible states, and size of the data set, have
been well studied [14-16]. Reichardt and Bornholdt [17]
introduced a new spin glass Hamiltonian with a global diversity
constraint to identify proper community structures in complex
networks. The method allows one to identify communities by
mapping the graph onto a zero-temperature g-state Potts model
with nearest-neighbor interactions. Recently, Li et al. [18]
noticed that a lot of useful information related to community
structure can be revealed by the Potts model and the spectral
characterization. Despite those excellent works, uncovering
the dynamics of spin configuration across multiple time scales
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is still a tough task and has not yet been clearly answered.
In essence, one can consider the time scale as an intrinsic
resolution parameter for the partition: over short time scales
from the beginning, many small clusters should be coherent;
on the other hand, as time evolves there will be fewer and
larger communities that are persistent under the dynamic of
the Potts model. We need to measure the change of the stability
or robustness [8] of spin configuration as time evolves and
furthermore find some reasonable partitions at intermediate
timescales. However, using the Potts model alone is difficult
to solve this problem.

We notice that the dynamics of the Markov process can
naturally reflect the intrinsic properties of spin dynamics with
community structures and exhibit local uniform behaviors.
However, the relationship between the dynamics of the
Potts model and the Markov process has not been well
studied. In this work, using the Potts model and spin-spin
correlation, we first investigate this phenomenon, then uncover
the relation between the community structure of a network
and its metastability of spin dynamics, and further propose
the signature of communities to characterize and analyze the
underlying spin configuration. For any given network, one
can straightforwardly derive critical information related to its
community structure, such as the stability of its community
structures and the optimal number of communities across
multiple time scales, without using particular algorithms. It
overcomes the inefficiency of the classic methods, such as
the resolution limitation of Modularity Q [5,19]. Based on
the theoretical analysis, we then develop a parameter-free
algorithm to numerically detect community structure, which
is able to identify fuzzy communities with overlapping nodes
by associating each node with a participation index that
describes the node’s involvement in each community. We also
demonstrate that the algorithm is scalable and effective for real
large-scale networks.

The outline of the paper is as follows. Section II introduces
the Potts model and the motivation of this work. In Sec. III,
we present a Markov stochastic model, which explains
the relationship between spectral signatures and community
structure. Section IV describes the critical information derived
from the model, such as stability across multiple time scales
and the optimal number of communities. Our algorithm is
formally described in Sec. V. Then we give some numerical
computations for some representative networks to validate the
effectiveness and efficiency of the algorithm in Sec. VI. Finally,
Sec. VII concludes this paper.

II. POTTS MODEL AND SPIN-SPIN CORRELATION

The Potts model is one of the most popular models
in statistical mechanics [12]. It models an inhomogeneous
ferromagnetic system where each data point is viewed as a
marked node in the network. Here the mark is a cluster label,
or spin value, associated with the node. The configuration of
the system is defined by the interactions between the nodes
and controlled by the temperature. At low temperatures, all
labels are identical (spins are aligned), which is equivalent
to the presence of a single cluster. As temperature rises, the
single cluster starts to split and the interactions between weakly
coupled nodes gradually vanished.
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Consider an unweighted network with N nodes without
self-loops. A spin configuration {S} is defined by assigning
each node i a spin label s; which may take integer values
s; = 1,...,q. Suppose a system of spins can be in g different
states. The Hamiltonian H(S) of a Potts model with this spin
configuration S is given by

H(S) =) Jy(1 =8y, Gj=1....N), ()
(ij)

where the sum is running over all neighboring nodes denoted
as (ij), J;; is the interaction strength between spin i and spin
J>and 8y, is 1 if 5; = s5;, otherwise 0. J;; is set as

d;:;)?
Jij = Jji = mexp[—( ;)
where (k) is the average number of neighbors per node and
d;j is the Euclidean distance between nodes i and j. The
interaction J;; is a monotonous decreasing function of d;; and
the spins s; and s; tend to have the same value as d;; becomes
smaller if we minimize the H(S).
To characterize the coherence and correlation between two
spins, the spin-spin correlation function Cj; is defined as the
thermal average of s [13-15]

Cij = (8s5)- 3

It represents the probability that spin variables s; and s;
have the same value. C;; takes values from the interval
[0, 1], representing the continuum from no coupling to
perfect accordance of spins i and j. There are two phases
in a homogeneous system where J;; is determined. At high
temperatures, the system is in the paramagnetic phase and the
spins are in disorder. C;; ~ L for all nodes i and j, and ¢ is
the number of possible spin values. At low temperatures, the
system turns into the ferromagnetic phase and all the spins are
aligned to the same direction. C;; ~ 1 holds for nodes pair i
and j.

If the system is not homogeneous but has a community
structure, the states are not just ferromagnetic or paramagnetic.
We assume that the spins will go through a hierarchy of local
uniform states (metastable states), as shown in Fig. 1, before
they reach a globally stable state with all the same value as
temperature decreases. In each local uniform state, spin values
of nodes within the same communities are identical and the
whole system is divided into several different local regions
(communities) due to the dense connections. Correspondingly,
we can calculate the hitting and exiting time of each local
uniform state to analyze its stability. The hitting or exiting
time is the time scale that the system just enters or leaves
this local uniform state, during which the nodes’ spin values
will stably stay on this state. In this way we can associate
the community structure with a local uniform state. For a
well-formed community structure, each community should be
cohesive, which means that it is easy for the nodes to hit the
local uniform state. Thus, the hitting time should be early.
At the same time, communities should stand clear from each
other, which means it is hard for nodes to exit the local uniform
state, therefore the exiting time should be late. Hence, there
should be a big gap between the hitting and exiting times when
a well-formed community structure exists.

I, Gj=1...,N), (2
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FIG. 1. (Color online) Dynamics of spin configuration of four
communities (A, B,C, D) when they go through several local uniform
states to the global stable state with temperature decreasing. Different
spin values are described by different shapes. At temperature #, (14 >
t; > 1, > 11, t; denotes the temperature at i different spin states in
the system), we observe four local uniform spin state distributions
corresponding to four communities. At temperature #3, the circle and
triangle mix together. At 1, square with diamond mix together in
terms of their hierarchical structure. Finally, at #,, only one spin state
is left, in which all nodes have an identical spin distribution.

Once J;; has been determined, C;; can be
obtained by a Monte Carlo procedure. We used
the Swendsen-Wang (SW) algorithm [20] because it

exhibits much smaller autocorrelation time [20] than
standard methods. For a network with N nodes, the
SW algorithm can be briefly described as follows:
(i) Generate initial configuration of system S =
(s1,82,...,5y) randomly, where s; is the spin value of
node i randomly chosen from 1 to g, ¢ = N/2 is the initial
number of spin values. (ii) Generate the configuration of
system S, based on S;: (a) Visit all pairs of nodes (i, j) which
have interaction J;; > 0, where J;; is the spin interaction
computed only based on the adjacent network. Node i and
node j are frozen together with probability

T
pli=1- exp( -~ 7’5&.,”), )

where §;, , = 1 if s; = 5; and O otherwise. T is the tempera-
ture. Calculate all pairs of spins and put a frozen bond between
any frozen pairs. (b) We define the SW cluster as the cluster
containing all spins that have a path of frozen bonds connecting
all of them. Since nodes are frozen only if they have the same
spin value, we just need to identify the SW clusters from the
same spin values. (c) For each SW cluster, we draw a random
number from 1,2, . .. ,q and assign this number to the values of
all nodes of this cluster. After going through all SW clusters,
the new configuration S, is generated. (iii) Iterate step (ii).
Then we can calculate the value C;;. We set the initial number
of possible spin values ¢ = N /2 because if the number of
communities is larger than ¢, some spin states will not be
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populated. For a specific node, we choose a initial spin value
randomly from 1 to g.

III. STOCHASTIC MODEL

The Markov process [21] is a useful tool and has been
applied to find communities [8,9]. In order to establish the
connection between the community structure and the local
uniform behavior of the Potts model, we introduce a Markov
stochastic model featuring spectral signatures for the network.
Let A = (V,E) denote a network, where V is the set of nodes
and E is the set of edges (or links). Consider a Markov
random walk process defined on A, in which a random
walker freely walks from one node to another along their
links. After arriving at one node, the walker will randomly
select one of its neighbors and move there. Let X = X;,r > 0,
denote the walker positions, and P{X, = i,1 < i < N} be the
probability that the walker hits the node i after exact ¢ steps.
For i, eV, we have P(Xt = it|X0 = iQ,X1 = il, e ,X,_l =
i;_1) = P(X, =i,|X,—1 =1i;_1). That is, the next state of
the walker is determined only by its current state. Hence,
this stochastic process is a discrete Markov chain and its
state space is V. Furthermore, X; is homogeneous because
of P(X; = j|X,—1 =1i)= p;j, where p;; is the transition
probability from node i to node ;.

To relate the Markov process with the patterns of the Potts
model, p;; is defined as

__ G

= —3 ,
2 =1 Cij

where C;; is the spin-spin correlation function defined in

Eq. (4). Via this representation, the tools of stochastic theory

and finite-state Markov processes [8,9] can be utilized for

the purpose of community structure analysis. Let P be the
transition probability matrix, we have

P=D"'C, (6)

Dij )

where D is the diagonal degree matrix of C. Let p?? be the
probability of hitting node j after ¢ steps starting from node i,
we have

P = (P";. (7

For this ergodic Markov process, P’ corresponds to the
probability of transitions between states over a period of ¢
time steps. To compute the transition matrix P’, the eigenvalue
decomposition of P is used. If A, with k = 1,...,N denote
the eigenvalues of P, and its right and left eigenvectors u; and
fx are scaled to satisfy the orthonormality relation [9]

u fi = du, (8)
the spectral representation of P is given by
P = Z)\k”kfka )
k
and consequently
P ="M f. (10)
k
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We assume that eigenvalues of P are sorted such that A; =
1 > |A2| = |A3] = -+ = |Ay|. From the theory of spectral
clustering [22,23], P’ can be calculated by a sum of N matrices

N T

u,u; D

Pf=§xf"" , (11)
— “uT Du,

each of which depends only on P’s eigensystem. This
is accomplished by exploiting the fact that u,{ Du,, = 1,,,
because P is defined by a normalized symmetric correlation
matrix C. Because of the largest eigenvalue A; = 1, when time

T
) _— oo _ wu D
t—> oo, PY =P = \TDu,

distribution to the stationary distribution P® corresponds to
the fact that the spin of whole system ultimately reaches exactly
the same value, as temperature decreases. This perspective
belongs to a time scale t — oo, at which all eigenvalues
A, go to 0 except for the largest one, A{ = 1. In the other
extreme of a time scale ¢t =0, P’ becomes the stationary
distribution matrix. All of its columns are different, and the
system disintegrates into as many spin values.

The eigensystem of transition matrix P’ can be naturally
correlated with the dynamic process of the Potts model.
However, it needs preprocessing due to its asymmetrical
character. We simply extend P’ to the symmetrical form
G = [P! + (P")T]/2, which is defined as the spin correlation
matrix at time ¢. The eigensystem of G has the following
correlation corresponding to P’:

Lemma 1. The eigenvalues and corresponding eigenvectors
of matrix G® are exactly same as matrix P’.

The proof of lemma 1 is evident. From lemma 1, as G®
owns the same eigensystem with P, it can be used to unfold
the dynamic of Potts states. Also, we can use G to find
reasonable partitions based on many algorithms, such as the
K-means algorithm and GN algorithm [2].

. The convergence of every initial

IV. SIGNATURES OF COMMUNITIES IN POTTS MODEL
ACROSS MULTIPLE TIME SCALES

In this section, we will uncover the signatures of communi-
ties in the Potts model across multiple time scales and use this
to identify community structure. This scheme benefits from
the above analysis, namely the connection between the Potts
model and the Markov process through a stochastic model.
A lot of useful information, such as the optimal number of
communities, the stability of networks at arbitrary time scale,
can be uncovered as follows.

Suppose the partition method divides the network A into K
clustersorsets V, C V,k € 1,2, ...,K, which are disjoint and
the sets Vi, Va,..., Vg together form a partition of node set
V. The number of nodes in each cluster is denoted by N, =
| Vi |. Numerically we will deal with the dynamical process of
community structure represented by the spin configuration. We
take the time series into consideration. Therefore, we define
the the signature of a given community k by the ratio of inner
correlations as

[G):,
=3 =t (12)
ijeVi k
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S,E') can be viewed as a function of time scale ¢ and we can
use it to study the trend of community structure as time goes
on. Given the number of clusters K, the clusters are found by
maximizing the objective function

K o1,
W=y ¥ (13)

k=11, jeVy

over all partitions. The objective can be interpreted as the sum
of cluster signature S for each cluster V}.. The form of Eq. (13)
is related to some famous partition measures, for example, JI(;)
is an extension of the ratio cut criterion defined as the sum
of the number of intercommunity edges divided by the total
number of edges through replacing adjacent matrix A by spin
correlation G¥. Furthermore, J ,((t) is also the first part of the
famous modularity metric Q, which is widely used in the
research of community detection.

Further discussion is facilitated by reformulating the av-
erage association objective in matrix form. We denote the
membership vector of node i by x;, a probability vector
that describes node i’s involvement in each community. The
element xl.k means the kth entry of the membership vector of
node i. The hard partition and disjointness of sets V; requires
that the vectors x; and x; are orthogonal. The objective J 1(<l)
can be written in terms of the indicator vectors x; as

K

xI GOx,
o=y A= (14)
K ; ngk

The objective is to be maximized under the conditions x; €
{0,1} and x/ x; = 0if i # j. Equation (9) can be rewritten as
a matrix trace by accumulating the vectors u; into a matrix
X = (x1,x2, ...,xk). We can then write the objective J,((’) as

T = (X" x)"'xT GV x)
=uw{(X" X)) XTGOXXT X)), (15)
where matrix XX is diagonal. The substitution Y =
X(XTX)~'/% simplifies the optimization problem to J& =

tr{¥Y TG"YY}. The condition YTY = I is automatically satis-
fied since

YTy = (XTxX)"2(xTx)(x"x)""? = I. (16)

The vectors yg thus have unit length and are orthogonal to
each other. The optimization problem can be written in terms
of the matrix Y as

max tr{Y7GPY}. (17)
YTy=I

Lemma 2 (Rayleigh-Ritz theorem). Let L be a symmetric
N x N matrix with eigenvalues 1 = Ay > A, > --- > Ay and

the corresponding eigenvectors uy, ... ,uy. Then
K
max Z ykTLyk such that y,Tyk =1 (18)

k=1

equals 25:1 Ax and the minimum yi,...
subspace spanned by uy, ...,ug.

The Rayleigh-Ritz theorem [23] tells us that the maximum
for this problem is attained when columns of Y are the

,ykg lie in the
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eigenvectors corresponding to the K largest eigenvalues of the
symmetric correlation matrix G). We assume that eigenvalues
of P are sorted such that A; =1 > |Ay| = |A3] = -+ = |An]
and the eigenvector corresponding to A; is denoted as uy.
Then the optimal solution of Eq. (18) is the matrix ¥ = U =

{ui,...,ux}. And the strength of such a cluster is equal to its
corresponding ¢th power of the eigenvalue
T () T
(t)_”kG Uk U U oy
S = = = M = A (19)
k Yk k Y%k

For the convergence of the Potts model across multiple time
scales, the vanishing of the smaller eigenvalues as the time
grows describes the loss of different spin states and the removal
of the structural features encoded in the corresponding weaker
eigenvectors. For the purpose of community identification,
intermediate time scales of local uniform states are of interest.
If we want to identify z communities, we expect to find P’
at a given time scale, the eigenvalues A} may be significantly
different from zero only for the range k = 1, ...,z. This is
achieved by determining ¢ such that |A;|" = 0.

From another perspective, because the eigenvalues are
sorted by Ay = 1 > Az = [A3] = - -+ = |An], the strength of
acommunity at time 7, A}, can also be viewed as the robustness
of k-spin state at time ¢. At this point, the eigengap A; — A},
can be interpreted as the “difficulty” that the (k 4 1)-spin state
transfer to the k-spin state at time ¢. Given the correlation
matrix G, one can measure the most suitable number of
possible spins at a specific time ¢ by searching for the value k
such that the eigengap Aj — A, is maximized. The number
of communities A at time ¢ is then inferred from the location
of the maximal eigengap, and this maximal value can be used
as a quality measure for the most stable state. The A(¢) is
formally defined as

A(t) = arg[maxg (A, — Ajyy)]-

From a global perspective if the number of communities A
is not changed for the longest time, we can consider it as the
optimal number for this network, represented as W.

The number of communities A may remain the same for
a long time. However, the variation of spin configuration
hidden behind our model is still not clear. To reveal the
details of changes, we need to determine that the time scale of

(20)

() aca e 2 Ay
‘:Q\Y;ga‘ 'ﬁ;’*Y/ﬁ:‘
tig.\ei%?). / ) “j’é;//::\_g?:‘

T

g ZZ
835 -"/ -~ 8
:{( y {;/)}r f%}\‘ G:
nf_}//mi:u nfz/A.\\\: s

(b) 12
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the community structure represented by spin configuration is
robust. To a certain extent, the most stable state can represent
the spin configuration of the whole network. Thus, we define
the stability of community structure at each time scale, O(t),
as the stability of the most stable spin state

@) = A’A(I) — )\'tA(Z)+1’ (21)
Our expectation is that from the trend of ®(¢), one can find
the most stable time scale for community structure where
®(t) reaches the maximal. At this time, the distribution of
spin configuration represents the most suitable community
structure. Furthermore, from a global perspective, we can
use the largest stability corresponding to ¢ communities,
['(g) = max{®()|A(t) = ¢}, to indicate the robustness of
a network, defined as the stability of the structure with g
communities. While I'(g) tries to directly characterize the
network structure rather than a specific network partition and
is thus very convenient to estimate the modularity property of
the network.

To show that the model can uncover hierarchical structures
in different scales, Figs. 2 and 3 give two examples of the
multilevel community structures. Fig. 2(a) shows the RB125
network, which is a hierarchical scale-free network proposed
by Ravasz and Barabadsi in Ref. [24]. The regions correspond-
ing to five and 25 modules are the most representative in terms
of resolution. Next, H 13-4 proposed by Arenas et al. [6] is
shown in Fig. 3(a), which is a homogeneous degree network
with two predefined hierarchical scales. The first hierarchical
level consists of four modules of 64 nodes and the second level
consists of 16 modules of 16 nodes. The partition of both levels
is highlighted on the original networks.

In both examples, the most persistent A reveals the actual
number of hierarchical levels hidden in a network. The sig-
nature of such levels can be quantified by their corresponding
length of persistent time. The longer the time persists, the more
robust the configuration is. From Fig. 2(b) and Fig. 3(b), we can
observe 25 and 16 are the optimal numbers of communities in
RB125 and H 13-4 networks owning the longest persistence,
respectively. However, five modules and four modules are
also reasonable partitions, which show the fuzzy level of the
hierarchical networks. These results are perfectly consistent

100

0 5 0 15 20 25 30
time(t)

FIG. 2. (Color online) (a) Structure of RB125, with 25 dense communities and five sparse communities, are highlighted in the original

network. (b) The value of A(¢) and ®(z) versus time ¢.
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15 20 25 30
time(t)

FIG. 3. (Color online) (a) Structure of H13 —4, with 16 dense communities and four sparse communities, are highlighted in the original

network. (b) The value of A(¢) and ®(¢) versus time ¢.

with the generation mechanisms and hierarchical patterns of
these two networks.

We also show that the variation tendency of stability ®(r)
in the two cases sheds a light on the spin configuration. From
Fig. 2(b) and Fig. 3(b), the corresponding stability ®(¢) is not
a parabolic shape for the time scales of a specific A. Thus
we cannot easily find the global optimum. However, there
are some local maximal values representing better community
structure. Thus, we can find these local maximal time scales
corresponding to the desired number of communities and apply
G' to a specific partition method. Furthermore, the stability
will reach the lowest value at the end time of all A. The stability
begins to increase when it transitions to new status. One can use
(1) to estimate the modularity property of complex networks,
and the larger the ® the stronger the network community
structure. So, one can find the largest corresponding ® value
for a specific number of community A and use it to indicate
the robustness of modularity structure. For H 13-4 shown in
Fig. 3(b), the stability of 16 communities’ structure, I'(16) =
0.48 when ¢t = 4, is larger than I'(4) = 0.31 when ¢ = 7. This
indicates that the community structure containing 16 modules
is more robust than community structure containing four
modules. Similarly, for RB125 network shown in Fig. 2(b),
I'(25) = 0.48 corresponding to 25 communities’ structure
when r =15 is larger than I'(5) = 0.31 when ¢ =7. The
robustness of community structure indicated by stability I'(q)
favors small but obvious modules. This is the same as [6,7]
and is reasonable for many real networks.

Finally, we emphasize the difference between the stability
measure proposed in this paper and the modularity Q proposed
by Newman [1,3]. Q is a well-known criterion for evaluating a
specific partition scheme of a network. It is defined as “the
fraction of edges that fall within communities, minus the
expected value of the same quantity if edges fall at random
without regard for the community structure” [3,19,25,26].
Different partition schemes will get different Q values for
the same network, and larger ones mean better partitions.
While our A and I try to directly characterize and evaluate
the structure property based on a network’s spectra, rather
than a specific network partition. Therefore, a network only
has exactly self-deterministic A and I' values regardless of

how many partition schemes it would have, and the larger the
" the stronger the network community structure. In addition,
Fortunato et al. [5] pointed out the resolution limit problem
of the modularity Q, that is, there exists an intrinsic scale
beyond which small qualified communities cannot be detected
by maximizing the modularity. However, as shown in Fig. 4,
when a clique ring contains cliques with different scales (i.e.,
the heterogeneous community size) the intrinsic community
structure can be exactly revealed by A. With A and I', we can
quantitatively compare the modularity structure of different
types of complex networks.

V. ALGORITHM TO DETECT COMMUNITY

To actually perform the community detection, we propose
an approach based on eigenvalue decomposition [27] of
correlation matrix G, This algorithm allows us to identify
multivariate communities across multiple time scales. Based
on the above analysis, we correlate the multivariate community
structure with the dynamics of the eigenvalues and eigenvec-
tors.

The eigenvalues A; and eigenvectors u; of the symmetric
and real-valued matrix G can be obtained by solving the
eigenvalue equation

GYup = Mugk=1,....N, (22)

which has N different solutions when time ¢ is small. Assume
that the eigenvectors are normalized (}_; ux(i) = 1). Each
signature Si(f) = A} is associated with a specific community
(the elements in the vector have the same spin value)
and quantifies its strength at a given time scale. For each
community k, the internal structure is described by the corre-
sponding eigenvector u;. After normalization [Zi u(i)y=11],
its components quantify the relative involvement of each node
i to community k by u,%(i). Combining the signature of the
community and the index u,%(i ), the “absolute” involvement
of node i in a community k at time ¢ can be described by the
following participation index:

RI () = Mud(i). (23)
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FIG. 4. (Color online) (a) Ring of clique network as a schematic example. Each circle corresponds to a clique, whose size is marked by its
label C20 (contains 20 nodes) or C10 (contains 10 nodes). (b) The value of A(¢) and ®(¢) versus time ¢.

Node i is considered as belonging to community k when the
participation index becomes maximal.

From Eq. (23), we observe that participation index evolves
as time goes on. When the time scale ¢t — 00, all eigenvalues
A, approach to O except the largest one, A} = 1. At this
time, all nodes belong to the same community according
to the participation index definition. In the other extreme
when ¢ = 0, the participation matrix R actually becomes the
eigenvector matrix U 2 All of its columns are different, and
the number of communities is equal to the dimension of the
matrix. Here we are interested in the optimal partition at an
intermediate time scale with large stability ®(¢), when the spin
configuration represents the most robust community structure.
So, we first determine the optimal number of communities by
using A across long time ¢. Then, we pick up the time scale ¢
that the stability ®(¢) is maximal between and A(¢) equals to
the optimal number of communities. In many real networks,
the formulation of communities is a hard partition and each
node belongs to only one cluster after the cluster. This is
often too restrictive for the reason that nodes at the boundary
among communities share commonalities with more than one
community and play a role of transition in many diffusive
networks. In our work, the participation index R motivates
the extension of the partition to a probabilistic setting. It is
extended to the fuzzy partition concept where each node maybe
long to different communities with nonzero probabilities at the
same time and more reasonable for the real world. Finally, we
calculate the participation index at the most stable time ¢.
The framework of the whole process is summarized in Table I.

In the process of the algorithm, calculating the spin-spin
correlation matrix C is based on SW algorithm and costs less
than O(N?). It is easy to estimate the computational cost of
the algorithm is mainly on the calculation of the eigensystem
of G and for sparse graphs, it is about O(N?). Other steps of
the process are some simple matrix computations. So finally,
we obtain the cost of the algorithm is O(N?). Our algorithm
is a parameter-free method and very easy to implement in real
networks.

VI. EXPERIMENTS

In this section, we will benchmark the performance of our
algorithm. We designed and implemented three experiments
for two main purposes: (i) to evaluate the accuracy of the
algorithm; (ii) to apply it to real large-scale networks.

A. Benchmark network

We empirically demonstrate the effectiveness of our algo-
rithm through comparison with five other well-known algo-
rithms on the artificial benchmark networks. These algorithms
include Newman'’s fast algorithm [1], Danon et al.’s method
[28], the Louvain method [29], INFOMAP [10], and the clique
percolation method [25]. We utilize widely used Ad-Hoc
network model, which can produce a randomly synthetic
network containing four predefined communities and each has
32 nodes. The average degree of nodes is 16, and the ratio of
intracommunity links is denoted as Py,. As P, decreases, the
community structures of Ad-Hoc networks become more and

TABLE I. Framework of our algorithm.

Input:
The adjacent matrix of the network A;
Output:
1. Calculate the spin-spin correlation matrix C.

2. Calculate the Markov transition probability matrix P and G based on C.
3. Calculate the eigenvalues and corresponding eigenvectors of G.
4. Find the optimal number of communities K and corresponding times ¢ with the largest stability.

5. Calculate the participation index R according to Eq. (23).

6. Return: Output the participation index R.
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FIG. 5. (Color online) (a) I'(4) values of networks versus different P;,. (b) Comparison of accuracy of our algorithm with five other existing

algorithms.

more ambiguous, and correspondingly, their I"(4) values climb
from O to 1, as shown in Fig. 5(a).

We use the normalized mutual information (NMI) measure
[30] to qualify the partition found by each algorithm. We
ask the question whether the intrinsic scale can be correctly
uncovered. The experimental results are illustrated in Fig. 5(b),
where the y axis represents NMI value, and each point
in curves is obtained by averaging the values obtained on
50 synthetic networks. As we can see, all algorithms work
well when 1 — p is more than 0.7 with NMI larger than
0.85. Compared with the other five algorithms, our algorithm
performs the best. Its accuracy is only slightly worse than that
of the clique percolation when 0.5 < 1 — p < 0.65. However,
the complexity of the clique percolation is more than O(n?)
and nearly the same as the time-consuming breadth first search
(BFS). By contrast, the time complexity of our method is very
low [O(1n?)] and can be easily implemented.

B. United States football network

The United States college football team network has been
widely used as a benchmark example [1,26] due to its natural
community structure. We used the data gathered by Girvan and
Newman [1]. It is a representation of the schedule of Division
I American college football games in the 2000 season in the
USA. The nodes in the network represent the 115 teams, while
the edges represent 613 games played in the course of the year.
The whole network can be naturally divided into 12 distinct
groups. As aresult, games are generally more frequent between
members of the same group than between members of different
groups.

First, we calculate A and the corresponding stability 0
and the results are illustrated in Fig. 6. Results show that the
optimal number of communities is A = 12, which perfectly
agree with the true situation. The stability 6 reaches I'(12) =
0.31 when ¢t = 4. Then we apply our algorithm to the football
team network and partition the network into 12 communities,
which is shown in Fig. 7. The correct rate of our method is more
than 93%, which means that the detected community structure
is in a high agreement with the true community structure.

Actually, methods based on optimization of modularity Q
usually can just find 11 communities and the correct rate is low
due to the fuzziness of the network. We conclude that the ability
of our method to reveal a natural characteristic is valuable for
many real networks. Furthermore, our algorithm has identified
five interesting overlapping nodes, which are denoted by
yellow triangles. These fuzzy nodes lie at the boundary
communities and can be viewed as some relative independent
clubs, which can be interpreted readily by the human eye.

C. Scientific collaboration network

Finally we tested our algorithm on a large-scale network,
the scientific collaboration network, collected by Girvan and
Newman [31]. The network illustrates the research collabo-
rations among 56,276 physicists in terms of their coauthored
papers posted on the Physics E-print Archive at arxiv.org.
Totally, this network contains 315810 weighted edges. For
visualization purposes, our algorithm outputs a transformed
adjacency matrix (in which the nodes within the same
community are grouped together) with a hierarchical com-
munity structure. From the transformed matrix of Fig. 8(a),

0 5 10 15 20 25 30
time(t)

FIG. 6. Computational results of A(f) and ®(z) on the U.S.
football network.
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FIG. 7. (Color online) Computational results of our algorithm on the football team network. The nodes with the same shapes and colors
(shades) are teams in the same group, and the dense subgraphs in the layout are communities detected by the algorithm. Four fuzzy overlapping
nodes are described as independents.
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FIG. 8. (Color online) (a) Transformed adjacency matrix of the scientific collaboration network. (b) Distribution of community sizes in a
linear plot. (¢) Subnetwork including eight communities illustrated in different shapes and colors (shades) and ten overlapping nodes enclosed
by four circles.
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one can observe a quite strong community structure, or a
group-oriented collaboration pattern. Among these physicists,
the three biggest research communities are self-organized
with regard to three main research fields: condensed matter,
high-energy physics (including theory, phenomenology, and
nuclear), and astrophysics.

The cumulative distribution of community sizes in the
power plot is shown in Fig. 8(b) and it is a typical scale-free
distribution, which exists broadly in real world. In total,
737 communities were detected by the optimal community
stability, the maximum size of those communities is 195,
the minimum size is 2, and the average size is 76. Among
these communities, 1433 of 6931 pairs of communities have
a fuzzy participation index with each other. The largest 5%
of communities contain 25.4% of the nodes, while the others
are relatively small. The three largest communities correspond
closely to research subareas. The largest is solid-state physics,
the second largest is supernuclear physics, and the third is
theoretical astrophysics. Furthermore, a subnetwork including
eight communities is shown in Fig. 8(c) and four regions
including 10 overlapping nodes are highlighted by four circles,
which were detected according to the participation index R.
The partition result is the same as the results in Refs. [31]
and [26]. The efficient performance in a large real network
indicates that our method is useful for further research in
various fields. [32,33]

PHYSICAL REVIEW E 86, 016109 (2012)

VII. CONCLUSION

In summary, we have presented a more theoretically based
community detection framework, which is able to uncover
the connection between network’s community structures and
spectrum properties of the Potts model’s local uniform state.
We demonstrate that important information related to com-
munity structures can be mined from a network’s spectral
signatures through a Markov process computation, such as
the stability of modularity structures and the optimal number
of communities. Based on theoretical analysis, we further
developed an algorithm to detect fuzzy community structure.
Its effectiveness and efficiency have been demonstrated and
verified through both the simulated networks and the real
large-scale networks.
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