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Relationship between clustering coefficient and the success of cooperation in networks
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In recent years the prisoner’s dilemma has become a paradigm for the study of the emergence of cooperation in
spatially structured populations. Such a structure is usually assumed to be given by a graph. In general, the success
of cooperative strategies is associated with the possibility of forming globular clusters, which in turn depends on
a feature of the network that is measured by its clustering coefficient. In this work we study the dependence of the
success of cooperation on this coefficient for regular networks. Additionally, for both stochastic and deterministic
dynamics we show that there is a strong dependence on the initial composition of the population. This hints at
the existence of several different mechanisms that could promote or hinder cluster expansion. We have studied in
detail some of these mechanisms by concentrating on completely ordered networks (large clustering coefficient)
or completely random networks (vanishing clustering coefficient).
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I. INTRODUCTION

The emergence of cooperation in different real systems has
been puzzling researchers in several areas devoted to the study
of systems involving social, economic, or biological organiza-
tion. Even though each of these systems is conformed by single
units with natural competitive tendencies, the emergence of
collective behaviors is undeniable. While natural selection
operates through competition, cooperation is essential to the
evolution and emergence of higher degrees of complexity. The
struggle between competition and cooperation is then one of
the keys in understanding the self-organization of complex
systems conformed by interacting units. Still, many questions
arise regarding how such opposites forces can coexist. The
first models, based on utilitarian precepts ruled by the natural
selection or the rational choice, showed that the cooperative
behavior can only be a very unstable behavioral strategy, easily
invaded by a more exploitative attitude. Despite the conclusive
arguments against the possibility of steady cooperation ex-
pressed by these works, the ubiquity of cooperation in nature
confronted those theoretical results [1].

The survival of the cooperative behavior turned then into
a classical problem of game theory. In this context, the
paradigmatic prisoner’s dilemma game [2] has been widely
studied in different versions. It is usually formulated as a
standard model for the confrontation between cooperative and
selfish behaviors. For many years it was implemented in zero-
dimensional systems, where every player can interact with
any other, until the crucial effects of spatial distribution were
finally noticed [3,4]. Since then, several mechanisms for the
evolution of cooperation have been proposed. Some of them
are summarized in Ref. [5]: kin selection, direct reciprocity,
indirect reciprocity, group selection, and network reciprocity.
Here we have chosen to focus on this last mechanism, which is
associated with the fact that a cooperative individual can take
advantage of the topology of the network to form clusters of
cooperators that are often resilient to the invasion of defectors.

Studies about the effect of network reciprocity have
dominated the literature on spatial distributed games in recent
years [4,6–11] (see, e.g., Ref. [8], where many references
can be found). These works stressed the need of studying

the evolution of the strategies of players of a game beyond
the simplifying assumption of a well-mixed population, where
everybody interacts equally likely with everybody else. The
observation that real populations are not well mixed and
the fact that spatial structures could affect the evolution of
a game and the strategies of the players demanded a new
approach. A natural step was to consider complex networks as
models for the underlying topology characterizing the spatial
or social structures. In the case of a game played on top of a
network or graph, the individuals of a population are located
on the vertices of the graph. The edges of the graph determine
the links through which individuals can interact. In a spatial
model for the prisoner’s dilemma, the players are classified
either as cooperators or defectors and it is assumed that every
agent can play with only its neighbors.

It has been shown that extremely simple rules determine
whether network reciprocity can favor cooperation [10]. Here
we concentrate on the relationship between the possibility
of forming clusters of cooperators and the global success of
cooperating strategies. This has been discussed and analyzed
in many works [4,5,11–20]. In one of the pioneering works
on spatially extended games [4] the authors have analyzed
several shapes for a cluster of cooperators and tested the
stability of each one against the invasion by defectors. They
found that cooperators can survive and grow only if they form
clusters. Other works that studied the clustering effect [5,12]
have shown that, in certain conditions, cooperators can survive
by forming clusters within which they benefit from mutual
cooperation that in turn protects them from the exploitation by
defectors near the borders of the cluster. However, an inverse
relationship between the formation of clusters and the success
of cooperation has also been reported [13]. Recently, the details
of the effects of the topological aspect of the spatial distribution
of players on the final outcome of an evolutionary game have
been studied with increasing interest. In Refs. [14–16] the
authors studied different scale-free networks with controlled
clustering coefficient and found that while the increase of
clustering favors the chance of survival of the cooperative
behavior, the conclusions about the net effect of a higher
clustering are not straightforward inasmuch as there are other
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aspect to be taken into account. In those works the authors
suggested the idea of competing effects and mentioned the
existence of an optimal clustering. Other authors [17–20]
have studied different families of networks. In Ref. [17] the
authors studied the evolution of a game in lattices and networks
with several topologies, concluding that clustering is the
factor that facilitates cooperation, but at the same time, when
the connectivity of the network exceeds a certain threshold,
cooperation cannot survive. The development of cooperation
on small-world networks was studied in Ref. [18], where the
authors also included noise effects. In Ref. [19] the authors
worked with homogeneous small worlds, which exhibit a
homogeneous connectivity distribution. These networks are
analogous to those presented here and their construction will
be explained in detail later. The rationale for the use of
such networks is to separate the roles of heterogeneity and
small-world effects on the dynamics of a game, concluding that
they exhibit opposite behaviors in the evolution of cooperation.
In Ref. [20] the authors studied the evolution of the prisoner’s
dilemma on two different types of homogeneous networks: the
homogeneous small-world network and the regular ring graph.
They verified the prevalence of a sort of resonancelike effect
on the steady proportion of survivor cooperators as a function
of the clustering coefficient, previously reported in Ref. [21].

In contrast, a few authors unveiled the fact that the outcome
of many evolutionary games on networks is strongly correlated
with the initial conditions [8]. In Ref. [22], for example, the
authors study the evolutionary prisoner’s dilemma game on
scale-free networks, centering their analysis on the influence
of the initial distribution of strategies. The authors study not
only different initial proportions of cooperators but also several
types of initial distributions for defectors, located according the
degree of the nodes. They show how the initial configurations
can determine the steady cooperation level.

All these works teach us that even though we are not in
a position to describe with full quantitative detail the path to
cooperation in a real complex system, it is still possible to show
how cooperation can be macroscopically stable. However, in
general, the systems are characterized by using the average
of the fraction of cooperation present in the steady state. It is
not clear that this average is representative of what happens in
individual runs.

In this article we will address some of the problems
mentioned above, but from a microscopic point of view. We
show in detail the process behind the fact that although the
possibility of forming a cluster in some networks is directly
related to their clustering coefficients C, the cooperation
success does not increase monotonically with it. We recall
that the link between the probability of cluster formation and
clustering coefficient is not a universal property of networks
in general. Lattices, for example, are a well-known exception.

We have studied only networks that have the same degree
distribution but differ on their clustering coefficient in order
to isolate as much as possible the contribution of this last
quantity. We have found not only that the equilibrium fraction
of cooperators is a nonmonotonic function of C, but also
that the strong dependence on the composition of the initial
population acquires a new significance. We have found that
for an initial distribution with few cooperators, the average

TABLE I. Payoff table for the prisoner’s dilemma: The strategy
in each row gets the payoff given by the table when playing again the
strategies in the columns.

C D

C r s

D t p

values are not enough to characterize the typical behavior of
the system. Furthermore, we explain in which way the initial
distribution of cooperators is crucial in defining the future
behavior of the system and show which are the underlying
dynamic mechanisms. We show that the nonmonotonicity in
the dependence of the clustering coefficient can be explained
as the combination of two competing mechanisms that do
depend monotonically on it but in opposite ways. A theoretical
approximation allows us also to study the dependence of these
mechanisms on the initial condition.

Recent experiments have shown that humans do not always
update their strategies by imitating the strategy of their most
successful neighbors. In the last section we briefly discuss the
success of cooperation as a function of C for players that have
a given probability pr of randomly changing their strategy. We
show that even though when pr is close to 1 the success of
cooperation evidently does not depend on the network (as all
systems end up with roughly half of the population cooperating
at any given time), for rather large values of pr there is still a
strong dependence on C of the number of cooperators in the
steady state.

II. MODEL

The prisoner’s dilemma is a caricature of a real situation in
which selfish and altruist tendencies compete. It has been the
subject of study of game theory for the past 60 years [2,5,23].
Its name and formal elaboration is attributed to Tucker, who
mentioned it in a classroom in 1950, but it was not until 1952
that the first results about it were published [24].

The formulation of the prisoner’s dilemma as a game is
rather simple. It is played by two players who must choose
their moves between two strategies: to cooperate C or to
defect D. The reward, or payoff, obtained by each player after
one round of the game is given by Table I. Each element
in the payoff matrix represents the payoff of a player using
the strategies in the rows and that when confronting a player
choosing the strategies in the columns. A defector D receives
t , the temptation to defect, when its opponent is a cooperator
C, who in turn gets s, the sucker’s payoff. In the case of
mutual cooperation, each player obtains a reward r , while
mutual defection punishes both players with the payoff p. The
payoffs of the prisoner’s dilemma must satisfy the additional
constraints t > r > p > s and 2r > t + s. Other relationships
between the parameters define the snowdrift and stag hunt
games [8].

In some versions of the game a different set of parameters
is used (r = c − b, s = −b, t = c, and p = 0 [10]) to account
for a slightly different interpretation of the game: A cooperator
C is someone who pays a cost c for any other individual to
receive a benefit b. In turn, a defector does not distribute any
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TABLE II. Reduced payoff table for the prisoner’s dilemma: The
strategy in each row gets the payoff given by the table when playing
again the strategies in the columns.

C D

C 1 1 − t

D t 0

benefits and gets those delivered by the cooperators at no cost.
To simplify the analysis, in the following we use a reduced
version of the payoff table (Table II), which has only one free
parameter. It has been shown that this parameter reduction
preserves the most relevant features of the original prisoner’s
dilemma [4].

In order to study the possibility that the players can change
their strategies as a result of their previous interactions,
thus generating an evolutionary dynamics of strategies, many
authors started to work with the iterated prisoner dilemma,
in which players interact by iteratively playing the game
several times. The history of successes or failures of each
player is recorded in what is called the cumulative payoff.
How the players use the information accumulated in their own
and others’ cumulative payoffs is what defines the rules of
evolution. Operationally, the evolutionary dynamics acts at a
certain instance of the game, for example, after everybody has
played against everybody else, when players decide whether or
not to change strategies, following certain update rules. Before
all the players start again playing the game, all the cumulative
payoffs are set to 0. The spectrum of rules of evolution is
wide and ranges from purely deterministic to purely stochastic
dynamics [10,25–28].

Complementary to the evolutionary aspects mentioned
above, many authors started to analyze spatial games in order
to cope with the limitations associated with the assumption that
players were always part of a well-mixed population. [3,4,8].
The evolutionary behavior of the populations of surviving
strategies of spatial games on networks can be affected by
several features of the underlying topology such as the degree
distribution of the graph, the average distance between nodes,
or the clustering coefficient [6,7,11,27,29].

The concept that cooperators can survive by grouping in
clusters has been discussed and analyzed in many works
[4,10–20]. Intuitively, the reasoning goes as follows. The effect
of the cluster would be to screen the nodes interior from the
presence of defectors. As defectors can only get an advantage
from their interaction with cooperators, only those located next
to the border of a cluster of cooperators should collect any
benefits. In turn, although the cooperators at the border of the
cluster should have lower payoffs because of their interaction
with defectors, their cooperator neighbors at the interior of
the cluster should perform better than the defectors at the
border. Thus, imitating the internal cooperators should always
be more convenient than imitating the bordering defectors,
which should lead to the survival, and even expansion, of the
cluster of cooperators. The problem is that all these arguments,
as well as the very definition of “cluster,” depend crucially on
the structure of the network. The most relevant feature in this
regard is the clustering coefficient C, which measures how
connected the neighborhood of each node is, on average. The

existence of local transitive relationships, closely related to
the clustering [31], is what defines the possibility of survival
of small clusters of cooperators. Paradoxically, it will also be
responsible for the negative effect that an isolated cooperator
may have on incipient cooperative clusters.

Here we use the definition of global clustering coefficient
of Watts and Strogatz [30]. For each node i, its local clustering
coefficient is defined as the quotient between the number
of links joining nodes of the neighborhood of i divided
by the total number of possible links (ki − 1)ki/2. Then
C is defined as the average over i of all local clustering
coefficients. We study the influence of C on the evolutionary
dynamics of the iterated prisoner’s dilemma, but keeping the
degree distribution constant, to disentangle both contributions.
Furthermore, we analyze regular networks (i.e., with the same
number of neighbors for every node) with different values of
C, generated with the following algorithm. Starting from an
ordered network (defined below), we select at random two
pairs of connected nodes. Then we “cut” both connections and
connect each individual to one of the individuals it had not
been connected to before. In other words, the connections
are swapped. If this change gives a network with smaller
C, it is accepted and the network is updated. If it does not
decrease C, the change is only accepted with a fixed (and
typically small) probability. This process goes on until the
clustering coefficient has reached the desired value. Note that
this procedure leaves the degree distribution of the original
network unchanged. When the desired clustering coefficient
is very low, it is to be expected that the resulting network is
very close to a regular random network, independently of the
starting one. In contrast, if C is not small it is to be expected that
the effect of the starting network is much larger. For this reason
we use two different starting networks: ring networks, where
each node is connected symmetrically to the closest k nodes,
and two-dimensional lattice networks. The networks generated
from these two classes are called, respectively, random ring
networks or random lattice networks. Three different starting
lattice networks are used: regular square lattices (k = 4),
triangular lattices (k = 6), and square lattices where each node
is connected to its Moore neighborhood (k = 8). For all values
of k ring networks can be considered as one dimensional
because for a given cluster of nodes the size of the surface
is independent of the volume, whereas for lattice networks the
relationship is V ≈ S2.

Throughout our simulations, we have considered two
types of evolutionary dynamics, one deterministic [8] and
the other stochastic [10]. In both cases each player either
copies the strategy of one of its neighbors or sticks to the
same strategy used in the previous round. In the determin-
istic dynamics each player copies the strategy of its most
successful neighbor if the payoff of that neighbor is larger
than its own. In the probabilistic dynamics, previously used
in Ref. [10], it copies the strategy of a neighbor chosen at
random, with a probability proportional to its relative payoff.
Its own strategy is also included in the pool of eligible
strategies. As the results we have obtained are qualitatively
the same for both types of dynamics, in the following we
focus on the deterministic dynamics and comment briefly
on the small differences obtained when using the stochastic
dynamics.
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III. NUMERICAL RESULTS

In all the cases we consider regular networks with 1000–
5000 nodes with even degrees between 4 and 8. Simulations
with larger systems are computationally much more costly.
Nevertheless, we have performed some simulations with more
than 100 000 agents and we have checked that the curves
obtained are qualitatively very similar. In contrast, for systems
with approximately 100 agents the variation between systems
becomes so great that averages do not give any meaningful
information.

The state of the nodes is synchronically updated and the
payoff of each player is not cumulative in time. As we are
interested in the dependence on the initial conditions we use
two different initial concentrations of cooperators ρc(0) = 0.1
and 0.5 for every network analyzed in this paper. A thorough
analysis of the full range of initial condition is presented in
next section.

If the equilibrium value of ρc is plotted as a function of the
payoff parameter t , leaving all the other parameters constant,
a piecewise constant function is obtained as shown in Fig. 1.
This has also been previously noticed [29], but with a different
payoff table (in the case considered in Ref. [29] a cooperator
gets 0 payoff when playing against a defector). To understand
the origin, and quantify the limits, of these steps, we must
consider the necessary conditions for the propagation of the
cooperating behavior. For a cooperator to have a chance to turn
a defecting neighbor into a cooperating one, its payoff should
be at least larger than that of the defecting neighbor. This leads
to the condition nCC + (k − nCC)(1 − t) > nDCt , where nCC

is the number of cooperator neighbors of the cooperator and
nDC is the number of cooperator neighbors of the defector.
The condition on t can be written as t > k/(k − n), where
n = nCC − nDC . Note that, as nCC � k − 1 and nDC � 1, n is
a natural number that must satisfy 1 � n � k − 2. This gives
a maximum of k − 1 possible steps. Note, however, that in
some networks the range of possible values for n is smaller and
therefore the number of steps of ρc is at most k − 2. In general,

FIG. 1. Steady cooperator density ρc as a function of the
parameter t for three different networks: k = 4 (lattice), a random
lattice with C = 0.2 starting from a lattice with k = 6, and a random
lattice with C = 0.2 starting from a lattice with k = 8.

FIG. 2. Steady cooperator density ρc as a function of the cluster-
ing coefficient C for k = 4 and ρc(0) = 0.5. In the legend (l) and (r)
refer to lattice and ring networks, respectively.

for networks with the same number of k the number of possible
steps will be smaller for the networks with smaller clustering
coefficients. As an example consider the two extreme cases of
a tree and a lattice network with k = 8: Whereas the tree has
the maximum possible of steps, the lattice network can have
at most four steps. In all cases the last step corresponds to
ρc = 0 because for those values of t a cooperator, regardless
of the composition of its neighborhood, is not able to turn
a defecting neighbor into a cooperating one. Furthermore, it
is also possible that, because of geometrical constraints, ρc

also vanishes for other steps. For the networks analyzed in
this paper, we have confirmed that only the height of the steps
depends on C. Furthermore, simulations show that only for the
first two steps is the final number of cooperators nonvanishing
(see Fig. 1). For these reasons we have only analyzed the
dependence of ρc in these first two steps, i.e., we have used only
two values of t , t1, and t2, which satisfy 1 < t1 < k/(k − 1)
and k/(k − 1) < t2 < k/(k − 2).

In Figs. 2–5 we plot the numerical results obtained from
computational simulations with 1000–5000 agents. Each curve
corresponds to the average fraction of cooperators in the steady
state as a function of the clustering of the networks. The
highest clustering value corresponds to the ordered network
(lattice or ring) and networks get increasingly disordered as C

is decreased.
We begin by analyzing what happens for evolutions whose

initial state consists of the same number of cooperators and
defectors [i.e., ρc(0) = 0.5]. In this case, there is always a
nonvanishing fraction of agents that are cooperators in the
steady state. As can be seen in Figs. 2 and 3, there are some
features that are common to all the families of networks
analyzed. The first is that, for each class of network, the
behaviors of the curves are qualitatively the same for the two
values of t used. The only difference is that, as is to be expected,
curves for t1 are below curves for t2. Another important
feature is that the final fraction of cooperators for ordered
networks (largest clustering coefficient) is always larger than
what is obtained in completely random networks (smallest
clustering coefficient). Even though this seems to confirm the
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FIG. 3. Steady cooperator density ρc as a function of the cluster-
ing coefficient C for ρc(0) = 0.5 and k = 6 (top) and k = 8 (bottom).
In the legend (l) and (r) refer to lattice and ring networks, respectively.

impression that clustering is beneficial to cooperators, it must
be noted that some curves are not monotonic with C, such
as all curves corresponding to random ring networks. This is
in correspondence with previously reported results [20,21],
where the existence of an optimum disorder value for the
prevalence of cooperation was observed.

Another interesting feature to note is that for ring networks
the addition of a very small amount of disorder causes an abrupt
decrease in the steady fraction of cooperators. This happens
because of the one-dimensional nature of the ring: Rewiring
very few links at each side of a cluster of cooperators can be
very effective in stopping its expansion. When more links are
rewired the dimensionality of the system begins to increase
and these clusters find new directions to expand.

For all values of C curves for random ring networks are
always below those for random lattice networks for the same
values of t . This is probably related to the lower dimensionality
of the substrate of the random ring network that may have an
influence even for high values of the disorder. Notice that the
curves only overlap for very small values of the clustering
coefficient. This means that a large amount of disorder is
needed for the network to “forget” the starting substrate.

FIG. 4. Steady cooperator density ρc as a function of the cluster-
ing coefficient C for ρc(0) = 0.1 and k = 6 (top) and k = 8 (bottom).
In the legend (l) and (r) refer to lattice and ring networks, respectively.

In Fig. 2 only one point is shown for random lattice
networks because both the square lattice and the completely
random network with k = 4 have a vanishing clustering
coefficient. The large difference seen in Fig. 2 between the
steady state fraction of cooperators could be attributed to the
much shorter minimal distances between nodes in random
regular networks (which have a diameter proportional to
log10 N [32]) or to the presence of short loops in the square
lattice (see the next section).

When the initial state is composed of few cooperators,
the curves for the average fraction of cooperators are very
different from what is obtained when the initial state has many
cooperators. Figure 4 shows the steady cooperator density for
ρc = 0.1. The same happens when cooperators are placed in
more complex networks [16]. In our case, we see that for
small values of t the success of cooperation, measured as
the average of the fraction of cooperators in the steady state,
depends strongly on the clustering coefficient. Furthermore,
this dependence is not monotonic and seems to be similar
for several networks, as Fig. 4 shows. Qualitatively, the same
features are observed when the dynamics is replaced by a
stochastic one, as Fig. 5 shows. In the stochastic dynamics we
have used, the agents choose the strategy of a neighbor with
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FIG. 5. Average value of the steady-state fraction of cooperators
for a stochastic evolutionary dynamics for several values of t for
random ring networks with k = 8 and for ρc(0) = 0.1 (top) and
ρc(0) = 0.5 (bottom).

a probability proportional to the corresponding cumulative
payoff, but only if it is larger than their own cumulative payoff
[10]. Notice that in this case the number of final cooperators
depends continuously on t .

To understand the differences that appear when different
initial concentrations of cooperators are used, it is useful
to go beyond mean values and have a look at the whole
distribution of final states. Figure 6 shows the values obtained
in each realization for a network with k = 6 for both initial
conditions. For ρc(0) = 0.5 the steady fractions of cooperators
obtained are clustered about their average values, as expected.
However, for ρc(0) = 0.1 the values are clustered into two
clearly separated groups. Furthermore, histograms reveal that
the lower group has in fact two components, one centered at a
low value of ρc and the other composed by realizations where
the cooperators have become extinct. Thus the simple average
is not representative of the steady states of the system. In fact,
if the average is taken only over the realizations whose steady
state has a significant fraction of cooperators, the curve is very
similar to what is obtained for ρc(0) = 0.5 (compare the upper
group of points for ρ = 0.1 with the points for ρ = 0.5 in
Fig. 6). The same qualitative features are found for different
networks with k = 4 and 8 and also when the deterministic
dynamics is replaced by a stochastic one (compare the left and
right panels of Fig. 6).

From the fact that the possible final states are divided
into two groups and that the average number of cooperators
of the second group is roughly independent of the initial
condition, we infer that the relevant information regarding
initial conditions and clustering lies in the probability of a

FIG. 6. Each point in the figures represents the fraction of cooperators in the steady state, starting from a state where each agent has a
probability of 0.1 (top panels) or 0.5 (bottom panels) of being a cooperator, as a function of the clustering coefficient of otherwise random
ring networks with k = 6. The dynamics used is both deterministic (left panels) and stochastic (right panels). The lower curve in each panel
gives the average number of cooperators, whereas the upper curve represents the average of cooperators taken only over the points of the upper
group.
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FIG. 7. Fraction of realizations that converge to a steady state
dominated by defectors for networks with k = 6 (top panel) and
k = 8 (bottom panel).

random system of ending up in each group. Figure 7 shows the
probability of ending up in the lower group, that is, in a state
dominated by defectors. The dependence on the clustering
coefficient is again nonmonotonic and there is a value of C

that is optimal for the success of cooperation. As shown in
the next section, this nonmonotonicity can be understood as
the competition between two mechanisms by which clustering
either promotes or hinders cooperation.

IV. ROLE OF THE INITIAL FRACTION
OF COOPERATORS

As shown in the preceding sections, there is no qualitative
difference between the results for deterministic and stochastic
dynamics. Thus, to understand the conflicting ways in which
network clustering can affect cooperation, we concentrate in
the following only on the deterministic dynamics, which is
easier to analyze. We begin by considering what happens
for networks at the two extremes: completely disordered
(vanishing C) and completely ordered (large C) networks. For

FIG. 8. Evolution of two different three-clusters in a random
network with k = 4. Black circles represent cooperators and white
circles represent defectors. (a) Expansion of a three-cluster. (b)
Disappearance of a three-cluster.

the latter class we concentrate on lattice networks with k = 6
and 8, which have clustering coefficients C = 2/5 (k = 6) and
3/7 (k = 8).

First, we analyze the fate of a cluster of three cooperators. In
the case of the lattice networks with k = 6 and 8, there are two
and three possible configurations, respectively. However, all of
them are unstable because, due to the large value of C, some
defector neighbors of the cluster can be connected to two or
three cooperators in the cluster, having thus a larger payoff than
any of them. In contrast, in a random network there is a finite
probability [1 − 3k2/N + O(k/N)] that all the neighbors of a
three-cluster are not neighbors of more than one cooperator and
thus the cluster is stable. Furthermore, if this cluster does not
disappear it will grow to become a cluster of k + 1 cooperators
(a central cooperator surrounded by cooperators), which we
call a star. This cluster in turn has a nonvanishing probability of
continuing its expansion. For example, if there is a link joining
two of the new surrounding cooperators [which happens with
probability (k/N)k(k − 1)/2], the cluster grows by turning
into cooperators the 2(k − 2) noncooperating neighbors of the
nodes that share the link [see Fig. 8(a)]. However, there is
now a nonvanishing probability that there is also a link joining
the nodes of the cluster “surface,” which would lead to an
increase of its size of 2(k − 2). Further, in general, at any step
of its growth it could keep growing with a probability roughly
proportional to (k/N)Ns2(k − 2), where Ns is the size of the
cluster surface. Considering that most of the nodes of the
clusters lie in its surface, this implies that once the cluster has
reached a size of order N/2k(k − 2) it will keep growing until
it spans the whole lattice. Thus, if we consider the evolution
of all possible three-clusters, the distribution of final cluster
sizes should be nonvanishing only for sizes O(N ) and for sizes
smaller than O(N/2k(k − 2)).

In the case of four-clusters, it is easy to see that the
situation is qualitatively the same as for three-clusters in
regular random networks. In contrast, for lattice networks the
picture is completely different: Square four-clusters expand
until they occupy the whole lattice because every cooperator
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is connected to two or three others, whereas noncooperating
neighbors can only have at most two cooperating neighbors.

To understand the general case of a random initial state,
we make the approximation of using the first two steps of the
dynamics to predict whether the final state will be dominated
by cooperators or defectors. For the sake of simplicity we
consider only small values of the payoff t , but the analysis
is basically the same for larger values of t . We begin by
calculating the probability that a given cooperator survives
the first step of a dynamics with an initial state with a
probability p that each agent is a cooperator. In the range
of values of t we are considering, a cooperator will survive
the first step if it has more than j � 2 cooperating neighbors.
Simultaneously, none of its neighbors can have more than
j − 2 cooperating neighbors (besides the cooperator whose
fate we are analyzing). The probability of this is

P ′(j,p) =
j−2∑
i=0

(
k − 1

i

)
pi(1 − p)k−1−i . (1)

Using this, the probability of survival of a cooperator is

Ps(k,p,N ) =
k∑

j=2

(
k

j

)
pj (1 − p)k−j [P ′(j,p)]k−j . (2)

Thus the probability that all cooperators disappear after the
first step is

f0(k,p,N ) = [1 − p Ps(k,p,N )]N . (3)

If at least some of the cooperators have survived the first
step, it is most probable that they have turned their defecting
neighbors into cooperators, thus becoming stars. If a couple
of these newly generated cooperators happen to be joined
by a link, they will most probably become stars themselves
in the next step. As a first approximation we assume that if
there exists at least one such link, the number of cooperators
becomes large enough to guarantee that cooperators will
dominate the population in the long run. Thus the fraction
of realizations that lead to a state dominated by defectors, but
with a few stable cooperators, is

f1(p) =
pN∑
i=1

(
pN

i

)
P i

s (1 − Ps)
pN−i

(
1 − k − 1

N

)ki(ki−1)/2

.

(4)

Each addend gives the probability of having, after the first
step, i stars such that the k × i surface cooperators are not
connected among themselves. Figure 9 shows that Eqs. (3)
and (4) are indeed good approximations for random networks
with k = 8. For networks with a smaller number of neighbors
the approximation of Eq. (4) is not so good and a term must
be added to it to account for the possibility that having only
one link joining two surface cooperators is not enough for the
success of cooperation and that at least two such links are
necessary. This approximation is very good even for networks
with k = 4, as Fig. 10 shows. Using all this, the probability that
the final state is dominated by defectors can be approximated
by the sumof the two contributions mentioned above:

P (p) = f0(p) + f1(p). (5)
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FIG. 9. Probability of having a steady state with no cooperators
(solid symbols) or with a few stable cooperators (open symbols) as
a function of the initial fraction of cooperators for regular random
networks (circles) and lattice networks (triangles), with k = 8. The
lines show the theoretical estimates, assuming independence (solid
lines) or dependence (dashed lines) among all clusters of cooperators.

To make a comparison with ordered lattice networks, we
assume that the steady state can only be dominated by defectors
if there is no square four-cluster of cooperators. The probability
of such a state is approximately f0(p) + f1(p) = (1 − p4)N .
For k = 6 and 8 we have seen that smaller clusters are not
stable, which implies that f1(p) = 0. In contrast, three-clusters
are stable for k = 4 and thus f1(p) = [1 − (1 − 6p3)N ](1 −
p4)N . Figures 10 and 9 show that these expressions provide
reasonable approximations.
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FIG. 10. Probability of having a steady state with no cooperators
(solid symbols) or with a few stable cooperators (open symbols) as
a function of the initial fraction of cooperators for random regular
networks (circles) and lattice networks (triangles), with k = 4. The
lines show the theoretical estimates assuming dependence among all
clusters of cooperators.
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V. APPROXIMATION FOR GRAPHS WITH
FIXED CLUSTERING

In this section we generalize the approximations f0 and f1

to random networks with any given value of the clustering
coefficient C. For this we pick a random node, which we call a
central node, and consider the probability that a fixed neighbor
is connected to nodes inside or outside the neighborhood.
Considering that C is defined as the number of connections
between neighbors of a given node divided by the number
of possible connections between neighbors, we can make the
approximation that the probability that the fixed neighbor is
connected to another neighbor is C, whereas the probability of
it being connected to a node outside the neighborhood of the
central node is (k − 1)(1 − C).

Thus the probability that the fixed neighbor is connected to

l other neighbors of the central node is ( l
k−1)C

l(1 − C)k−1. The

probability of being connected to m of the j cooperators that

are neighbors to the central node is (j
m) (k−1−j

l−m ) (k−1
l )−1. The

probability that the remaining k − 1 − l links are connected to

i − m cooperators is pi−m(1 − p)k−1−l−(i−m)(k−1−l
i−m ). Thus, for

graphs with fixed clustering the probability that each neighbor
of a cooperator is connected to no more than j − 2 other
cooperators is

P ′(j,C) =
j−2∑
i=0

k−1∑
l=0

min i,j,l∑
m=0

(
j

m

)(
k − 1 − j

l − m

)(
k − 1 − l

i − m

)

×pi−m(1 − p)k−1−l−i+mCl(1 − C)k−1−l . (6)

The probability that the population of initial cooperators
becomes extinct after the first step is again given by Eq. (3),
but with P ′(j ) replaced by P ′(j,C). Figure 11 shows that for
networks with k = 6 and 8 and for p = 0.1, the probability
of extinction after the first step f0 is an increasing function of
C. To understand this, note that, given that the central node
has at least two cooperating neighbors, its defecting neighbors
are more likely to be connected to a cooperator when at least
some of their connections go to a member of the central node
neighborhood (which is favored by increasing values of C)
and thus they are more likely to destabilize the central node.

To calculate the probability of reaching a steady state
dominated by defectors but with a few stable cooperators,
we make again the approximation that a population of stars
will remain stable (i.e., it will not grow) only if none of the
cooperators on the surface of stars is connected to another
cooperator, either in the same or in a different star. Thus we get

f1(p) =
pN∑
i=1

(
pN

i

)
P i

s (1 − Ps)
pN−i

(
1 − k − 1

N

)k2i(i−1)/2

×(1 − C)ik(k−1)/2. (7)

It is easy to see that the growth of the star population is
favored by clustering. After the first evolution step, all the
neighbors of the surviving initial cooperators have become
cooperators themselves. Thus a large clustering coefficient
makes it more likely that these neighboring cooperators are
connected among themselves, which is the condition for the
success of the star population.
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FIG. 11. Probability of having a steady state dominated by
defectors as a function of the clustering coefficient C for networks
with k = 6 (top panel) and k = 8 (bottom panel) for ρc(0) = 0.1. The
solid line represents the theoretical prediction f0(C) + f1(C). The
other lines represent the theoretical predictions for the probability of
having a steady state with only a few cooperators (dashed line) or
with no cooperators at all (dash-dotted line). In the legend (l) and (r)
refer to lattice and ring networks, respectively.

Figure 11 shows that the approximations described above
give reasonably accurate predictions. Note that even though
they are being compared against networks that are obtained by
rewiring substrates that are not random, the results of simula-
tions seem to depend rather weakly on the substrate used.

VI. CONCLUSION

The most amazing result revealed by works dealing with the
prisoner’s dilemma is the spontaneous emergence and survival
of cooperation, even in cases when common sense would have
dictated otherwise. The findings of these surprising outcomes
has sometimes discouraged the search for initial conditions that
could lead to less surprising results, such as the prevalence of
defection. This could be one of the reasons why in most of the
literature dealing with the evolutionary prisoner’s dilemma the
initial condition of the simulation is a state where every agent
has the same probability of being a defector or a cooperator
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(i.e., the initial fraction of cooperators is approximately equal
to 0.5). However, in real situations the number of individuals
of an invading species is much smaller than the aboriginal
population. It thus makes sense to study what happens when
the initial number of cooperators is relatively small. Our work
shows that in this case the possible steady states are clustered
in two groups: one in which the number of cooperators is
much smaller than N and another in which the number of
cooperators is “macroscopic” (i.e., proportional to N ). This
fraction does not seem to depend on the initial fraction of
cooperators ρ0. Instead, it is the probability of ending up
in each group that depends on ρ0. Thus we show that for
these initial conditions, taking the average of the fraction of
cooperators over all steady states gives a number that is not
representative of the possible outcomes of the simulations.
We have checked that this happens both for a stochastic and
a deterministic rule and for several different networks. This
suggests that our results could in principle be valid also for
some other networks and update rules. Needless to say, it
would not be reasonable to hope for universal validity of our
results for practical settings, as the modeling of these often
demand very specific networks and update rules.

The analysis of the influence of the initial conditions was
complemented with the study of the effect of the clustering on
the emergence of cooperation. It has been sometimes suggested
that one of the possible reasons for the success of cooperating
strategies in spatially structured populations is the possibility
of forming globular clusters. In this way, cooperators inside the
cluster are “protected” by the ones on the border. At the same
time, the border cooperators need to get enough support from
the inner cooperators to resist the defector invasion. When
the populations is placed on a graph, the globularity of the
possible clusters is proportional to the clustering coefficient.
Therefore, cooperating strategies should be more successful
in networks with large C than in networks with small C, with
some pathological exceptions. For the evolutionary dynamics
studied here we have seen that this is the case when we compare
the steady fractions of cooperators in random regular networks
(low C) and lattice networks (large C) having the same degree
distributions. However, for graphs where the value of the
clustering coefficient can be tuned we find that the equilibrium
fraction of cooperators is not a monotonic function of C. While
the occurrence of this effect has been previously noticed, its
causes remained unknown.

The nonmonotonicity of the curves, together with the
dependence on the initial condition, suggests that there might
be several mechanisms that determine the success or failure of
cooperation. In the preceding section we have shown that this is
indeed the case: We have identified two different mechanisms
whose dependence on C is very different. This is based on
the observation that the systems that end up dominated by
defectors can be divided into two families: the states in which
all cooperators have disappeared and the states in which a
few stable cooperators remain. We have found that in general
the probability of ending up in the first group increases with
C, whereas the probability of ending up in the second group
decreases with C. In many of the cases analyzed this leads to
a nonmonotonic dependence on C of the probability of having
a steady state dominated by defectors, which is the sum of the
two probabilities mentioned above. The numerical simulations

presented in this work were backed up by analytical studies
of the limiting cases. There is reasonably good agreement
between the results obtained in both cases.

Recently, some experiments have been conducted with
groups of people playing the prisoner’s dilemma game [33,34].
As in the cases analyzed in this paper, the participants of these
experiments were located in different lattices (in the sense that
their interactions were restricted to a given set of neighbors).
The results obtained in these works suggest that the adoption
of a new strategy is not necessarily determined by an imitative
behavior. Furthermore, it has been shown that sometimes the
strategies of the individuals are actually randomly chosen
[33], which in turn leads to results that seem to be network
independent. However, it is not clear that the strategies used by
a group of people playing a computerized game with a payoff
of a few cents of euro can be generalized to other situations [35]
in which food, land, or other resources might be at stake.
Moreover, the prisoner’s dilemma is considered to be a useful
approach to study animal behavior [36], and experiments have
been conducted with many species, such as rats [37], blue
jays [38], zebra finches [39], and pigeons [40]. In animal
species imitative behavior is very common and random choices
are likely to play a less important role. These caveats, however,
do not diminish the importance of the experiments mentioned,
which provide much insight into alternative strategies.

In order to analyze how our results are affected by the
presence of nonimitative behavior, we repeated our simulations
allowing each player, with a probability pr , to abandon the
strategy of imitating the best and to choose a random strategy
instead. Figure 12 shows the average number of cooperators for
several values of pr as a function of the clustering coefficient
of the network. In the preceding sections we have shown that
when starting from a small number of cooperating agents,
purely imitative behavior leads to two groups of clearly

FIG. 12. Steady cooperator density ρc as a function of the
clustering coefficient C for ringlike networks with k = 8 and ρc(0) =
0.1. Each curve corresponds to a different value of the probability
of adopting a random strategy. The thick upper curve corresponds
to the number of the cooperators for pr = 0 but restricted to those
realizations that end up with a significant number of cooperators.
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different steady states: one in which the number of cooperators
is large and one in which only a few stable cooperators remain.
Figure 12 shows that when pr is very small its only effect on
the dynamics is to ensure that the steady state always belong to
the group with a significant fraction of cooperators. For larger
values of C the curve drops because pr is not large enough to
take the system out of the steady state with few cooperators.
Evidently, this drop depends on the time limit that has been set
for this simulation: If this time is increased the drop happens
for larger values of C. Thus, for fixed times random strategies
are less effective in networks with relatively large C (i.e., in
more ordered networks).

For larger values of pr (pr � 0.07) the number of cooper-
ators in the steady state has a very marked dependence on C.
Even though it is evident that for large values of ρ the curve
should become flat (because the strategy becomes essentially
random and therefore independent from the neighborhood), an
important drop is still observed for values of pr as large as 0.3,
for which a system on an ordered network ends up with half the
number of cooperators as on a completely random network.

It should be emphasized that when some noise is included
in the dynamics, we are in the presence of a different
actualization rule. It has been already shown that the addition
of noise increased the cooperation levels observed in purely
deterministic dynamics [41] and our results point in the same
direction.

In summary, our results show that even under the presence
of a random component in the behavior of the players, the
topology of the network still plays an important role. Thus
the results of the experiments of Traulsen et al. and Grujić
et al. could probably be better explained by different deviations
from the imitative behavior, such as the existence of “moody”
strategists (who tend to repeat their strategies) and “pure”
strategists (who tend to follow the same strategy most of the
time) [34]. Nevertheless, the debate around the evidence for
an imitative behavior is not conclusive inasmuch other works
[42,43] do not find traces of such behavior. This fact opens an
interesting debate about not only the character of the evolu-
tionary dynamics of the strategies of the players but also about
the validity of abstract mathematical models of the system.
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