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Bayesian inference for a wave-front model of the neolithization of Europe
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We consider a wave-front model for the spread of neolithic culture across Europe, and use Bayesian inference
techniques to provide estimates for the parameters within this model, as constrained by radiocarbon data from
southern and western Europe. Our wave-front model allows for both an isotropic background spread (incorporating
the effects of local geography) and a localized anisotropic spread associated with major waterways. We introduce
an innovative numerical scheme to track the wave front, and use Gaussian process emulators to further increase the
efficiency of our model, thereby making Markov chain Monte Carlo methods practical. We allow for uncertainty
in the fit of our model, and discuss the inferred distribution of the parameter specifying this uncertainty, along
with the distributions of the parameters of our wave-front model. We subsequently use predictive distributions,
taking account of parameter uncertainty, to identify radiocarbon sites which do not agree well with our model.
These sites may warrant further archaeological study or motivate refinements to the model.
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I. INTRODUCTION

The transition from hunter-gathering to early farming—
signifying the start of the neolithic era in traditional ar-
chaeological terminology—was one of the most important
steps made by humanity in developing the complex modern
societies that exist today. The mechanism of the spread
throughout Europe of neolithic farming techniques, which
developed in the Near East around 12 000 years ago, remains
an important and fascinating question. The relative importance
of “cultural” versus “demic” components of the spread—i.e.,
the transmission of farming techniques versus the physical
migration of farmers—has long been debated in the archaeo-
logical literature. Intriguingly, advances in genetics mean that
quantitative assessments of these issues are now becoming
possible, with many recent studies suggesting at least some
migration of early farmers (e.g., [1,2]).

Recently there have been a number of studies using
population dynamics models to describe the spread of neolithic
farmers. While some recent work has focused on stochastic
methods [3], most studies have built upon the pioneering work
of Ammerman and Cavalli-Sforza [4] and sought the solution
of a deterministic partial differential equation [5–7]. The
success of this approach can be seen in a number of studies. For
example, when using values for the model inputs determined
theoretically or from the archaeological and anthropological
literature, the authors of [8,9] found a reasonable agreement
between the output of the numerical model and the large-scale
features of the observed first-arrival times at neolithic sites,
based on the radiocarbon dates of objects found at these sites.
Unfortunately there may be many other parameter sets which
provide equally well- if not better-fitting model outputs to the
data. We seek these parameter sets by developing a rigorous
statistical inference method to fit the model to the radiocarbon
data.

In this paper we adopt a Bayesian approach to inference as
this will also allow us to quantify parameter uncertainty in a

*a.w.baggaley@ncl.ac.uk

rigorous way. Additionally it allows us to quantify correlations
between our model parameters and the global uncertainty in the
fit of our model to the data. The authors are not aware of another
study where these sophisticated statistical techniques have
been used, allowing the determination not just of parameter
estimates, but of a plausible range of parameter values, given
by the posterior distribution.

The “wave of advance” is one of the most important
concepts in modeling the spread of the neolithic, underlying
the studies cited above; since the work of Ammerman and
Cavalli-Sforza [4] and Clark [10], it has been widely accepted
that the incipient farming spread from the Levant to western
Europe in a systematic manner—an outward propagating
“wave”—amenable to study by simple deterministic models.
The rate of propagation of the wave is broadly constant
throughout this spread, and various authors have estimated
the speed of the wave front, U , from the radiocarbon data. In
the present work, we try to produce a statistically reliable
estimate of the wave speed U from the radiocarbon data.
Unlike most if not all earlier studies, however, we explicitly
account for the fact that U is a random variable, due both
to the systematic and random errors inherent in the data,
and to the inherent variability in the underlying population
dynamics processes. The true spread is not well modeled on
all scales, and at all locations, by a wave front advancing
with a continuous speed; local variations do of course occur.
Such local variations are not explicitly modeled within simple
deterministic wave-front models, which effectively average
out such small-scale variability and reproduce the spread well
on the larger, continental scales.

As well as being the natural quantity to describe the spread,
the wave speed has clear and important implications within
most mathematical models of the spread. For example, within
the Fisher-Kolmogorov-Petrovsky-Piskunov (FKPP) equation
[11,12], most frequently used in models of demic diffusion,
the front speed is directly linked to the population mobility
(diffusivity) and growth rate. While the wave front has been
most often studied within the context of the FKPP equation,
many alternative models of population dynamics also predict
waves of advance, with speeds dependent upon their various
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model parameters. For example, within multiple-population
models related to the FKPP model but allowing for cultural
conversion, the speed can be affected by the parameters
controlling the conversion [13,14]; similarly, within other
models of cultural transmission, it can be linked to the intensity
and spatial range of contacts [15]. The same is true for
many alternative models: e.g., models involving alternative
parametrizations of growth processes and diffusion [5,16]; and
models involving non-Laplacian diffusion (e.g., Lévy flights;
[17]). Even within FKPP-like models with logistic growth,
“time-delay” factors attempting to model the generational
effects of population growth more realistically result in a
modified relationship between the front speed and the basic
demographic parameters [6,7]. The key quantity which must
be inferred from the radiocarbon data is the wave speed,
and so a wave-front-based approach such as that introduced
here, which gives this quantity prominence, is a more natural
model.

Edmonson [18] was the first to estimate the speed of
the agropastoral transmission in Europe; he gave a value of
1.9 km/yr. Later, Ammerman and Cavalli-Sforza [4] gave a
value of 1 km/yr, and most subsequent determinations of the
speed of the neolithic wave front have also been of order
U � 1 km/yr [5,8]. There are notable regional variations,
however. In particular, the Linearbandkeramik (LBK) culture
spread along the Danube-Rhine corridor at a higher speed,
perhaps as large as 5 km/yr [19,20]. The spread of the
Impressed Ware ceramics along the Mediterranean coast has
been estimated to be as fast as 10 km/yr [19], although lower
estimates are also possible [21]. In contrast, there is no clear
evidence for any significant acceleration along the northern
and Atlantic coastline of Europe. In this paper we follow [8]
in allowing for enhanced anisotropic spread along coastlines
and along the courses of the Danube and Rhine rivers, in an
attempt to model the above phenomena. We perform Bayesian
inference for the magnitudes of these enhanced effects, and
for the magnitude of the isotropic background spread; as a
result, we are in a position to assess the extent to which these
features of the model are genuinely required by the radiocarbon
data.

Although the posterior distribution of the parameters of
interest is analytically intractable, computationally intensive
methods such as Markov chain Monte Carlo (MCMC) simu-
lations can be used to generate samples from this distribution.
The computational cost of simulating the wave of advance
precludes the direct use of an MCMC scheme. We therefore
approximate the arrival time of the wave front at each site
using a Gaussian process emulator [22] as the computational
speedup makes MCMC methods practicable.

The rest of this paper is organized as follows. We introduce
our wave-front model, and compare its output to that obtained
from a more traditional approach involving partial differential
equations (PDEs), in Sec. II. In Sec. III we describe the data
against which our model will be compared. We outline our
statistical model, and the Bayesian inference scheme used
to estimate our model parameters from the data, in Sec. IV.
The results of our inference are described in Sec. V, and our
conclusions are summarized in Sec. VI. Some technical details
about our statistical methods, including the use of Gaussian
process emulators, are presented as Appendixes.

II. MODELING THE PROPAGATING FRONT

The isotropic FKPP equation

∂N

∂t
= γN

(
1 − N

K

)
+ ∇ · (ν∇N ) (1)

describes the evolution of population density N (x,t) at position
x and time t , with the growth rate γ , diffusivity ν, and carrying
capacity K as parameters. The solution to this equation forms
a propagating wave front, which travels with a speed

U = 2
√

νγ , (2)

which is dependent on both the diffusivity and the growth
rate of the population, but importantly is independent of the
carrying capacity. This result can be readily proved in one
dimension [12], and also in two dimensions if the curvature of
the front is sufficiently small (which is to be expected when
the distance from the source is large compared with the front
width) [23]. In a spatially heterogeneous environment (such
that ν and/or γ vary with x), the wave speed is clearly a function
of position, U (x).

Numerical solutions to the FKPP partial differential equa-
tion are most simply obtained by discretizing to a grid of points
in space, using, e.g., finite-difference methods to approximate
the spatial derivatives, and time-stepping the solution forward
in time. Thus the local population density at each point on
the grid is calculated at each time step. If we are focusing
on the first-arrival time of the neolithic farmers at specific
radiocarbon sites, however, then all modeling of the population
behind the front is unnecessary; as indeed is the modeling
of the equation ahead of the front, which solution of the
FKPP equation also requires. A reasonable alternative is to
model only the propagating front itself, which we do using
a particle-based approach. This approach necessarily omits
many complex demographic effects which may have occurred
locally within the real spread; but that is also true of the FKPP
equation most frequently used to model the neolithization. And
given the limitations of the current data, it would be premature
to adopt more complex demographic models for the spread on
the continental scale; almost all models of the neolithization
of Europe as a whole have therefore similarly focused on the
propagation of the front.

We select a starting point for our initial population, and at
a small radius from this point we approximate a circle with a
small number of “particles” (points); these particles define our
front. An alternative approach is to define a regional source;
however, for simplicity here we take a localized source. We
keep track of the index of the adjacent particles and so can
easily define local tangent and normal vectors, and in particular
the local unit outward normal n̂. (Here outward means in the
direction of the advancing front.) We perform all simulations
in spherical polar coordinates, at a fixed radius R, set to
approximate the Earth’s surface (R = 6378 km), and define
the position in terms of the polar and azimuthal angles φ

and λ, respectively; i.e., x = (φ,λ). Numerically, at each time
step, we move the particle i, at position xi = (φi,λi) and with
velocity ui = U (xi)n̂i , a small amount in both the φ and λ

directions according to

dxi

dt
= ui . (3)
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Here n̂i is the local outward normal, and t represents the time
in years. As discussed in Sec. I, there are local deviations in the
rate of spread of the neolithic, particularly along traversable
waterways. We follow [8] in allowing an increased rate of
spread along all coastlines, and also along the Danube-Rhine
river systems. We label the enhanced coastal velocity as VC,
and the river velocity as VR. In the partial differential equation
approach, these velocities appear as additional advective terms
in the FKPP equation [Eq. (1)], which can be identified with
anisotropic diffusion [8]. In the wave-front approach, we can
instead simply add this effect to the velocity experienced by
particle i, which becomes

ui = U n̂i + Vi , (4)

where the total advection from both river and coastal terms at
position xi is

Vi = VCsgn(n̂i · ṼC,i)ṼC,i + VRsgn(n̂i · ṼR,i)ṼR,i . (5)

Here VC (R) are the “amplitudes” for the river and coastal
advective speeds, and ṼC (R),i are normalized vectors in the
direction of the relevant local advection (normalized to unit
magnitude at points on the river or coast). The sign functions
ensure that the sense of the advection (e.g., upriver or
downriver) is that which enhances the outward speed of the
locally expanding wave front. We use MCMC methods below
to infer the acceptable range of the amplitude parameters VC

and VR, given the radiocarbon data.

A. Spatial dependence

It is intuitively sensible that the local altitude should have
a significant effect on the spread of the neolithic; and, indeed,
early farming in Europe does not seem to have been practical
at altitudes greater than 1 km above sea level (e.g., there are
no LBK sites above this height in the Alpine foreland [24]).
There is also significant evidence [4,25] that the latitude (acting
partly as a proxy for the climate) had a significant impact
on the productivity of the land, and therefore the ability
to farm. Another latitudinal effect noted in the literature is
an increased competition in the north with the preexisting
mesolithic population [7]. Both of these factors motivate a
decreased wave speed at higher latitudes.

In order to introduce these spatial dependences into the
model, we use arrays of geographical altitude data taken from
the ETOPO1 1-min Global Relief database [26], taking a
data set with spatial resolution of 4 arc min. This forms a
740 × 1100 mesh, with approximate longitudinal boundaries
of 15◦ W and 60◦ E and latitudinal boundaries of 25◦ N and
75◦ N.

At points on this grid, we calculate the local velocity to
reflect the factors outlined above. On land, we require the
speed to decrease to zero at altitudes above 1 km, using a
smooth approximation to a step function. To allow for limited
sea travel we use a different form of cutoff at low altitude,
setting the speed of the wave front to decrease exponentially
with the distance to the nearest land (dc). We also include a
linear dependence of U on latitude. As a result, we calculate
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FIG. 1. (Color online) (a) Spatial variation of the speed U (x)
[from Eq. (6)]; (b) magnitude of the distance-weighted coastal and
river vectors |Ṽi | [as in Eq. (5)].

the local velocity on our grid as

U = U0

(
5

4
− φ

100◦

){
1
2 − 1

2 tanh{10(a − 1 km)}, a > 0,

exp(−dc/10 km), a < 0.

(6)

Here U0 is the background amplitude determining the mean
rate of spread; we expect U0 to be of order 1 km/yr, but use
our MCMC methods below to infer the acceptable range of
this parameter (given the radiocarbon data) more rigorously,
along with the parameters VC and VR introduced above. The
spatial variations in U are illustrated in Fig. 1 (top).

To deal with the advection terms, the river and coastline
vectors used in this study are taken from [27], which contains
vector data of the world’s coastlines and major rivers. We
take a subset of these data, which contains all the coastlines
within our domain, and the river vectors corresponding to the
Danube and Rhine. To obtain values of VC (R) at each point
on our mesh, a distance-weighted contribution is taken from
each of the irregularly spaced vector data segments which
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define the river in [27]. Specifically, the contribution from
each segment is weighted by exp(−dvec/15 km), where dvec

is the distance between the grid point and the river or coastal
vector (in kilometers). The magnitudes of the river and coastal
vectors are shown in Fig. 1 (bottom). The small-magnitude
features visible in some inland nonriver locations in this plot
are associated with small lakes, which are included in the
coastline database. These features have no significant effect
on our model.

It is perhaps worth commenting on our use of present-day
information about coastline and river locations, since these
locations have changed over the time scale of the spread we
are modeling; most obviously, coastlines have changed as a
result of sea-level changes arising principally from postglacial
isostatic adjustment. During earlier work based on the PDE
approach, we investigated the effect of such changes, using
a sea-level model supplied by geophysicists from Durham
University (e.g., [28–30]). The effect on our model was
negligible, since the most significant changes in sea level were
in the north, and had largely occurred by the time that the
neolithic wave reached the northern coasts (so that potentially
important land bridges had already disappeared) [31]. We have
not tried to account for changes in the courses of rivers, but we
do not expect that such relatively local changes would have a
significant effect on the large-scale spread on which we focus.

In our wave-front model, to calculate the local speed U

appropriate at the precise position of particle i [as is needed
for Eq. (4)], we use bilinear interpolation from the values at the
four closest mesh points. Similarly, the local advective vectors
at the precise position of particle i are also obtained using
bilinear interpolation from the closest mesh points; it is these
local vectors which appear in Eq. (5).

B. Wave-front algorithms

We monitor the separation between the particles, and if this
becomes larger than some specified value δ, we introduce a
new particle in order to maintain a roughly constant resolution
along the front; see Fig. 2(a) for an illustration of this process.
Due to the irregular nature of the velocity map shown in
Fig. 1, the wave front can separate around low-velocity regions
(e.g., mountain ranges), and subsequently remerge. We apply
algorithms initially used to model the evolution of magnetic
flux tubes in astrophysical simulations [32] to merge wave

fronts in the particle model. At every time step we check the
distance between each particle and all the other particles in
the simulation. If the separation of any two particles (which
are not neighbors) is less than the resolution length δ, then
we remove the encroaching points and switch the ordering
of the loops, so as to merge the fronts; a schematic of this
process is shown in Fig. 2(b). Typically this process results in
a merging of the main front and the creation of a small loop
behind the main front, which we normally remove from the
simulation to avoid unnecessary numerical effort. Snapshots
from a simulation where these small loops are not removed
are shown in Fig. 3. In the work reported here, we take δ to be
equal to our grid spacing of 4 arc min.

C. Comparison between simulations

We now present qualitative results on the comparison
between the wave-front model and the PDE model for a
typical parameter set. For these (and subsequent) calculations,
we place the initial source of the farming population at
40◦ N, 35◦ E, within the Fertile Crescent. The starting time
for the spread is taken as 6572 yr cal BC as this date is
consistent with [8] and the radiocarbon data at the site Tell
Kashkashok. The FKPP equation (1) is solved numerically,
approximating spatial derivatives using a second-order finite-
difference scheme, and time stepping using an Euler scheme.
The spatial resolution is 4 arc sec, on a 740 × 1100 mesh.
This is the same mesh introduced above to control the spatial
variations for our wave-front model; the same spatial variations
are used for the FKPP equation. The reduced computational
effort of the wave-front method provides us with a significant
speedup, with a typical simulation taking approximately 10 s
on a single processor with a clock speed of 2.67 GHz. The
corresponding solution to the FKPP equation, with a time
step satisfying the Courant-Friedrichs-Lewy condition [33],
requires approximately 24 h on an eight-processor cluster with
hyperthreaded Intel Xeon quadcore processors of the same
clock speed.

While we do not expect an exact agreement between the two
models, we do expect their arrival time at a particular site to
be similar. Indeed, we do find a reasonable agreement between
the two models, with a maximum discrepancy in the arrival
time of approximately 120 yr and typical values less than 50 yr

FIG. 2. Schematic of the algorithms: (a) for the insertion of a new point (open circle) in a spreading front; (b) for the removal of encroaching
points (central circles) in merging fronts.
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FIG. 3. (Color online) The wave-front model plotted just before (a) and after (b) a merging event. The color gradient plot displays the
altitude (in meters) for this region (the eastern Mediterranean). Note that the small loop shown behind the merged front would normally be
removed from the calculation, but has been left in here for illustrative purposes.

(for a simulation covering of order 5000 yr). Figure 4 shows
snapshots at four times during the simulations.

III. RADIOCARBON DATA

We use a compilation of 302 dates from sites in southern and
western Europe from [25,34,35]. These data contain multiple
dates per site and so we determine a single date for each
site by using a method based on [20]. The method we use is
described in detail by Davison et al. [36]. Briefly, for sites with
at least eight date measurements, a χ2 statistical test is used
to determine the most likely first-arrival date from a coeval
subsample, and for sites with fewer measurements, we use
a weighted mean of these measurements. Figure 5 shows a
plot of the radiocarbon sites shaded according to the estimated
first-arrival time ti obtained from this statistical treatment.

In this paper we focus on a statistical model with a
single error term accounting for mismatch between the data
and the wave front; this is described in the next section.
While this approach is not entirely satisfactory, the additional
complication of properly accounting for varying site errors
would add another level of complexity, which was deemed
prohibitive for this initial investigation. However, a statistical
model which accounts for errors in the dates that can vary
between sites may be adopted in future studies.

IV. BAYESIAN INFERENCE

We now outline the proposed statistical model and provide
details of our Bayesian inference scheme. Let τ (xi |θ ) denote
the time at which the wave front arrives at site i, at position xi ,
for i = 1, . . . ,n, where n = 302 is the number of radiocarbon
sites in our data set. Here θ = (U0,VC,VR)T is the vector of
model parameters about which we want to draw inferences.
The observed arrival time at site i is denoted by ti and these
times are displayed in Fig. 5. Our statistical model assumes
that these data are generated by the wave-front model subject
to (spatially) independent normal errors. Specifically, at site i

we have

ti = τ (xi |θ) + σεi, i = 1, . . . ,n, (7)

where the εi are independent and identically distributed
standard normal random variables and σ is the spatially
homogeneous standard deviation, allowing for a mismatch
between the model and the observations (i.e., local variations
in the arrival of the wave front, corresponding to the expected
local deviations from the idealized, global model).

By adopting a Bayesian approach to the problem of
inferring the model parameters, we express initial beliefs
about likely parameter values via a prior distribution, denoted
π (θ ,σ ). We then construct the posterior distribution of our
parameters, given the observed arrival times. Bayes’ theorem
gives this posterior distribution as

π (θ,σ |t) ∝ π (θ ,σ )π (t|θ,σ ), (8)

where π (t|θ,σ ) is the likelihood function, i.e., the joint
probability of the observed arrival times, regarded as a function
of the parameter values. If we assume the model outlined in
Eq. (7), then we can write the likelihood function as

π (t|θ ,σ ) ∝ σ−n exp

[
− 1

2σ 2

n∑
i=1

{ti − τ (xi |θ)}2

]
. (9)

We specify our fairly weak a priori beliefs about θ by adopting
independent log-normal distributions for the components
U0, VC, and VR, with modes chosen to match previous
archaeological estimates [4,21,25]. Specifically we take U0 ∼
LN(0.5,0.712), VC ∼ LN(1,0.52), and VR ∼ LN(2.2,0.82). We
use a weakly informative inverse Gamma prior for the global
error parameter, with σ 2 ∼ IG(5,106).

Due to the complex dependence of the wave-front solu-
tion on the model parameters, the posterior in Eq. (8) is
analytically intractable. Markov chain Monte Carlo methods
are commonly used, in the context of Bayesian inference, to
sample intractable posterior distributions. These methods aim
to construct a Markov chain whose invariant distribution is the
desired posterior distribution. Such approaches are particularly
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FIG. 4. A comparison between the numerical solution to the FKPP equation and our propagating wave-front model. The output from the
wave-front model is shown by the thick black lines. The corresponding output from the FKPP model is shown by the grayscale plots of the
population density, with the scale given to the right of panel (d); the values are in terms of people per square kilometer. The four panels are for
times 1000 (a), 1800 (b), 3000 (c), and 4600 (d) yr after the start of the simulations. In the wave-front simulations U0 = 1 km/yr, VC = 2 km/yr,
and VR = 0. A consistent parameter set is used in the FKPP simulation.

useful for Bayesian inference since the target distribution need
only be known up to proportionality. A recent review of these
methods can be found in [37].

In this paper we focus on a Gibbs sampler [38]. This
particular MCMC scheme can be useful for sampling from
high-dimensional distributions, and requires the ability to
sample from the full conditional distribution of each parameter
(or, more generally, subsets of parameter components). In
the absence of analytically tractable full conditionals, a
Metropolis-Hastings scheme can be used for this. Such an
approach is often termed Metropolis within Gibbs, and its use
is outlined in the next section.

A. Markov chain Monte Carlo algorithm

In this section we provide details pertinent to our imple-
mentation of the MCMC scheme. A more detailed description
of the algorithm can be found in Appendix A.

We consider a Gibbs sampling strategy where we alternate
between draws of θ and draws of σ 2 (and therefore σ )
from their full conditional distributions. The form of the
statistical model and its inverse 
 prior permit an analytically
tractable full conditional for σ 2. Consequently realizations
of σ can be sampled directly. The full conditional density
of θ , namely, π (θ |σ,t), however, is intractable and we
therefore use a Metropolis-Hastings scheme to sample from
the corresponding distribution. In brief, a Markov chain is
constructed by generating candidate values of each component
of θ via a symmetric random walk with normal innovations on a
logarithmic scale: this ensures that proposed parameter draws
are non-negative. A proposed value is accepted as the next
value in the chain with a probability that ensures the Markov
chain has an invariant distribution given by the distribution of
interest. If a proposal is not accepted then the next value for
that parameter is taken to be its current value. The acceptance
probability requires that the target density can be evaluated up
to proportionality. Each MCMC iteration therefore requires a
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FIG. 5. (Color online) The radiocarbon sites we use to constrain
our simulations. The color bar shows the estimated first-arrival time
at a site, in time BC, from the radiometric data.

single run of the wave-front model expanding across the whole
of Europe.

Unfortunately, the number of MCMC iterations required
to produce near independent draws from the joint posterior
distribution precludes using the wave-front model to evaluate
each τ (xi |θ); the individual wave-front model calculations run
too slowly, given the large number of iterations required.

To proceed, we seek a faster approximation of the first-
arrival times from the wave-front model. One option is to use
a deterministic approximation, such as linear interpolation or
cubic splines. Initially the wave-front model would be run at
a specific set of parameter values, and the arrival time at each
site stored. Parameters within the interpolation method could
readily be computed from this output. The arrival time at new
parameter sets could then be approximated using the chosen
deterministic “emulator.” In the statistical literature [39], Gaus-
sian process emulation is favored, as this not only interpolates
smoothly between design points but also quantifies levels of
uncertainty around interpolated values. Further details on how
to build and test such emulators can be found in Appendix B.
Using these emulators to approximate the first arrival times
τ (xi |θ ) at each site makes the MCMC scheme outlined above

computationally practicable. The scheme produces a sample
from the joint posterior distribution of our model parameters.

V. RESULTS

We now present results obtained from the output of the
MCMC scheme. We performed 5.5 × 106 iterations of the
algorithm before discarding the first 5 × 105 parameter draws
as “burn in” to allow the chain to converge. The remaining 5 ×
106 iterates were then thinned to reduce the autocorrelation in
the sample: we took every 500th iterate, leaving a sample
of 104 (almost) uncorrelated values from the joint posterior
distribution. We assessed convergence of the MCMC scheme
by repeating the above procedure for many different starting
parameter sets (randomly drawn from the prior distribution)
and found no problem with convergence.

The output of the MCMC scheme is summarized in Fig. 6.
It shows kernel density estimates [40] of the marginal posterior
probability density function, for each of U0, VC, VR, and σ .
For the three parameters in our mathematical model, the modes
of the marginal posterior distributions (in black in Fig. 6)
are of the magnitude expected from other studies in the
literature (as described in Sec. I). Compared with their respec-
tive prior distributions (in red), the posterior distributions are
considerably tighter, showing that the radiocarbon data have
indeed been informative, and have effectively constrained the
plausible range of model parameters. For example, posterior
samples of the background wave speed U0 (with a mode of
approximately 1 km/yr, and a 95% range of 0.79–1.41 km/yr),
are in good agreement with the studies cited in Sec. I [4,5,8]. In
terms of an FKPP model, with a growth rate of γ � 0.02 yr−1

(of the order typically used in such models), this would
correspond to a diffusivity of ν � 13 km2/yr; this value is
also comparable to those typically used in FKPP models.

The only previous studies which have modeled an enhanced
population mobility along waterways [8,9] were motivated
by results based on specific local phenomena. For example,
the incorporation of enhanced coastal speeds within the
model was motivated by radiocarbon evidence for the spread
of the Impressed Ware culture along the coastline of the
western Mediterranean, with some estimates of speeds of order
10 km/yr [19,21]. While some form of enhanced spread along
the coastline of this region may be required, extrapolating to
a similar spread along all of Europe’s coasts might very well
give an inferior fit to the data as a whole. For example, if

FIG. 6. (Color online) Marginal posterior densities (upper black lines; prior distribution, lower red line) for (a) U0, (b) VC, (c) VR, and
(d) σ , based on the (thinned) output of the MCMC scheme, using a Metropolis within Gibbs sampler. PDF represents the probability density
function.
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we take the rate of spread along all of Europe’s coastlines
to be of order 10 km/yr, then the wave front may arrive at
many sites far earlier than the radiocarbon data suggest. The
inference presented in this paper seems to confirm this, as
marginal posterior samples of the global coastal propagation
speed VC (with a mode of around 0.3 km/yr, and a 95% range
of 0.23–0.41 km/yr) are markedly lower than the values quoted
for the Impressed Ware culture.

Posterior samples of VC are also significantly lower than
the corresponding value used in [8] (20 km/yr). It may be
that, compared with that earlier work, our more rigorous
method of comparing models against the data suggests an
improved model fit without a large enhanced coastal speed,
and with regional data variations (such as those associated
with the Impressed Ware culture) largely accounted for within
the global error parameter in our statistical model (discussed
further below). This may not entirely explain the difference
between the two studies, however; it is also possible that the
implementation of coastal advection in [8] has exaggerated
the overall magnitude of this effect. The value quoted there
for the advection actually only applies at points exactly on the
coast, whereas nearby locations experience a reduced velocity,
decreasing with their distance from the coast; as a result, the
mean, effective, advective speed may be somewhat lower than
the peak value quoted.

In terms of the river advection, the marginal posterior values
of VR are clearly non-negligible (with a mode of approxi-
mately 1.0 km/yr, and a 95% range of 0.72–1.38 km/yr);
it is comparable to the background spread modeled by U0,
vindicating the suggestion of anisotropic spread along these
river basins. However, this value is significantly smaller than
the values normally quoted for the spread of the LBK culture
(of order 5 km/yr) [8]. This deviation may be due to the
reasons discussed above for the coastal velocity. However,
the discrepancy with the widely accepted archaeological time
scale for the LBK culture (which does not refer to a spatial
mathematical model, but is obtained directly from a coeval set
of radiocarbon dates) requires further explanation. Looking
in detail at the data in this region, it may be that the
earliest dates associated with the LBK culture simply do not
correspond well to spread by a continuous wave of advance

(anisotropic or otherwise); rather, early settlements may have
been been formed by something like a leapfrog or pioneer
mechanism, and the whole region only settled (and outward
spread continued) after some subsequent delay. In this paper
we have studied a model of large-scale spread, but it may be
the model is too crude and would need small-scale refinement
to explain the spread of the LBK culture.

For the global error parameter in our statistical model
[Eq. (7)], σ , the marginal posterior distribution, is centered
on a value of order 600 yr (see Fig. 6). The 95% confidence
range is 577–671 yr. This is significantly larger than the
values typically quoted for the effective minimum uncertainty
of radiocarbon dates for this period, of order 160 yr [20].
The latter value is derived empirically from well-explored,
archaeologically homogeneous sites, effectively allowing for
sample contamination and other sources of errors; this may
be contrasted with the quoted laboratory uncertainties, which
characterize only the accuracy of the laboratory measurement,
regardless of the provenance of the sample. The global
parameter (σ ) in our model, however, does not merely reflect
the uncertainty in the dating, but also allows for the mismatch
between our mathematical model of the spread (a globally
continuous wave of advance) and the regional variations
present in the actual spread. Thus our inference suggests that
a simple global wave of advance across southern and western
Europe, while remaining a good model on the continental
scale, should be considered a good model only on time scales
of order 600 yr (and thus length scales of order 600 km) or
greater; on shorter time scales (and length scales), significant
local variations should be expected. As noted briefly above
(in our discussion of the advective velocities), this parameter
within our model may to some extent allow for regional
variations that might alternatively be modeled by specific
regional effects (e.g., river advection), thus explaining the
relatively low values of our inferred advective speeds. The
posterior distributions suggest that this type of fit—requiring
relatively large global uncertainty, but then favoring relatively
low local advective speeds—is the optimum way of explaining
our data set of first-arrival times within a wave of advance
model of the sort presented here. Of course, the conclusions
of this inference may depend upon specific features of the
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FIG. 7. (Color online) Predictive densities for the arrival time at three sites plotted as black lines, with the observed radiocarbon dates
plotted as (red) asterisks. (a) Site Kremenik, located at 42.3◦ N, 23.27◦ E, an example of a bad model fit, where our model predicts a much
earlier arrival time than is presently observed; this point can be seen plotted as a triangle in Fig. 8. The middle and right panels are examples
of more typical agreement between the model and data. (b) Agrissa Magoula (39.63◦ N, 22.47◦ E) and (c) Seskto (39.28◦ N, 22.82◦ E).
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models used here (both mathematical and statistical), and
may vary for different models. In extensions to the current
work we will explore alternative models, e.g., allowing for
increased regional variation in the coastal advection, and
allowing for spatial correlation between nearby sites within
the statistical model. We will also consider additional, more
recent, radiocarbon data, which will provide observed arrival
times at new sites, and will thereby allow an out-of-sample
assessment of prediction error.

In addition to performing inference for the model param-
eters, we use predictive simulations to assess the validity of
the statistical model and the underlying model of the wave
of advance. The posterior predictive distribution of the arrival
time at a site i, ti,pred, can be determined as follows. Using
Eq. (7) we have that

ti,pred|θ ,σ ∼ N(τ (xi |θ),σ 2),

where τ (xi |θ ) is the arrival time of the wave front, approxi-
mated by the emulator. We therefore take each sampled pa-
rameter value (θ (j ),σ (j )) from the MCMC output and generate
a realization from the predictive arrival time distribution by
simulating realizations from t

(j )
i,pred|θ (j ),σ (j ). We thus obtain a

sample of first-arrival times at each site. Figure 7 shows the
predictive densities for three sites.

To see where our model is failing to agree with the radio-
carbon data, sites where the observed radiocarbon date falls
outside an approximate 95% credible interval for predicted first
arrival are plotted as filled symbols in Fig. 8; sites which fall
inside this interval are plotted as open circles. We distinguish
between sites where our model predicts an earlier arrival time
than is observed in the radiocarbon data, and those where our
model arrives late. Where we predict an earlier arrival time, it
is quite possible that the radiocarbon data at the site are simply
from a relatively late settlement within this local region, and
earlier data there have yet to be discovered. Where the model
predicts a later first arrival time than is observed, then this may
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FIG. 8. (Color online) Discrepancies between the predicted first-
arrival time (modal values of ti,pred) and the observed values (ti).
Filled blue triangles (red squares) show sites where the model predicts
anomalously early (late) arrivals. Open circles show sites with more
acceptable agreement.

be an indication that some localized process, which we have
not included in our model, has caused a much faster spread in
this region.

VI. CONCLUSIONS

In this paper we have introduced an innovative wave-front
model, which allows the efficient simulation of the spread of
a wave of advance model (with both isotropic and localized
anisotropic components of spread); we have applied this model
to the spread of neolithic culture across Europe (with the
localized anisotropy being associated with a hypothesized
enhanced rate of spread along certain waterways). We adopted
a Bayesian approach to the problem of inferring the model
parameters given observed arrival times, which we assumed
were given by the wave-front model but subject to Gaussian
error. A Markov chain Monte Carlo scheme was used to sample
the intractable posterior distribution of the model parameters.
To alleviate computational cost, we constructed Gaussian
process emulators for the arrival time of the wave front at
each radiocarbon site. As a result, we obtain the marginal
posterior probability distributions for the model parameters of
interest: the background rate of spread (U0), and the enhanced
rates of spread associated with coastlines (VC) and with the
Danube-Rhine river systems (VR). To our knowledge, this is
the first attempt to apply such inference techniques to this
problem.

We find that the posterior variance is reduced (relative to the
prior variance), suggesting that the data have been informative.
Marginal posterior samples of U0, with a modal value of order
1 km/yr, are consistent with previous studies [5,8]. Modal
values for VC and VR are of order 0.3 km/yr and 1 km/yr,
respectively. This value for the river advection (VR � 1 km/yr)
is clearly comparable to the speed of the background spread
(U0), confirming that an enhanced spread within these river
basins can be robustly concluded from the data. This value is
nevertheless significantly smaller than the value of 5 km/yr
often quoted for the rate of spread of the local neolithic culture
(the LBK culture) [19,20]. A closer inspection of the relevant
data suggests that the spread of this particular culture may
not be particularly well modeled by a continuous wave of
advance, and subsequent models for this region may wish
to pursue other possibilities; the estimate of 1 km/yr given
above should simply be considered as the best-fitting value
within the constraints of the current model. The relatively
low modal value for the coastal advection (VC � 0.3 km/yr)
suggests that such an advection, while not negligible, should
not be considered particularly significant throughout Europe as
a whole. This is perhaps not surprising, given that the principal
motivation for this effect applies only to a specific region of
Europe (the western Mediterranean coastline, along which the
Impressed Ware culture spread [19,21]).

In addition to performing inference for the parameters
characterizing the wave front, we also infer the global error
σ (here formally introduced within our statistical model),
representing both uncertainty in the radiocarbon dates and the
misfit between our simple global wave-front model and the
true spread (with its regional variations and local anomalies).
The posterior modal and mean values for σ are of the order
of 600 yr, significantly larger than the uncertainty normally
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associated with radiocarbon dates for sites of this period (of
order 160 yr) [20]. We therefore argue that this time scale, of
order 600 yr (and consequently also a length scale, of order
600 km), is the scale at which the spread of the neolithic in
Europe can be considered well modeled by a simple wave of
advance: at longer time scales and length scales (and clearly
on the continental scale), such a model of the spread performs
well; at shorter time scales and length scales, significant local
deviations from such a simple spread must be expected. The
quantification of this scale is an important result from our
inference.

Of course, the conclusions above must depend to some
extent upon the specific models introduced here (both our
mathematical wave-front model and the statistical model
involving a global error parameter). In extensions to this
work, we intend to investigate the robustness of these results
with respect to various changes in these models. In our
wave-front model, we first intend to investigate the possible
importance of more regional variations within the enhanced
spread along waterways. For example, we plan to allow
different amplitudes of coastal enhancements within different
regions, thus allowing us to explore more effectively the
possibility of a regionally enhanced spread in the western
Mediterranean, as proposed for the Impressed Ware culture
there. We may also allow for advective velocities along other
river systems, in addition to the Danube and Rhine.

Implicit in our statistical model is the assumption of
spatially homogeneous normal errors. This assumption may
be unnecessarily restrictive, and alternative statistical models
(with more complex error structures) should be considered.
For example, the statistical model may be adapted to allow for
dates at different sites having differing uncertainties; building
this into the model might result in a more meaningful fit (e.g.,
avoiding the possibility that a single global error parameter,
as used here, may be unnecessarily smoothing out the fit
everywhere). Further model refinements may also be possible.
The wave of advance clearly expects that nearby sites will have
similar arrival times; in the current model, however, nearby
sites are not linked in any way. We will therefore allow for
spatial correlation between nearby sites, potentially helping
to smooth out locally anomalous dates, and also allowing
another estimate of the scales over which the radiocarbon data
correspond well to a simple wave of advance.

The neolithization of Europe is obviously not the only
possible application for the methods introduced here, and
applications to other regions or to other prehistoric periods
(e.g., the dispersal of paleolithic cultures) also have great
potential. Other applications would of course have their own
difficulties, with one likely challenge being the relative scarcity
of empirical data in many cases. One such case is the spread
of neolithic culture from the Near East to South Asia; there
are significant gaps in the radiocarbon record between these
regions, and it would be of great interest to see how our
methods could help to model this spread.

APPENDIX A: THE METROPOLIS-HASTINGS
ALGORITHM

We provide a detailed step-by-step description of the
MCMC scheme we use to sample from the posterior distribu-

tion of the model parameters, π (θ,σ |t). (This type of scheme
is well established within the statistical literature [37,38],
but is presented here to help the more general readership to
appreciate the current work.)

We use a Gibbs sampling strategy, alternating between
draws of the full conditional distributions π (σ |θ,t) and
π (θ |σ,t). Algorithmically, we perform the following steps:

(1) Initialize σ (0) and θ (0). Set j = 1.
(2) Draw σ (j ) ∼ π ( · | θ (j−1),t).
(3) Draw θ (j ) ∼ π ( · | σ (j ),t).
(4) Set j := j + 1 and go to step 2.
The resulting Markov chain has an invariant distribution

given by π (θ,σ |t) [37]. The full conditional for σ can be
sampled straightforwardly as, if ζ = σ−2, then

ζ |θ,t ∼ 
(A,B), (A1)

where

A = a + n

2
, B = b +

n∑
i=1

{ti − τ (xi |θ )}2 /2.

Hence, in step 2 of the Gibbs sampler, σ (j ) is generated by first
drawing ζ (j )|θ (j−1),t and then setting σ (j ) = 1/

√
ζ (j ). Since

the full conditional for θ is analytically intractable we use a
Metropolis-Hastings update in step 3. Define

λ ≡ (λ1,λ2,λ3)T = ( log(U0), log(VC), log(VR))T

and note that under the prior specification adopted for θ ,
each component λi , i = 1,2,3, follows a normal distribution
(independently) a priori. In step 3 of the Gibbs sampler we
propose a new value λ∗ via a symmetric random walk with
normal innovations, that is,

λ∗
i = λi + ωi , ωi ∼ N

(
0,δ2

i

)
, i = 1,2,3,

where the δi are tuning parameters, the choice of which will
influence the mixing of the Markov chain. Large values of
δi will lead to small acceptance probabilities, and the chain
will rarely move; whereas small δi will lead to many accepted
proposed values, but slow exploration of the parameter space.
We accept the proposed value and take λ(j ) = λ∗ with proba-
bility α; otherwise we take the current value λ(j ) = λ(j−1). The
acceptance probability is given by

α = min

{
1,

π (λ∗)π (t|λ∗,σ (j ))

π (λ(j−1))π (t|λ(j−1),σ (j ))

}
, (A2)

where π (λ) denotes the prior density ascribed to λ and
π (t|λ,σ ) is given by Eq. (9) with θ = exp(λ).

APPENDIX B: EMULATION

The MCMC inference scheme typically requires many
iterations, with each iteration requiring a full simulation of the
expanding neolithic front to evaluate the likelihood function.
As simulations of the front are computationally expensive,
we emulate the model using Gaussian processes (GPs) [22],
that is, stochastic approximations to the arrival times obtained
from the wave-front model. These methods are widely used
in the computer models literature; see, for example, [39] and
references therein. In brief, the wave-front model is run for a set
of training points; the emulator then allows the interpolation of
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the model output between these points. For pragmatic reasons,
we build an individual emulator for each radiocarbon site,
rather than attempt to build a complex time-space emulator.

Consider the arrival time τ (xi |θ) at a single site i. For
simplicity of notation, we denote this arrival time by τ (θ).
Our emulator for the arrival time uses a Gaussian process with
mean m(·) and covariance function k(·,·), that is,

τ (·) ∼ GP(m(·),k(·,·)). (B1)

We choose a suitable form for the mean function, given the
approximate relationship expected between the arrival time
at a site and the parameter values, which are all speeds. The
simple relation d = Ut , where d represents distance, t time,
and U speed, gives t ∝ 1/U , so we choose a mean function
which reflects this:

m(θ) = α0 + α1
1

U0
+ α2

1

VR
+ α3

1

VC
, (B2)

where the coefficients αk are determined using least-squares
fits. These coefficients essentially account for the relative
importance of diffusive, river, and coastal spread, given the
complicated geography between the source of the spread and
the particular site being emulated. There are various possible
choices for the form of covariance function. We use a stationary
Gaussian covariance function

k(θ ,θ ′) = a exp

⎛⎝−
3∑

j=1

(θj − θ ′
j )2

r2
j

⎞⎠ , (B3)

with hyperparameters a and rj (j = 1,2,3), which must be
determined from the training data.

Suppose that p simulations of the (computationally ex-
pensive) wave-front model are available to us, each pro-
viding the arrival time at each radiocarbon-dated site. Let
τ (�) = (τ (θ1), . . . ,τ (θp))T denote the p vector of arrival
times resulting from the wave-front model with input values
� = (θ1, . . . ,θp)T , where θ i = (U0,i ,VR,i ,VC,i)T . A Gaussian

process can be viewed as an infinite collection of random
variables, any finite number of which are jointly normally
distributed. Therefore, from Eq. (B1), we have

τ (�) ∼ N (m(�),K(�,�)),

where m(�) is the mean vector with j th element m(θ j ), and
K(�,�) is the variance matrix with (j,�)th element k(θ j ,θ �).

We can model the front arrival time at the site for other
values of the input parameters θ∗ as follows. Using the standard
properties of the multivariate normal distribution, the arrival
time has distribution

τ (θ∗)|τ (�) ∼ N (μ(θ∗),�(θ∗)), (B4)

where

μ(θ∗) = m(θ∗) + K(θ∗,�)[K(�,�)]−1[τ (�) − m(�)],

�(θ∗) = K(θ∗,θ∗) − K(θ∗,�)[K(�,�)]−1K(�,θ∗).

To simplify the notation, we have dropped the dependence in
these expressions on the hyperparameters a and rj (j = 1,2,3).

1. Fitting the emulator

We build a separate emulator for each site for which we
have radiocarbon data. Although a single run of the wave-front
model for particular input parameters θ i is computationally
intensive, such a run gives the first-arrival time at all sites,
so that only p runs of the wave-front model are needed to
construct the training data for all n emulators.

We fit each emulator using a Metropolis-Hasting algorithm
(similar to that described in Appendix A), to obtain the
posterior distributions for the hyperparameters. Figure 9 (left)
shows the traces of the resulting hyperparameter chains (for
a single radiocarbon site), and Fig. 9 (right) shows the corre-
sponding posterior densities. These plots are representative
of the MCMC estimation of the posterior hyperparameter
distributions at other radiocarbon sites.
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FIG. 9. Traces for the hyperparameters of the emulator for the radiocarbon site Achilleion, located at latitude 39.2◦ N, longitude 22.38◦ E
(a), and the posterior distributions of the four hyperparameters from these MCMC chains (b). The output from these chains varies from site to
site, and it is important to construct a separate emulator for each site, to obtain accurate emulation of the wave-front model.

016105-11



BAGGALEY, SARSON, SHUKUROV, BOYS, AND GOLIGHTLY PHYSICAL REVIEW E 86, 016105 (2012)

0.6 0.7 0.8 0.9 1 1.1 1.2 1.3
5000

5500

6000

6500

7000

7500

U0

t B
C

FIG. 10. (Color online) The mean output from one emulator
(thick black line), with the training points used also plotted (red
circles). The thin upper and lower lines show ± two standard
deviations of the emulator output. The (blue) squares represent
further output from the wave-front model, which were not used in
constructing the emulator. The discrepancy between these points and
the emulator output can be used as a test of the emulator.

While it is possible in theory to fit the emulator and the
statistical model in Eq. (9) jointly using an MCMC scheme,
this would be extremely computationally expensive. We
therefore fit the emulator and the statistical model separately.
In particular, when using the emulator output in the inference
scheme described in Appendix A, we fix the hyperparameters
at their posterior means. We believe this approach is justified,
as even allowing for the (low) posterior uncertainty of the
hyperparameters makes little difference to the (predictive) fit
of the emulators.

For illustration, Fig. 10 shows the output from one emulator,
together with the training data, when we fix two of the
parameters (VC and VR) and consider only variations in the
U0 axis. The magnitudes of the errors shown in the plot are
consistent with those from the three-parameter emulator.

2. Selection of training points

The selection of the training points � in parameter space
merits further comment. Although using a regular lattice
design is appealingly simple, it is not particularly efficient.
Instead, we adopt a more commonly used design for fitting
Gaussian processes, the latin hypercube design (LHD) [41].
Designs of this class distribute points within a hypercube in
parameter space more efficiently than a lattice design. If we
consider any single parameter direction in isolation, the mean
separation between points is p−1, as opposed to p−1/3 for a
regular lattice.

We constructed our 200-point LHD using the MATLAB

routine lhsdesign. Initially we set the lower bounds of
the hypercube to be the origin and used the upper first
percentiles of the prior distribution as its upper bounds. We
then repeatedly ran the inference algorithm (described in the
following section), used the results to determine a conservative
estimate of a hypercube containing all points in the MCMC

output (and therefore plausibly containing all of the posterior
density), and generated another LHD. The final LHD used for
inferences on (U0,VC,VR)T in this paper is contained within
the hypercube (0,3.1) × (0,3) × (0,2).

3. Testing the emulator

It is imperative that the accuracy of the fitted emulators as an
approximation to the wave-front model be assessed. We there-
fore considered various quantitative statistics [42]. We created
a second LHD with p∗ = 100 points, �∗ = (θ∗

1, . . . ,θ
∗
p∗ )T ,

and determined the front arrival time at all sites for each θ∗
i

using both the emulator mean (with its hyperparameters fixed
at their posterior means) and the wave-front model: we denote
these arrival times by τ ∗ and τ , respectively. (Separate values
of these quantities exist for all sites; but for simplicity, as in
the preceding sections, the specialization to individual sites is
left implicit.)

For brevity, we discuss only the analysis of a statistic which
includes both site-specific accuracy and correlation between
residual errors (at the emulator test points): the Mahalanobis
distance, D, defined via

D2 = (τ ∗ − τ )T V (�∗)−1(τ ∗ − τ ), (B5)

where

V (�∗) = K(�∗,�∗) − K(�∗,�)K(�,�)−1K(�,�∗).

[Note that V (�∗) is defined analogously to �(θ∗) above, but
now contains information about all p∗ test points in �∗.] It can
be shown that D2 follows a scaled F distribution [42] in the
case of the GP emulator, with D2 ∼ p∗(p − 5)Fp∗, p−3/(p −
3). Figure 11 shows the Mahalanobis distance at each site,
together with the upper 95% point of its distribution. This,
along with our analyses of other statistics (not presented here),
confirms that the emulators provide a reasonable fit throughout
the design space. These diagnostics gave similar results for
different LHDs, without any systematic site-specific biases.
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FIG. 11. (Color online) Test of the fit of the emulators to the
radiocarbon data: the Mahalanobis distance Di is plotted for each
radiocarbon site i. The horizontal (red) dashed line (at Di = 11.44)
marks the upper 95% point of the D distribution.
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