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Enhanced response of regular networks to local signals in the presence of a fast impurity
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We consider an array of inductively coupled Josephson junctions with a fast impurity (a junction with a smaller
value of the critical current) and study the consequences of imposing a small amplitude periodic signal at some
point in the array. We find that when the external signal is imposed at the impurity, the response of the array is
boosted and a small amplitude signal can be detected throughout the array. When the signal is imposed elsewhere,
minor effects are seen on the dynamics of the array. The same results have also been seen in the presence of a
single fast-spiking neuron in a chain of diffusively coupled FitzHugh-Nagumo neurons.
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I. INTRODUCTION

When a subthreshold periodic signal is imposed on a
nonlinear dynamical system with an energetic activation
barrier, a source of noise (inherent or external) can enhance
the response of the system by preparing a floor for the external
signal. This phenomenon, known as stochastic resonance, is
an intriguing example where a source of disorder enhances
order in the behavior of a dynamical system by enhancing the
response of the system to the external signal as a resonance-like
behavior [1,2]. It has been shown that when identical systems
are coupled, whether in an all-to-all or an array configuration,
the response of the system to external signals is further
amplified in the presence of noise [3]. Coupling the systems
together into a network introduces two other possible sources
of diversity: a quenched disorder in the parameters of the
coupled systems (nodes) and heterogeneity of the topology
of the network (links). Even in the absence of noise both
of these sources can also bring spatiotemporal order into
the dynamics of the extended system by amplifying the
response of the system to an external signal [4,5]. Scale-
free networks are the prototypical form of heterogeneous
networks, which can amplify the external signals far better than
regular networks [5]. Interestingly, while disorder obviously
acts against synchrony in the regular networks of coupled
autonomous oscillators, in the presence of external (periodic)
signals synchrony can be enhanced by disorder through a
collective resonant behavior [4].

A special form of disorder-induced spatiotemporal syn-
chronization is seen when disorder is imposed by embedding
a single fast impurity in an otherwise homogeneous array
consisting of identical oscillators [6,7]. A fast impurity in
such a system serves as the leading component and drives
other oscillators in the array. The dominant role of a fast
oscillator is well known in the prominent example of the
oscillations of electrical excitations in the human heart [8].
Two periodically spiking groups of different intrinsic periods
as well as an excitable tissue oscillate with equal frequency,
which is the higher of two natural frequencies. High-frequency
locking situations also appear in the case of two adjacent
limit-cycle regions [9], and rare inverse situations in which low
frequencies are dominant are called abnormal locking [10].

In this study we investigate the response to a local
external signal of a homogeneous array of similar coupled
oscillators with a single impurity (a fast oscillator). While

proper functioning of the signaling devices always implies
high sensitivity to external signals, most of the studies on
diversity-assisted amplification of signal responses have been
done considering (globally) an extended source of the external
signal [3–5]. Local signals, on the other hand, may act as a
pacemaker for the whole network and guide the functioning of
the whole ensemble by dictating their rhythm [11,12], and the
signal amplification in many natural and artificial systems may
use only local information [13]. Perc has studied the effect of
such a pacemaker on a topologically inhomogeneous network
[11]; here our network is topologically homogeneous, and
instead, inhomogeneity is imposed on the nodes by introducing
a fast impurity. We show that a resonance-like effect is seen as
the position of the external signal is changed in the array.

In the present study we consider Josephson junctions as
the model elements. An array of Josephson junctions is a
prototype nonlinear system with many degrees of freedom
[14,15]. An external periodic signal that would entrain the
dynamics of a single junction [causing plateaus in the current-
voltage (I -V ) characteristic of the junction [16]] leads to
more complex dynamics in the case of the array [17–19].
Here we investigate the influence of a local periodic signal
on the dynamics of a chain of linearly coupled Josephson
junctions. The equations describing this system can be reduced
to the well-known Frenkel-Kontorova (FK) model, which has
applications that range from the pedagogical example of a
mechanical transmission line consisting of linearly coupled
pendula [20] to the dislocation dynamics in metals [21,22],
DNA dynamics [23], and strain waves in earthquakes [24].
Disorder, whether induced by a single impurity or by the
inhomogeneity of the parameters of the components, has been
exploited to remove chaos in a FK model consisting of chaotic
components [25]. It has been shown previously that a single
fast impurity in the FK model can serve as the source of solitary
waves, giving it a leading role in the dynamics of the whole
array [7]. Here we show that such an arrangement shows
different responses to the locally imposed external signal,
depending on where the signal is imposed. We also check that
the idea is also valid in a chain of coupled FitzHugh-Nagumo
(FHN) oscillators [26].

This paper is organized as follows: in the subsequent section
the results are given in a chain of linearly coupled Josephson
junctions. In Sec. III we show that similar results can also
be seen when the model elements are FHN oscillators. The
conclusions are given in Sec. IV.
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FIG. 1. (Color online) An array of parallel Josephson junctions.
The solid line at the top is a superconducting bus bar, which sets a
common phase (chosen to be 0) and supplies current as necessary.
The element in the vertical wires represents a Josephson junction with
resistive and capacitative shunts. The voltage across the junction
is proportional to the time derivative of the phase difference, as
described by the Josephson relation. These parallel elements are
coupled by identical inductors. The arrows at the bottom represent
externally imposed currents: the signals that drive the array.

II. THE CHAIN OF LINEARLY COUPLED
JOSEPHSON JUNCTIONS

We consider a parallel array of Josephson junctions which
are coupled inductively [27], as shown in Fig. 1. The network
dynamics is described by the set of equations

h̄Cj

2e
θ̈j + h̄

2eRj

θ̇j + Icj sin θj

= Ij + Ej sin ωt + �0

2π

[
1

Lj

(θj+1 − θj )

− 1

Lj−1
(θj − θj−1)

]
, (2.1)

where Cj , Rj , and Icj are the capacitance, resistance, and
critical current of the j th junction, respectively; θj is the phase
difference across the j th junction; and Lj is the inductance of
the j th plaquette. �0 = hc/2e is the flux quantum, and Ij and
Ej are the constant current and the amplitude of the periodic
current of j th junction, respectively.

We scale the parameters of the junctions by C0, R0, and Ic0

and the inductance by L0 and introduce a dimensionless time
τ = ωpt , where ωp = √

2eIc0/h̄C0 is the plasma frequency.
Assuming the inductances to be equal, Eq. (2.1) becomes

θ̈j + β−1/2
c θ̇j + αj sin θj

= ij + εj sin ωτ + k0(θj+1 − 2θj + θj−1). (2.2)

Here βc = 2eR2
0Ic0C0/h̄ is the McCumber parameter, which

characterizes the relative importance of the damping, and k0 =
�0/2πIc0L0 is the coupling constant. The normalized values
of the constant input and the amplitude of the periodic input are
ij and εj , respectively. The normalized critical current of the
junctions is αj = Icj /Ic0, ω is the drive frequency rescaled by
the plasma frequency, and overdots indicate derivatives with
respect to τ .

When ij are small, θj undergo bounded oscillations, and the
average voltage across each junction is zero. For sufficiently
large ij , θj increase with time with an average rate of
increase that is proportional to the voltage difference across the
junction. In this case in analogy with pendula we will say that
the junctions are rotating. As a consequence of the inductive

coupling, the average voltages across all the junctions in the
array are equal in the steady state. Hence the I -V characteristic
of all the junctions in the array is the same for all the junctions.

Equation (2.2) describes the damped driven FK model [20].
We consider an almost-homogeneous array into which a single
junction (the impurity) that has a critical current relatively
lower than that of the other junctions has been introduced.
All the junctions then are driven by a constant current which is
larger than their critical current. In the absence of the inductive
coupling all the junctions would be in the rotating state, and
the impurity would rotate faster than the rest of the array.

We place the fast impurity at the site i = 50 of a chain of 99
junctions and impose the periodic signal at site m. The critical
currents of the other junctions are chosen from a uniform
distribution in the range [0.98,1.02]. The response of the
system to the pacemaker is probed via the Fourier coefficients
Qn = √

R2
n + W 2

n according to Ref. [11]

Rn = 2

T

∫ T

0
sin(ωt)vn(t)dt, (2.3)

Wn = 2

T

∫ T

0
cos(ωt)vn(t)dt. (2.4)

Here vn = dθn/dt is the voltage of a sample junction (we
take n = 70 throughout thus paper), and T is the integration
time. We then vary the location at which the periodic signal is
imposed and record Qn as a measure of how the time course
of the sample node is correlated to the external signal.

As seen in Fig. 2 [28], the system responds to the presence
of a fast impurity by a sharp resonance when the nodes
near the fast impurity host the pacemaker. (There is also a
boosted response when the pacemaker is located on the sample
junction, but this is trivial.) The results show only a minor
variation for different trials. We also observe that changing the
frequency affects the magnitude of the correlation maximum,
but the behavior of the system is the same, and a resonance
is seen when the signal is located on the impurity. Without
an impurity the response of the system shows considerably
more variability from trial to trail, and upon averaging over
the trials the response shows a maximum only when the signal
is imposed on the sample node and its neighbors.

Studying the dependence of the response of the model on
the frequency reveals why the resonances in Fig. 2 appear
with different magnitudes. In Fig. 3 the Fourier coefficient
Qn is plotted for a range of the frequency of the periodic
signal, with the other parameters being the same as in Fig. 2.
Again two cases are considered: when the signal is imposed
on the fast impurity and when it is placed on another junction.
Figure 3 shows a resonant effect for certain values of the
frequency (multiples of approximately 0.42 for both cases),
but the resonance amplitude is considerably larger when the
signal is located on the fast impurity. A comparison of the
resonant frequency with the intrinsic frequency of the array in
the absence of a periodic signal (shown by dashed lines) shows
that the first maximums belong to the harmonic (1:1) locking
and the next maximums appear due to the superharmonic
(n : 1) locking. The larger width of the first maximum can
be related to the wider Arnold tongue for the main locking
zone [29]. Note that since the critical currents of the impurity
and the other junctions are different, in isolation they would
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FIG. 2. (top) When an impurity with a relatively lower critical
current (fast impurity) is introduced in an almost-homogeneous array,
the Fourier coefficient dependence on the position of the external
signal shows a resonance when the host node is near the impurity.
The total number of junctions is 99, the critical currents αj are chosen
from a uniform distribution in the range [0.98,1.02] except for the
impurity αi = 0.8 with i = 50. The sample junction here is chosen
with n = 70, but qualitatively, the result is independent of the size of
the array and the number of sample junctions if the transients have
been elapsed. External dc current is ij = 1.02 for all j . The damping
parameter and coupling constant are β−1/2

c = 0.75 and k0 = 0.25,
respectively. The external periodic input with amplitude am = 0.1
with two different frequencies is imposed only on the mth junction,
and m is varied from 20 to 80. The boundary conditions are absorbing;
i.e., the dc drive of the boundary junctions is switched off to prevent
the waves from reentering the array. (bottom) Results are shown for
the array without impurity.

have different resonant frequencies. But for the array (with
linear couplings), whether the external signal is imposed on
the impurity or on the other junctions, the resonant frequencies
would be identical, and for all the values of frequencies the
response of the array is larger if the signal is imposed on
the impurity. The response of the isolated impurity junction
shown in the bottom panel of Fig. 3 shows similar qualitative
behavior but with a higher resonant frequency. Also for the
isolated junction a small amplitude resonance can be seen
due to the subharmonic (1:2) locking, which is absent in the
response of the array.

The role of the fast impurity in creating a location sensitive
response to the local inputs can be better understood by
studying the current-voltage (I -V ) characteristics of the array.
Average (dc) voltage of a junction in the normalized units
introduced in Eq. (2.2) can be found from V = 〈θ̇〉, where 〈〉
shows averaging over time. For a single junction it is known
that the width of the Shapiro steps on which the average rate
of the evolution of the phase of the junction is locked to the
external signal shows a Bessel-function-type relation to the
amplitude of the signal [30]. For the small amplitude signals
which we consider in this study, the width of the main Shapiro
step has a linear relation with the amplitude of the periodic
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FIG. 3. (top) Fourier coefficient vs frequency of the external
signal when the local periodic signal with amplitude am = 0.1 is
imposed on the impurity (black circles) and on 60th junction (gray
squares). Vertical dashed lines are plotted in the multiples of the
intrinsic frequency of the array in the absence of a periodic signal.
The number of junctions is 99, and the sample junction is chosen with
n = 70, but the result is independent of the position of the sample
junction and the size of the array. Critical currents of all the junctions
are chosen from a uniform distribution from the range [0.98,1.02],
except for the middle junction, which has a smaller critical current
αi = 0.8 with i = 50. The external dc current is ij = 1.02 for all j .
The damping parameter and coupling constant are β−1/2

c = 0.75 and
k0 = 0.25, respectively. (bottom) The response of the impurity when
isolated.

current. As noted before, in the array with inductive couplings,
the I -V characteristic for all the junctions would be the same in
the steady state regime (after transients have died out). We have
shown the width of the main Shapiro step in the characteristic
of the sampling junction when the signal is imposed on the
impurity and when imposed on another junction in the array
(Fig. 4). The width of the main step for the junctions in the
array shows a linear relation with signal amplitude when signal
is imposed on the impurity. On the other hand, if the signal
is located on another junction, no locking region is seen for
small amplitude signals.

Figure 4 further shows that an off-impurity signal can
entrain the array dynamics if its amplitude is larger than a
critical value. For off-impurity signals with an amplitude larger
than a threshold, the critical current of the junction which
receives the signal is decreased, so that the impurity loses
its role as the fastest junction (the junction with the largest
value of voltage when isolated). In this case the entrainment
of the array by a large amplitude off-impurity signal would be
possible.

The behavior of the system described above originates from
the role of the fast component in generating solitary pulses
consisting of a kink-antikink pair (see Ref. [7]). When the
periodic signal is imposed on the fast component, the rate of
the nucleation of the kinks (which is proportional to the rate
of the change of the phase of the junction) can be locked to the
external frequency. The solitary pulses move along the array
and entrain the whole array after a transient time which grows
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FIG. 4. (top) The width of the main 1:1 Shapiro step for an
array when the local signal is imposed on the fast impurity (black
circles) and on the 60th junction (gray squares). Total number of
junctions is 99, and sample junction here is chosen with n = 70,
but the results are independent of the index of the sample junction
and the size of the array. Critical currents of all the junctions are
chosen from a uniform distribution in the range [0.98,1.02], except
for the middle junction αi = 0.8, with i = 50. The damping parameter
and coupling constant are β−1/2

c = 0.75 and k0 = 0.25, respectively.
(bottom) Current-voltage (I -V ) characteristics of the array are plotted
for a sample value of the amplitude of the periodic signal ε = 0.12
depicted by the vertical arrow in the top plot. The thick black
line and thin gray line show the characteristics for on-impurity and
off-impurity signals, respectively. For the on-impurity signal the main
Shapiro step on which the voltage of the junction (in normalized
units) is locked to the frequency of the external signal is shown. For
the off-impurity signal no locking zone is seen for this value of the
amplitude of the periodic signal.

with the size of the array. A signal that is imposed on the other
junctions can entrain the nearby junctions but has no effect
on the rate of solitary pulses which are being produced by
the impurity; then a long range influence is not expected by
off-impurity signals. We also note that the existence of solitary
excitations of the FK model is crucial for the existence of
the behavior seen above: a ladder arrangement of Josephson
junctions is a counterexample in which the long range effect of
local signals cannot be seen. As we will show in the subsequent
section, the same behavior can be seen in other models, so long
as the model supports excitations which do not decay in space.

III. ARRAY OF COUPLED FITZHUGH-NAGUMO
OSCILLATORS

While the FitzHugh-Nagumo model was originally pro-
posed as a simplification of the Hodgkin-Huxley equations
[26], it has been widely used as a generic model for excitable
systems and media and can be applied to a variety of
systems [31]. Here we consider an array of diffusively coupled
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FIG. 5. Amplitude of variation of interspike intervals plotted vs
the position of the neuron on which a periodic signal is imposed. The
chain consists of 63 neurons. For line (a) a fast spiking impurity is
in the middle (black circles). For line (b) the experiment is repeated
in an array without impurity (gray squares). External currents for
all the neurons are chosen from a uniform distribution in the range
[1.18,1.22] except for the impurity which receives a larger input
I32 = 2.2 to fire with a higher rate. The frequency and the amplitude of
the external periodic signal are a = 0.2 and ω = 0.005, respectively.
The sample neuron is chosen with n = 50.

FHN-type oscillators:

dvi

dt
= vi − v3

i /3 − wi + Ii − g(vi+1 + vi−1 − 2vi),
(3.1)

dwi

dt
= 0.08[2.5 + 2.5 tanh(ηvi) − wi],

where vi and wi are the fast (voltage) and slow (recovery)
variables, respectively. Ii is the external current, and g is the
coupling constant (synaptic strength). The model oscillators
show type-I excitability and undergo an infinite period bi-
furcation in Iext = 2/3 when η � 1 [32]. Interspike intervals
(ISIs) are defined as the interval between two successive spikes
when the neurons are spiking repeatedly, i.e., for Iext > 2/3,
and they decease with increasing external current.

In an almost homogeneous array, we introduce again an
impurity with a higher rate of activity and impose a small
amplitude periodic signal on one of the neurons in the array.
We then record ISIs in a sample neuron. If the period of the
external signal is large compared to the ISI of the neurons, the
response of the system to the external signal can be probed by
the extent of the variation of the ISIs in a sample neuron. The
maximum and the minimum of the ISIs of a sample neuron in
a period of the external signal are recorded in our experiment,
and their difference is reported as the amplitude of the response
of the system. The results shown in Fig. 5 indicate a very
sharp resonance when the impurity (and its neighbors) hosts
the signal. In the absence of the impurity the response of
the array is trivial and shows a maximum when the signal
is imposed on the sample neuron. As for the FK model, the
result is independent of the size of the array and location of
the sample neuron while the system is in the steady state.

IV. CONCLUSION

In conclusion, we have shown that when a fast impurity is
present in an array of inductively coupled Josephson junctions,
locally imposed periodic signals show different levels of
influence depending on whether they are imposed on the
impurity or not. In such an array the fast impurity has a leading
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role as the source of solitary waves and even a small amplitude
periodic signal when it is imposed on the impurity can entrain
the dynamics of the array. Otherwise, if the signal is imposed
on the other junctions, the junctions of the array do not lock to
the signal unless the amplitude of the signal is large.

The results are independent of the size of the array, and for
the large arrays, only transients are longer. Similar results are
expected to be observed in arrays which support nondecaying
excitations. As an example which could have application in
studies of neuronal networks, we have considered an array of
diffusively coupled FitzHugh-Nagumo oscillators. It has been
shown that, in such an array, a small amplitude signal can affect
the firing rate of all the neurons in the array if it is imposed on
the fast impurity.

The results of the present study can be checked experimen-
tally by investigating the current-voltage curve of a junction in
a parallel array of Josephson junctions. We have predicted

that, for small amplitude signals, no Shapiro step can be
seen for the off-impurity signals. For larger amplitude signals
wider Shapiro steps would appear in the characteristics of
the junctions in the array if the signal is imposed on the
impurity. A recent experimental preparation of an annular
parallel array can be found in Ref. [33]. With the typical
values of a junction’s critical current Ic ∼ 1 μA, normal state
resistance RN ∼ 100 �, and the junction capacitance C ∼ 0.1
pF, the damping parameter would be β

−1/2
c ∼ 1/

√
π , and the

coupling (discreteness) constant k0 ∼ 0.2 can be achieved with
cells having an inductance of L ∼ 100 pH [33].
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