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Oscillatory instability in slow crack propagation in rubber under large deformation
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We performed experiments to investigate slow fracture in thin rubber films under uniaxial tension using
high-viscosity oils. In this system we observed an oscillating instability in slowly propagating cracks for small
applied strains. The transition between oscillatory and straight patterns occurred near the characteristic strain at
which rubber exhibits a nonlinear stress-strain relation. This suggests that nonlinear elasticity plays an important
role in the formation of the observed pattern. This was confirmed by numerical simulation for neo-Hookean and
linear elasticity models.
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I. INTRODUCTION

On propagating cracks, various type of instabilities and
qualitative changes of crack patterns accompanied by the
instabilities are known. For example, when a rubber balloon is
ruptured, oscillatory crack patterns on a macroscopic scale
are observed quite consistently [1]. This phenomenon has
attracted much interest from researchers. Deegan et al. have
experimentally investigated rapid fracture in rubber sheets by
stretching a rubber sheet in biaxial directions in air. They
found that a transition from straight to oscillatory cracks
occurs under biaxial strain [2]. Moreover, they demonstrated
that the transition is a Hopf bifurcation [3]. The wavy crack
patterns and the transition were subsequently reproduced by
numerical simulations using various models [4,5] and several
possible factors were proposed for the instability, including
hyperelasticity, viscoelasticity, and nonlocal elasticity. Since
the experiment of Deegan et al., several works on fast crack
propagation have been progressively performed and recent
studies reveal the important role of nonlinear elasticity on crack
dynamics [6–13]. However, the problem of the oscillating
instability in fast crack propagation is still hard to tackle due to
the difficulty in measuring rapid crack propagation and treating
rapid crack dynamics with significant inertia.

In contrast, as a different example of wavy cracks, Yuse
and Sano reported instabilities of crack patterns in quenched
glass plates [14]. In their experiments thermal stress is locally
applied to a glass plate under the control of the position where
the thermal gradient is concentrated. Accordingly, the crack
tip propagates together with the thermal field, i.e., the speed
of the crack tip can be controlled externally. Pattern formation
of this type of fracture of brittle materials in quasistatic limits
is well investigated within the framework of linear elasticity
using the local symmetry criterion for crack growth [15,16] .

For the understanding of the rupture of rubber, if we could
perform an experiment in which the crack propagation speed
is significantly reduced, as done in the glass plate experiment,
it may be possible to reveal the nature of thin elastomers under
fracture being separated from dynamical aspects such as sound
propagation. In this paper we propose a different experiment
for investigating fracture in thin rubber films. In the experiment
a rubber film is ruptured on a viscous fluid layer. Consequently,
the crack propagation speed is significantly reduced by the

resistant stress from the layer. If the resistant stress is large
enough compared to the inertial force per unit surface of the
film, the crack propagates slowly compared to the speed of
sound. In such a situation the inertial effects of the rubber
become negligible and the system can be described by an
overdamped parabolic type of equation. We call this third
type of situation slow fracture. In the present experiments
we observed oscillatory instability in crack propagation when
the applied strain is less than a characteristic value. The
transition from straight to oscillatory patterns occurs near a
strain at which the highly nonlinear elasticity of the rubber
sheet is initially observed. We thus expected that the nonlinear
elasticity may be a key factor for crack instabilities rather
than the inertial effect. To investigate this we performed
numerical simulations based on the neo-Hookean model [19]
that exhibited nonlinearity at large strains. A comparison of
the results with those from a conventional linear elastic model
revealed that the nonlinear elasticity is a critical factor in
inducing oscillatory instabilities.

II. EXPERIMENT

Here we describe the experimental procedure. Figure 1
shows schematic representations of the system. First we
prepared plastic cylindrical rods with smooth surfaces. We then
coated the rod with highly viscous silicon oil (Centi-Stokes
Visco Liquid, As One) to form a thin fluid layer around it.
Next we pushed the rod into an inflated cylindrical rubber
film (Qualatex 260Q natural rubber balloons, Pioneer Balloon
Company) as shown in Fig. 1(a). At this point the rod was
covered by a double-layered skin of rubber. We cut off both
ends of the rubber film and removed the outer skin so that a
single-layered rubber film remained. In this way we made a
film on a viscous fluid layer around the rod. It has stress-free
boundaries at both ends and it can move in the axial direction
under viscous resistance. In the circumferential direction the
strain satisfies a periodic boundary condition. If the layer is
very thin and the fluid is Newtonian, the resistant stress σ is
described as σ = (η/d)V , where η is the viscosity of the oil,
d is the thickness of the layer, and V is the sliding velocity
of the film. Therefore we can utilize the viscous fluid layer to
realize large η/d.
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FIG. 1. (Color online) Schematic illustrations of the experimental
procedure: (a) oil-coated cylinder covered by an inflated balloon, (b)
relaxation to pure uniaxial tension, (c) crack initiation, and (d) cross
section of the experimental system. The high-viscosity oil between
the film and the rod significantly reduces the sliding speed of the film
with respect to the substrate.

Just after the preparation of the sample, an unknown stress
remains in the film. This residual stress causes the film to
move in the axial direction on the rod to its elastic equilibrium
state, i.e., pure uniaxial tension state, as shown in Fig. 1(b).
According to observations, in the late stage of the relaxation,
the film displacement decreases exponentially as a function
of time, i.e., the end-to-end distance L of the film decays as
L ∼ L0 exp(−t/τ ) + Lf , where L0 is the total shrinkage and
Lf denotes the final length of the film in the relaxation. From
an analysis of a uniform deformation of an elastic film on a
viscous layer, the resistivity coefficient is estimated as

η

d
∼ Eτ

Lf

,

where E is the Young modulus of the film. Therefore we
are able to estimate the resistivity coefficient even without
measuring d. Hereafter we use this relaxation time divided by
the film length τ/Lf as an indirect control parameter of the
experiments.

After equilibrium is attained, we initiate a small crack by
cutting one end of the film in uniaxial tension as shown in
Fig. 1(c). The crack starts to propagate if the initial strain is
sufficiently large. The high oil viscosity significantly reduces
the crack propagation speed. The crack speed typically lies
in the range 0.01–1 m/s, which is much slower than that for
a conventional balloon rupture. In this experiment the film
drags the underlying oil so that the effective mass of the film
increases, which may reduce the sound velocity of the film.
We expect, however, that such an effect does not significantly
change the sound speed of the film because the mass added by
the oil is at most of the same order as the film itself. We also
estimate that the order of viscous resistant stress is at least of
the order of 103 Pa, while the inertial force per unit surface
is 10−1 Pa. Therefore we can consider this system to be in an
overdamped limit.

We repeated this procedure for various oil viscosities and
rod diameters. To change the relaxation time we used silicon

FIG. 2. Typical crack patterns in rubber films: oscillatory (left)
and straight (right) crack patterns.

oils with viscosities in the range 1000–10 000 centistokes (cSt)
and to change the applied strain we varied the rod diameter
from 10 to 30 mm against the 20-mm natural circumferential
width of the film. The balloons typically are 0.31 mm thick
when they are unstretched.

In the experiments we observed two characteristic crack
patterns: oscillatory patterns and straight patterns. Figure 2
shows typical examples of crack patterns [20]. Figure 3 shows a
morphological phase diagram. Here strain refers to the nominal
applied strain. Initial cracks do not propagate at strains less
than a characteristic value ε1. We observed oscillatory crack
patterns when the applied strain exceeded ε1. When the strain
exceeded a critical value ε2 in the large deformation regime,
the crack path became straight. The propagation speed of the
crack tip seems to increase linearly from the onset at ε1, as
shown in Fig. 3.

It should be noted that the critical strain ε2 almost coincides
with the characteristic strain at which the stress-strain relation
of the rubber becomes nonlinear (see the stress-strain relation
in Fig. 3). Here we have measured the stress-strain relation
by weighting a piece of balloon in one direction. The stress
is calculated by dividing the applied force by a deformed
cross-section area perpendicular to the weighting direction
and the deformed cross-section area is calculated by a uniaxial
strain using an assumption of incompressibility. Because
the balloon may have anisotropic elasticities due to its
manufacturing process, we have measured the stress response
in the longitudinal direction and circumferential direction of
the balloon. As a result, there were no apparent dependencies
on stretching direction.

Figure 4 shows the amplitude and the wavelength as
functions of the applied strain. The quantities are nondi-
mensionalized by the sample width (natural circumferential
width) so we can compare them with simulation results in
the following section. Below ε2 both the oscillation amplitude
and wavelength increase with decreasing applied strain. At the
onset of oscillation ε2, the wavelength remains finite (about
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ε1 ε2

FIG. 3. (Color online) Experimentally obtained pattern diagram
(top), stress-strain relation for rubber film (middle), and crack speed
at each strain condition (bottom). The typical crack patterns observed
are no crack (squares), an oscillatory crack (circles), and a straight
crack (triangles). Relaxation time is normalized by the sample length
Lf . In the regime in which the nonlinearity of the rubber becomes
apparent, there is a transition from oscillatory to straight cracks. Crack
speed is measured for the samples for which the relaxation time is
approximately unity.

10 mm), whereas the amplitude becomes very small. This
indicates that the transition may be a Hopf bifurcation [3].
Additionally, the large-amplitude oscillatory crack appears
triangular. This Hopf-bifurcation-like behavior and triangular
wave shape resemble those for a rapid fracture [2]. Large

ε1 ε2

FIG. 4. (Color online) Dimensionless wavelength (triangles) and
amplitude (circles) of an oscillatory crack against strain in units of
the sample width. Values are averaged over different relaxation times,
typically approximately 0.9 s/mm. The wavelength at the onset of
the oscillation is nonzero.

FIG. 5. (Color online) Dimensionless wavelength (triangles) and
amplitude (circles) of an oscillatory crack against relaxation time in
units of the sample width. The applied strain is 2.9.

scatters in the amplitude and the wavelength may be due to the
inhomogeneity of the thickness of the balloon. The variation
in thickness was about 20–30 %.

Furthermore, the amplitude and the wavelength are posi-
tively correlated with the relaxation time rescaled by the sam-
ple width under fixed strain conditions (Fig. 5). This tendency
is characteristic in the present system of slow fracture. If the
dynamics of this system was governed by a simple relaxation
process of a purely elastic film accompanied by some resistive
force, the length scales, such as the wavelength and amplitude
of oscillation, should be decoupled from the relaxation time.
To explain the dependence of characteristic length scales on
the relaxation time as shown in Fig. 5, therefore, we need to
introduce other dynamical effects, which include hysteresis,
to introduce new length scales. For a more detailed analysis of
pattern selection, it may not be possible to ignore other factors
such as the viscoelasticity and plasticity of rubber. Figure 3
shows, however, that it seems those details do not change
the stability of a crack pattern. Note that the dimensionless
wavelength is always longer than approximately 0.5.

Based on the observation that the characteristic strain ε2

is close to the onset of nonlinear elasticity of the rubber,
we expect that the nonlinearity causes the pattern transition.
We thus investigated whether this expectation is correct by
performing numerical simulations under conditions with much
fewer ambiguities.

III. NUMERICAL SIMULATIONS

We used the finite-element method with triangular elements
to model a rubber film. We assumed that each triangular
element was homogeneously deformed, i.e., the affine defor-
mation, in which the strain in each element is determined by
the relative positions of its vertices. The elastic properties of
the elements are determined by the elastic energy function F

assigned to them. In the present study we used two different
energy functions: a neo-Hookean model, which has nonlinear
elasticity, and a conventional linear elastic model [17–19].
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For the neo-Hookean model the elastic energy is given by

Fi = 1

2
μ

(
λ2

1i + λ2
2i + 1

λ2
1iλ

2
2i

− 3

)
S0i , (1)

where λ1 and λ2 are the elongation ratios along the principal
axes and S0 is the area of the element in the resting state.
The subscript i is used to denote quantities associated with the
ith element. Since the neo-Hookean model has only a single
adjustable parameter μ, one cannot independently adjust the
elasticity coefficient and the characteristic strain of the model.

For the linear elastic model Fi is given by

Fi =
[

1

2
λ

(
2∑

j=1

εjj

)2

+ μ

2∑
j,k=1

ε2
jk

]
S0i , (2)

where ε is the infinitesimal strain tensor. In Eqs. (1) and (2) λ

and μ denote Lame constants; here we set them to λ = 4 and
μ = 2. Note that the two models coincide under infinitesimal
deformation. We used the following criterion for the fracture
condition: If the elastic energy density of an element fi =
Fi/S0i exceeds a critical value fc, the element is permanently
removed from the tiling.

To account for the viscous resistance the rubber sheet
experiences, we introduced a dissipation function G defined
as

Gi = 1

2
γ

∫ (
dx
dt

)2

dSi, (3)

where x is the position vector of a point in the ith element. The
integral symbol

∫
(·)dSi indicates that the integral is taken over

all material coordinates of the ith element. Equation (3) implies
that each point x in the element experiences a resistive force
−γ ẋ, where γ is the friction coefficient, which corresponds
to the resistivity coefficient of the viscous resistance from the
oil. Since we assumed the affine deformation in each element,
Gi is represented by only the positions of the vertices of the
triangular elements and its time derivatives.

Using the above Fi and Gi we can construct equations of
motion for the positions of the vertices as

∂

∂qj

(
N∑

i=1

Fi

)
+ ∂

∂q̇j

(
N∑

i=1

Gi

)
= 0, (4)

where N is the total number of elements and q = {x1,y1,x2,

y2, . . . ,xN ,yN }, where {xi,yi} are the position coordinates of
the ith vertex. Note that the inertia terms have been omitted in
Eq. (4) because we can consider the experimental system to
be approximately in an overdamped limit.

After discretizing the equation of motion in time, we solved
a set of implicit equations to obtain the vertex positions in the
next time step. We chose a sufficiently small time step to
ensure that at most one breakage event occurred per time step.
We imposed the periodic boundary condition in the lateral
direction. The initial strain was given by the ratio of the
period of the boundary condition to the width of the sheet;
just as in experiments the initial strain was given by the
ratio of the circumferential length of the cylindrical rod to
that of the rubber sheet. We created a notch as the initial
condition.

(c)(a) (b)

FIG. 6. (Color online) Typical crack patterns plotted with elastic
energy density distributions obtained by simulations. The white
regions represent regions with high elastic energies and the blue
lines correspond to cracks. Positions are transformed into undeformed
coordinates. Typical examples for a neo-Hookean model are (a) an
oscillatory crack for an applied strain of ε = 0.5 and (b) a straight
crack for an applied strain of ε = 1.5. With the linear elasticity model
(c), only a straight crack is observed when the same strain was applied
as for (a). The critical energy density is fc = 10 in all examples. The
number of elements is 128 × 256. Triangular elements are aligned
such that one of the lattice vectors is parallel to the horizontal
direction, which corresponds to the tensile direction.

The simulation results reveal that the crack morphology
strongly depends on the nature of elasticity. Only the neo-
Hookean model gave oscillatory patterns and the transition
from a straight crack to an oscillatory crack. In contrast, the
conventional linear model did not produce oscillatory cracks.
Figure 6 shows typical crack patterns and elastic energy density
distributions. Due to the discreteness of the triangular tiling,
tiny oscillations are observed even for a straight pattern. In the
neo-Hookean model, the high-energy region is more localized
at the crack tip than in the linear elastic model and the region
broadens with decreasing initial strain. In contrast, in the linear
elastic model, the high-energy region is axisymmetric in the
crack direction.

The morphology of the crack in the neo-Hookean model
seems to depend on the nonlinearity of elastic response.
Oscillatory patterns are observed for a strain below ε2 = 1.2
for fc = 10, where the nonlinear elasticity becomes apparent.
In the region of larger strain, the neo-Hookean model gradually
recovers the linear elasticity with larger elastic coefficients,
which corresponds to the largely stretched rubber. For small
strain, the crack patterns obtained depend on the threshold
energy density fc. When fc is small enough but larger to
sustain a single crack, as the applied strain increases, a straight
crack appears first at the onset ε1. In this case we could
not observe oscillatory patterns even in the largely deformed
regime. For large fc, however, we observed oscillatory patterns
when the applied strain exceeded a critical value ε1; then
there was a transition to straight patterns (at ε2), just as in
the experiments. Thus we can expect that the oscillation of
a crack takes place for an intermediate magnitude of strain
where the nonlinear elasticity becomes relevant for crack
dynamics.
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ε2

FIG. 7. (Color online) Dimensionless wavelength (triangles) and
amplitude (circles) of an oscillatory crack against strain in units of
the sample width for the neo-Hookean model. Due to the triangular
tiling, there is a residual oscillation at short length scales even when a
crack is straight on a macroscopic scale. The minimum strain required
for crack propagation ε1 is approximately 0.35.

For a comparison with the experiments we plotted the
oscillation amplitude and wavelength versus applied strain
(Fig. 7) near ε2. Note that, due to the limited degree of
freedom of the neo-Hookean model, the value of ε2 was not
adjusted to be consistent with the experimental results. In the
simulations the oscillation wavelength and amplitude exhib-
ited a proportional relationship and seemed to continuously
decrease to zero with increasing applied strain. This result
conflicts with the experimental results. Therefore, we do not
have definitive evidence that the transition to oscillatory cracks
can be described by a Hopf bifurcation. Further research is
required to determine the details of the transition.

IV. CONCLUSION

In our experiments crack speed was reduced by a large
resistant stress from the viscous fluid layer. If the resistivity is
small enough compared to that of our experiments, a crack can
propagate as rapidly as the speed of sound, where the dynamics
is governed by a kind of hyperbolic differential equation. This
situation is almost equivalent to the rapid fracture experiment
done by Deegan et al. [2]. In such a rapid fracture, biaxial
tension is considered to be an important condition to have
oscillatory cracks [1]. In contrast, in the present study we
found that oscillatory patterns are observed under uniaxial
tension in both experiments and numerical simulations. Our
results indicate that nonlinear elasticity is a key factor for
oscillating crack paths in the case of a slow crack.

As another origin of oscillating cracks seen in thin elastic
materials, it has been reported that out-of-plane motion plays
a crucial role in the crack path [21]. In the present experiment
there may be some out-of-plane motion because of the soft
substrate; the effects of the increased freedom of motion of the
film should be carefully investigated in the future. However, we
believe that such out-of-plane motion is not primarily relevant

to the oscillatory instability in our rubber film experiment
because oscillatory cracks can be reproduced in pure two-
dimensional simulations as well.

For a quantitative understanding of the present system,
further investigation needs to be conducted. For example,
the crack-tip speed and the magnitude of the critical strain
(ε1,ε2) and its dependence on the strength of the material (e.g.,
fc) should be explained with a theory. From a dimensional
analysis, the speed of the crack V should be described with
the parameters of the model as

V ∼ f
(1−ξ )/2
c μξ/2

γ 1/2
F (ε),

where ξ is an unknown constant and F is a function.
Unfortunately, in the current status, we have not performed
a systematic survey, which makes the determination of the
form of V possible mostly due to the limitation of computing
time. As for ε1 and ε2, we expect that one can utilize the
conventional linear elastic fracture mechanics (LEFM). Even
under the condition of a small deformation, the local strain of
the film could be large at the crack tip and the effective elastic
coefficient might become highly inhomogeneous. However,
we expect that some of the scaling relationships known in
LEFM, such as ε1 ∼ W−1/2, should still hold in the nonlinear
case.

Another future work would be to study how the characteris-
tic length and time of the oscillation are selected as well as the
detailed origin of the oscillatory instability. When nonlinear
elasticity becomes apparent, macroscopic length scales other
than those in linear systems might appear. As seen in Fig. 6, the
largely deformed region near the crack tip, which is brighter
in the figure, changes in size and shape depending on the
conditions. In the simulations of the neo-Hookean model we
found that there is a robust tendency that the larger the spot size
is, the larger the wavelength of oscillation becomes. We expect
that such intrinsic length scales that arose from nonlinearity
determine the characteristic length of the oscillation, which
is essentially different from the quasistatic crack of linear
brittle materials (e.g., in Refs. [14,15]) where the wavelength
is primarily given by the sample width. In fact, in the studies
of oscillatory instability in a rapid fracture [6–8], a similar
statement had been proposed and checked by experiments and
theory. They assert that the oscillation wavelength at the onset
of the fast fracture instability is not determined by the size of
the material, but determined by the material’s intrinsic length,
i.e., the length of the nonlinear zone near the tip. Slow fractures
and the effect of the relaxation time on crack patterns are
subjects for future research as there may be some coupling
effects between the dynamics of the creep of the rubber sheet
and the sliding on the cylinder that modify the crack patterns.
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