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Randomly evolving idiotypic networks: Structural properties and architecture
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We consider a minimalistic dynamic model of the idiotypic network of B lymphocytes. A network node
represents a population of B lymphocytes of the same specificity (idiotype), which is encoded by a bit string.
The links of the network connect nodes with complementary and nearly complementary bit strings, allowing for
a few mismatches. A node is occupied if a lymphocyte clone of the corresponding idiotype exists; otherwise
it is empty. There is a continuous influx of new B lymphocytes of random idiotype from the bone marrow.
B lymphocytes are stimulated by cross-linking their receptors with complementary structures. If there are too
many complementary structures, steric hindrance prevents cross-linking. Stimulated cells proliferate and secrete
antibodies of the same idiotype as their receptors; unstimulated lymphocytes die. Depending on few parameters,
the autonomous system evolves randomly towards patterns of highly organized architecture, where the nodes
can be classified into groups according to their statistical properties. We observe and describe analytically the
building principles of these patterns, which make it possible to calculate number and size of the node groups
and the number of links between them. The architecture of all patterns observed so far in simulations can be
explained this way. A tool for real-time pattern identification is proposed.
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I. INTRODUCTION

B lymphocytes play a crucial role in the adaptive im-
mune system. They express Y-shaped receptor molecules,
antibodies, on their surface. Antibodies have very specific
binding sites (idiotopes) which determine their idiotype. All
receptors of a given B cell have the same idiotype. B cells
are stimulated to proliferate if their receptors are cross-linked
by structures which are complementary to the idiotopes, for
example, by foreign antigen. Stimulated B cells thus survive,
whereas unstimulated B cells die; this process is called clonal
selection [1].

After a few generations, stimulated B cells differentiate to
plasma cells which secrete soluble antibody molecules of the
same idiotype, which may bind to complementary sites on
antigen and mark them for further processing.

B lymphocytes of different idiotype are continuously
produced in the bone marrow in a remarkable diversity.
The variety of the potential idiotype repertoire, created by
somatic reshuffling of gene segments and mutations [2], was
combinatorially estimated [3] to exceed most likely 1010.

Complementary structures may be found on antigen but
could also be situated on other antibodies of complementary
idiotype. B lymphocytes can stimulate each other and, thus,
as conceived by Jerne [4], they form a functional network, the
idiotypic network.

The concept of the idiotypic network explains in a natural
way the diversity of the expressed idiotype repertoire and the
autonomous dynamics of an immune system not exposed to
foreign antigen. It provides a mechanism of immunological
memory. Imagine that an antigen Ag is recognized by an
antibody Ab1. Thus, the clone of Ab1 expands and possibly
meets another clone of complementary idiotype Ab2. Both
mutually stimulate each other and they persist even after Ag
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has disappeared. Ab2 is structurally similar to Ag and can be
considered as internal image of Ag. Furthermore, the network
is thought to control autoreactive clones. All these issues are
beyond the concept of clonal selection.

The network paradigm got an immediate enthusiastic
response and idiotypic interactions were considered as the
major regulating mechanism of the immune system. However,
the rapid progress of molecular immunology, difficulties in the
direct experimental verification, and the discovery of other reg-
ulating mechanisms let the interest of experimental immunol-
ogists decay. Yet, for system biologists the network paradigm
always remained attractive. Several aspects of the original
concept were revised in due course. Most notably, Varela and
Coutinho [5–7] suggested second-generation networks with an
architecture comprising a strongly connected central part with
autonomous dynamics and a sparsely connected peripheral
part for localized memory and adaptive immune response. In
a sense, they reconcile both paradigms of idiotypic networks
and clonal selection. A readable history of immunological
paradigms can be found in [8]. Reviews with focus on idiotypic
networks are [9] with an emphasis on modeling approaches and
more recently [10] with emphasis on new immunological and
clinical developments.

Today, the main activities are in clinical research. Idiotypic
interactions are the base of all therapies with monoclonal
antibodies [11]. New experimental techniques make large-
scale studies of the idiotypic repertoire feasible [12], which
are necessary to infer the networks architecture.

In this paper we consider a minimalistic model of the
idiotypic network, which was first formulated and investigated
in [13]. In this model a node represents lymphocytes and
antibodies of a given idiotype. Lymphocytes of complementary
idiotype can stimulate each other. The corresponding nodes are
connected by links.

Idiotypes are represented by bit strings [14] of length d,
bd bd−1 · · · b1 with bi ∈ {0,1}. Ideally, d is chosen such that
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2d is the size of the potential repertoire. The nodes of the
network are labeled by these bit strings. Two nodes v and
w are linked if their bit strings are complementary, allowing
for up to m mismatches; that is, their Hamming distance is
dH (v,w) � d − m. The corresponding undirected graph is the
base graph G

(m)
d . Each node has the same number of neighbors,

κ = ∑m
k=0 ( d

k
). It represents the potential idiotypic repertoire

with all possible interactions.
The bit strings are thought to represent neither the genetic

code nor the primary structure (strings of amino acids) of the
antibodies. They caricature the phenotype of the antibody’s
binding sites and provide an easy notion of complementarity
[15].

Not all idiotypes are expressed in the real network. In our
minimalistic model we only account for whether an idiotype is
present or not, correspondingly the node is occupied, n(v) = 1,
or empty, n(v) = 0. The subgraph of G

(m)
d induced by the

occupied nodes represents the expressed idiotypic network at
a given time.

We describe the temporal evolution in discrete time. The
influx of new idiotypes from the bone marrow is modeled by
occupying empty nodes with probability p [16]. For survival a
B lymphocyte needs stimulation by complementary structures.
The number of cross-linked receptors determines the strength
of stimulation, the response. It is a nonmonotonous function
of the concentration of complementary structures, the dose.
If their concentration is too high, cross-linking becomes less
likely due to steric hindrance, and the response is reduced.
The dose-response curve is log-bell shaped (cf. [17] and
Refs. therein). In our model an occupied node survives if the
number of occupied neighbors is between two thresholds, tL
and tU . The rules of parallel update are as follows.

(i) Occupy empty nodes with probability p.
(ii) Count the number of occupied neighbors n(∂v) of node

v. If n(∂v) is outside the window [tL,tU ], set the node v empty.
(iii) Iterate.

All three, the random and the deterministic steps and
the iteration, are equally important [18]. Driven by the
random influx of new idiotypes the network evolves towards
a quasistationary state of nontrivial, functional architecture
in which groups of nodes can be identified according to
their statistical properties. Crucial for that is that, besides
the random occupation of empty nodes, occupied nodes are
emptied if linked with too few or too many occupied nodes.

The paper is organized as follows. In the next section we
discuss the model in its scientific context in other disciplines
and its relation to other models of idiotypic networks. In
Sec. III we provide simulation results. We sketch a typical
random evolution of the system to make the reader familiar
with the systems behavior. Considering global and local
network characteristics the existence of groups of nodes which
share statistical properties [13] is confirmed and more details
are revealed. In Sec. IV we describe certain regularities in
the bit strings of nodes which belong to the same group.
The observed patterns can be constructed from pattern modules
[19]. The construction principle is explained first for the
simplest pattern and generalized afterwards. These findings
make it possible to calculate the number of groups, the group
sizes, and the linking between groups. A new observable, the

center of mass, is introduced, which proves very useful in
real-time pattern identification. In Sec. V we apply this concept
considering specific patterns observed in simulations, among
them a dynamic pattern with core groups, peripheral groups,
stable holes, and singletons that resembles in some aspects
the biological network [5,6]. In the Appendix we calculate
the scaling of the relative size of these groups for systems of
biological size.

II. CONTEXT AND RELATED MODELS

The topic falls into several scientific disciplines. It is
natural to place our investigations in the context of network
theory. Network theory has applications in a plethora of
different, multidisciplinary fields [20–22] and has received
great attention in the community of statistical physicists in the
last decade.

A major body of research deals with growing networks,
where new nodes are attached to the existing nodes randomly,
or depending on properties of the existing nodes. In this context
deletion of nodes is only considered to study the resilience of
the network against random or targeted attacks [23]. For recent
reviews, see [24–26]; cf. also [21,27].

Natural networks, however, do not grow without limit but
stay finite and evolve towards a functional architecture. There
are several modes to enable evolution: (i) adding nodes but
keeping the growth balanced by deletion [28–33] or merging
of nodes [34–36]; (ii) keeping the nodes unaffected but adding,
deleting, or reorganizing the links [37–42]; (iii) addition and
deletion of both nodes and links [43–49]. Again, this can be
done randomly or depending on the properties of the nodes
and its neighbors.

Generic observables to characterize networks include
the degree distribution, centrality, betweenness, cliquishness,
modularity, clustering coefficients, and diameter. For instance,
growing networks using preferential attachment have a power
law degree distribution like many real world networks. How-
ever, the characteristic exponent of preferential attachment
networks is larger than the one found in natural networks. This
was a major motivation to study evolving networks.

In many natural networks nodes have individual properties
which control their potential linking. Clearly, in our case this
is the idiotype. Also protein networks, transcription networks,
and generally signaling networks belong to this class.

Nodes may have an internal state which can change
depending on their neighborhood in the network or on external
influences. This dynamics has a typical time scale that is
shorter than the time scale for evolution of the network’s
architecture. The interplay of these processes came into the
focus of research only in the last few years. For a recent review
and a status report, see [50,51]. Our model is a very early
example where this interplay is studied [13]. In the present
paper we describe the building principles of the architecture.

Our network model is a Boolean network [52], since each
node can be only in one of two states: empty or occupied. The
nodes are updated in consecutive time steps depending on its
own and its neighborhood occupation.

The model is also a cellular automaton; for a comprehen-
sive monograph, see [53]. More precisely, since the update
depends only on the sum of the neighbor states and the
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state of the node itself, it is a totalistic cellular automaton.
Cellular automata naturally involve unoccupied nodes. In our
model unoccupied nodes, holes, play an important role. We
distinguish holes that could be occupied from stable holes,
which cannot be occupied due to overstimulation. A simple
network picture disregards nodes which are not occupied.

A famous example of a totalistic two-dimensional deter-
ministic cellular automaton is Conway’s Game of Life [54].
Both the survival of an occupied cell and the occupation
of an empty cell are governed by window rules. Many
interesting patterns, depending on the initial conditions—static
or dynamic—have been described in detail and classified.
The Game of Life was transferred to a variety of lattices,
for example, to three-dimensional cubic lattices [55,56], to
triangular, pentagonal, and hexagonal tesselations, to Penrose
tilings [56–58], and to small world geometry [59]. Larger
than Life [60–62] increases the radius of the neighborhood.
Also, a probabilistic version on a two-dimensional square
lattice has been proposed, where stochastic deviations from the
deterministic update are permitted [63]. The mean occupation
of cells, a global order parameter, undergoes a sharp phase
transition for increasing strength of stochasticity. On the
occasion of the 40th anniversary appeared a comprehensive
collection of recent results on the Game of Life and its
descendants [64]. Our model can be considered as a further
version of the Game of Life on a high dimensional graph,
where empty nodes are randomly occupied, while the survival
of occupied nodes is governed by a deterministic window rule.
Starting from an empty graph we observe an evolution toward
a complex, highly organized architecture. The model can also
be categorized as a stochastic, nonlinear dynamical system.

There exists a variety of models for B-cell networks.
References [9,17] give comprehensive surveys of modeling
approaches.

For instance, Stewart and Varela [65,66] proposed a model
which also has a random influx and a window update rule
to simulate the internal dynamics and a zero/one clone popu-
lation. However, while we consider a discrete d-dimensional
hypercubic shape space, in their model the complementary
idiotypes live on different sheets of a two-dimensional con-
tinuous shape space [67]. A summary of results obtained in
models with continuous shape space is given by Bersini [68].
Several aspects of modeling in continuous and discrete shape
space are discussed in [69].

An early network model inspired by spin glass physics was
proposed by Parisi [70] to describe immunological memory.
The interaction between idiotypes in the model of Barra and
collaborators [71–73] is also taken from spin glass physics.
Their model describes a given number of idiotype populations
each with a constant number of lymphocytes. Each cell can be
in a firing or quiescent state. The strength of the ferromagnetic
coupling between the idiotypes (also encoded by bit strings)
models the affinity, which is related to the complementarity
of the bit strings. Barra and Agliari [71,72] compute the
degree distribution, the type and number of loops, and consider
the scaling behavior. They describe primary and secondary
immune responses and understand low and high dose tolerance
as a network phenomenon. In our model the log-bell-shaped
response is integrated as a B-cell property [6,17]. Essential
for our approach is a random influx of new cells and a

selection mechanism. Hence, we can describe the evolution
of the network towards a functional architecture.

A model which distinguishes between antibody molecules
and lymphocytes with a dynamics including an influx similar
to ours is proposed by Ribeiro et al. [74]. They compare
the dynamics on given architectures of random and scale-free
networks.

IMMSIM, invented by Celada and Seiden [75,76], is also
a modified cellular automaton. It incorporates many immuno-
logic agents, including antigen presenting cells, B cells, T cells,
antigens, antibodies, and cytokines. It describes both humoral
and cellular responses. Idiotypes are also characterized by
bit strings. The vast amount of interacting agents increases
drastically the number of parameters. The model is intended
to be as realistic as possible and to provide experimental and
practical immunologists with a tool to test hypotheses in silico.
Our approach is in a sense complementary. We aim at an
understanding of the principles governing the autonomous
evolution toward a functional architecture. Therefore, we
investigate a minimalistic model with a small number of
parameters, which nevertheless exhibits essential features of
the biological network.

The concept of idiotypic networks inspired applications in
computer sciences, for example, artificial immune systems for
the detection of the intrusion of spam or viruses [77,78].

III. SIMULATION RESULTS

In this section we report on simulations on the base graph
G

(2)
12 , which consists of 212 = 4096 nodes, each of which has

κ = 79 links to other nodes. The window rule parameters
are [tL,tU ] = [1,10]. The lower threshold is biologically
motivated; a node needs at least one occupied neighbor to
survive. The upper threshold is chosen to enable a nontrivial,
dynamic pattern of complex architecture. As discussed below
in more detail, higher tU would allow a broader variety of
static patterns. However, the concept developed in this paper
still applies.

All patterns discussed in the following refer to the system’s
state after application of the window rule, when the system is
more ordered than after the next influx.

The simulations start with an empty base graph. The influx
p varies from 0 to 0.11. This covers the range in which we
find interesting patterns; above p � tU/κ = 0.127 there is
only trivial random behavior. Obviously, for p � tU/κ the
occupation of the graph, after application of the window rule,
tends to zero.

A. Random evolution

We start the simulations with an empty base graph oc-
cupying nodes with probability p. In the first time step only
those nodes survive which have at least one occupied neighbor
(having more than tU occupied neighbors is unlikely in the
beginning). The surviving nodes represent seeds, the neighbors
of which will survive if occupied. Hence, we observe a rapid
growth of a giant cluster until more and more nodes have more
than tU occupied neighbors. Exceeding the upper threshold
deletes a node. Thus, the giant cluster decays and many stable
holes are created, that is, nodes with the number of occupied
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FIG. 1. Time series of the number of occupied nodes n(G), the
size of the currently largest cluster |Cmax|, the average cluster size
〈|C|〉C , and the number of stable holes h∗(G) on the base graph
G

(2)
12 with [tL,tU ] = [1,10] and p = 0.01. The system evolves to a

stationary eight-cluster pattern.

neighbors above the upper threshold tU . Figure 1 shows a time
series for the evolution to a stationary state where the number
of stable holes increases up to its stationary value.

The empty base graph is a highly symmetric object. Due
to the random influx the symmetry is broken and the system
falls into a network configuration of lower symmetry. The
typical result of the evolution is a quasistationary pattern of
mutually dependent occupied nodes and stable holes. Properly
situated occupied nodes create stable holes and in return stable
holes in the neighborhood of an occupied node may prevent
its overstimulation.

In the generic case for a given p a certain pattern type
is found most frequently. Occasionally, depending on the
history of the driving process, also other patterns occur.
Once established, they all can live for a long time. (This
can be proved in simulations preparing the pattern as initial
configuration.)

In principle, the system is ergodic [79]. This becomes
immediately clear considering the following unlikely but
possible event. For any choice of p > 0 the occupation of
nodes by the influx can be such that the application of the
window rule leads to an empty base graph. After this extinction
catastrophe the further realization of the driving process, the
influx, determines to which pattern the system evolves. For
any p > 0 an infinite trajectory contains partial trajectories
leading to any possible pattern. In practice, in our simulations
we have never seen such an extinction catastrophe but only
quasistationary patterns usually living for a long time. For
increasing system size such catastrophes become less likely.
In the thermodynamic limit we expect a breaking of ergodicity.

In our finite system there can be transitions between
different patterns on a route without extinction catastrophe
but via the formation of an intermediate, unstable giant cluster
(for more details, see [13]).

Modeling biological systems we should keep in mind
that they are finite and have a finite life expectation. The
quasistationary state could persist for times longer than the

life span of the individual but transitions between different
states cannot be excluded. Moreover, the parameters could
vary during the individual’s life.

B. Global characteristics

A first characterization of the different patterns can be
obtained considering global quantities. They include the
number of occupied nodes on the base graph

n(G) =
∑
v∈G

n(v), (1)

where n(v) ∈ {0,1} is the occupation of node v, the size of the
largest cluster in the set of present clusters C,

|Cmax| = max
C∈C

(|C|), (2)

and the average size of the clusters,

〈|C|〉C = 1

NC

∑
C∈C

|C|, (3)

where NC is the current number of clusters and 〈·〉S denotes
the average over the elements of some set S. Clusters,
that is, connected parts of the occupied subgraph, are very
characteristic for patterns. Finally, we mention the number of
stable holes h∗(G), that is, empty nodes with n(∂v) > tU .

Figure 1 shows a generic time series of these global
characteristics for a parameter setting where the system
evolves to a stationary eight-cluster pattern.

In the stationary state we can consider temporally averaged
global quantities. The temporal average is defined as

x = 1

T1 − T0

∑
t∈(T0,T1]

xt , (4)

where T0 should be larger than the relaxation time in which the
system reaches the stationary state, and (T0,T1] is the averaging
period.

Table I gives results for three patterns which occur for
different influx p. The static patterns are named according
to the size of the characteristic clusters. With a deeper
understanding of the architecture we name them by the number
of groups of nodes; see Sec. IV below.

The eight-cluster pattern at p = 0.005 has 128 clusters of
size 8, which results in a total average population of 1024
occupied nodes, that is, one-fourth of all nodes. The remaining
nodes are holes, 2816 of which are stable [n(∂v) > tU ] and 256
are not stable [n(∂v)� tU ]. Empty nodes with n(∂v) < tL are
not counted as stable holes, since they could easily become

TABLE I. Temporal averages and standard deviations of global
characteristics for three typical patterns. Data from 500 000 iterations.

Pattern Eight-cluster Two-cluster Dynamic
p 0.005 0.015 0.025

n(G) 1024.6 ± 0.8 1023.3 ± 0.9 533.4 ± 27.7
h∗(G) 2816.0 ± 0.0 3055 ± 20 1828 ± 114
|Cmax| 8.0 ± 2.8 4.5 ± 2.1 410 ± 20
〈|C|〉C 7.96 ± 0.04 2.01 ± 0.01 4.49 ± 0.96
NC 128.6 ± 0.8 510.4 ± 3.7 123.1 ± 22.0
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FIG. 2. Hub in the two-cluster pattern. A defect, an unoccupied
two cluster (open circles), in the perfect two-cluster pattern allows the
occupation of a node (gray) which connects ten occupied two clusters
(black). Defects are rare and an occupied hub will not survive the next
update if one of its empty neighbors, for example, of the missing two
cluster, becomes occupied. There is one link (solid line) with one
mismatch, the other links (dashed lines) have two mismatches. The
nodes are labeled with the decimal expressions of their bit strings.
Figure produced using yEd [80].

occupied and sustained by the random influx. Figure 1 shows
the temporal evolution from an empty base graph towards an
eight-cluster pattern.

In the two-cluster pattern at p = 0.015 the 510 clusters of
size 2 together occupy about one-fourth of the base graph.
The remaining three-quarters are stable holes. Defects in the
perfect two-cluster pattern allow that occasionally some of the
node pairs become connected via a central hub and a larger
star-shaped cluster is formed (see Fig. 2). tU = 10 was chosen
to exclude the occupation of the hub in the perfect pattern.
Both the eight- and the two-cluster patterns are quasistatic; the
temporal fluctuations are small.

A more complex, dynamic pattern evolves for larger p �
0.03. The standard deviation of the temporal averages is one
order of magnitude larger than in the two static patterns.
Figure 3 shows a snapshot of the occupied graph. We see one
large cluster of about 400 nodes and about 120 isolated nodes.
These nodes had at least one occupied neighbor which was
removed in latest update. Further, approximately 1800 stable
holes and 1800 unstable holes have been observed, which are
not shown in the figure. We can clearly distinguish a central
and a peripheral part, which are supposed to be of functional
importance in the biological idiotypic network.

C. Local characteristics

Besides global quantities, time averages of local quantities
characterizing every single node can be considered. Elucidat-
ing are the mean occupation n(v), the number of occupied
neighbors n(∂v), and the mean lifetime τ (v), which is defined

FIG. 3. (Color online) Snapshot of the occupied graph of the
complex configuration of a dynamic pattern for p = 0.025. As an
additional information, the nodes are colored according to their
membership in different groups [see Fig. 15 (top)]; nodes within
a group have similar statistical characteristics (see text). Figure
produced using yEd [80].

as

τ (v) = 1

b(v) + nT0

∑
t∈(T0,T1]

nt (v), (5)

where b(v) is the number of births during the observation
time, that is, the number of new occupations of the node by the
influx. Of course, b(v) + nT0 �= 0 must be fulfilled; otherwise
τ (v) has no meaning.

We can identify groups of nodes sharing statistical prop-
erties as proposed in [13]. Figure 4 shows mean occupation,
mean lifetime, and the number of occupied neighbors vs influx
probability. The groups appear as peaks in the histograms.
The number of occupied neighbors proves most suitable to
distinguish the different groups.

For small and moderate influx a clear group structure is
visible. The data for the mean lifetime and the mean occupation
suggest that the patterns are static for p � 0.03. These patterns
have groups of occupied nodes with a high mean lifetime;
other groups are stable holes or sparsely occupied nodes. For
0.03 � p � 0.08 the patterns are dynamic, but still stationary.
Also in dynamic patterns there are stable holes. The mean
lifetime of occupied nodes is small; the occupied subgraph
changes continuously. While in static and dynamic patterns
all nodes remain in their groups, for high influx p � 0.08 the
patterns become short-lived; groups dissolve and reemerge in a
different configuration. Their distinction by temporal averages
becomes more and more difficult. For very high influx p �
0.12 the dynamics is entirely random.

IV. CONCEPT OF PATTERN MODULES

We find regularities in the bit strings encoding nodes
belonging to the same group. This makes it possible to
identify general building principles. Patterns are built from
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FIG. 4. Time averages of the mean occupation (top), the mean
lifetime (center), and the mean number of occupied neighbors
(bottom) of each node for increasing values of p, �p = 5/4096.
Each graph shows isolines of a histogram in the top view. The gray
scale reflects the number of nodes with the corresponding property.
Regimes of different temporal behaviors are separated by vertical
lines. For each p data is from time series of 500 000 iterations in the
stationary state, starting from an empty base graph G

(2)
12 .

more elementary objects, so called pattern modules. With this
concept we can derive all structural properties, the size of the
groups and their linking, of the patterns observed so far in the
simulations.

We first explain the principles on the example of the two-
cluster pattern and develop then the detailed concept for the
general case. At the end of the section, exploiting this concept,
we introduce the center of mass vector, a tool which makes it
possible to identify in simulations the majority of patterns in
real time.

A. Simplest case: The two-cluster pattern

We introduce the building principles of patterns considering
the simplest pattern, the two-cluster pattern which appears
for moderate influx. In simulations starting from empty base
graphs it is rare and only found for 0 < p � 0.03, but if
prepared as initial condition it is very stable for a larger
range of p up to 0.045. By their statistical characteristics (cf.
Table II) we can distinguish three groups of nodes, frequently
occupied nodes (S1) with a high mean lifetime, permanently
empty stable holes (S3), and rarely occupied potential hubs
(S2), which link together up to tU two clusters if occupied.

Looking at the node indices iv in decimal representation
we observed that the sum of the two indices in a two cluster
is constant in a realization. In a different realization the index
sum can be different. For instance, in Fig. 2 the index sum
within all two clusters is 6207. This indicates regularities at
the level of the bit strings.

We found that all occupied nodes are identical in exactly
two bits, say at position k and l . The members of a two cluster
are complementary in all other bits; in symbols we write

· · · bk· · · bl· · · is linked with · · ·bk· · ·bl· · ·,
where the bar denotes the bit inversion. The bit strings of all
stable holes are also equal in the same two bit positions k

and l . However, they are inverse to bk and bl of the occupied
nodes. Potential hubs have exactly one inverse and one equal
bit in these positions. As these bits play a crucial role, we call
them determinant bits. The regularities are summarized by

occupied nodes S1 · · ·bk· · ·bl· · ·,
potential hubs S2

{ · · ·bk· · ·bl· · ·,
· · ·bk· · ·bl· · ·,

stable holes S3 · · ·bk· · ·bl· · ·.
The example in Fig. 2 has the determinant bits in positions 7
and 12, b7 = b12 = 1.

This makes it possible to explain all structural properties of
the pattern observed in the simulations. We can construct an
ideal two-cluster pattern, a configuration in which all nodes of
group S1 are occupied and the others remain empty. It is ideal
in the sense that there are no defects but also no hubs.

Since all other bits can take all possible combinations,
the size of the groups can be calculated; for example, there
are |S1| = 2d−2 occupied nodes and |S2| = 2 × 2d−2 potential
hubs.

We further can compute the number of occupied neighbors
n(∂v) of a node v of any group. Since all nodes of S1 are
occupied in the ideal pattern, n(∂v) is given by the number of

TABLE II. Local characteristics of the three groups in the two-
cluster pattern for p = 0.025 compared with the ideal pattern. Data
from a time series of 500 000 iterations.

S1 S2 S3

Mean occupation 〈n(v)〉Si
0.993 0.0004 0.000

nideal 1 0 0
Occupied neighbors 〈n(∂v)〉Si

1.002 10.95 55.64
n(∂v)ideal 1 11 56

Mean lifetime 〈τ (v)〉Si
6923 0.016 0.000
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Stable holes

Hubs

2

57
11

22

11
22

56 56

3 1

1 1

2−Cluster

FIG. 5. The three groups of the two-cluster pattern and their
linking. The circle sizes correspond to the group sizes. The arrows
and the numbers next to them indicate how many nodes of a group
exert influence on the nodes of another group, for example, each node
of S2 is stimulated by 11 nodes from S1. The number of links can be
counted in simulations or taken from the link matrix that is derived
in Sec. IV B.

links between v and nodes in S1. A link between two nodes
exists if their bit strings are complementary except for up to
two mismatches. If v ∈ S1 , it has two bits in common with
all other nodes in S1, namely bk and bl . Thus, all remaining
bits must be exactly complementary. There is only one node
w ∈ S1, which obeys this constraint. If v ∈ S2 or v ∈ S3, there
is one predetermined mismatch or none, respectively. The
remaining mismatches can be distributed among the d − 2
nondeterminant bits. Thus, a node in Si has

n(∂v)ideal =
i−1∑
j=0

(
d − 2

j

)
(6)

occupied neighbors in the ideal pattern. For small influx this
is in good agreement with the simulations (cf. Table II). In
a similar way for all nodes the number of links to nodes in
different groups can be calculated; the result is visualized in
Fig. 5. The derivation for the general case is given in the next
section.

This regularity encouraged the following concept. Con-
sidering the two determinant bits as coordinates of a
two-dimensional space, they define the corners of a two-
dimensional hypercube. The corner with coordinates (bk,bl)
represents an occupied node, the opposite corner (bk,bl) is a
stable hole, and the neighboring corners of (bk,bl) are potential
hubs. We call this structure a pattern module, because it is
the building block for the entire regular configuration. In a
different picture, we can also understand an ideal configuration
as consisting of 2d−2 congruently occupied “parallel worlds.”
Figure 6 illustrates the concept of pattern modules.

Any choice of the two determining bits is of course possible,
all corresponding patterns are equivalent, the two-cluster

pattern is 22 × ( d
2 )-fold degenerated, where the first factor

represents the choice of the two determinant bits, and the
second factor gives the number of possible positions of these
bits in the bit string of length d . It is the individual history (the

BB

_

_

_

_

_
B11

B01

B10

B00

B11

B10

B00

B01

module module

FIG. 6. Two pattern modules with complementary non-
determinant bit chains B and B, respectively, on a two mismatch
base graph with a two-cluster configuration. The two-dimensional
modules are congruently occupied, each consisting of one occupied
node (black, ·00), two potential hubs (gray, ·01 and ·10) and one stable
hole (white, ·11). The positions and values of the determinant bits are
chosen without loss of generality. The links have no mismatch (bold
lines), one (solid lines), or two mismatches (dashed lines). There
are 2d−2 pattern modules, each pair of which with complementary
nondeterminant bits contribute a pair of occupied nodes.

realization of the random influx) which selects the determining
bits and thus breaks the symmetry.

The two-cluster pattern consists of idiotype–anti-idiotype
pairs which mutually stimulate each other. In such a pair the
anti-idiotypic clone carries the internal image of an antigen
which the idiotypic clone is able to recognize, and vice versa.
However, the pattern as a whole is a regular array of two
clusters with two-mismatch links. It is organized in such a
way that every empty node has occupied neighbors. An antigen
inserted in an empty node will be surely recognized. In this
sense the pattern is complete, but it has no place for self.
In addition, the pattern is essentially static and therefore not
adaptive.

B. General case

1. Groups

Many results for two-cluster patterns on the G
(2)
12 base graph

can be generalized to more complex architectures and other
choices of d and m. This includes the eight-cluster pattern
mentioned in Sec. III and other static patterns as well as
the dynamic pattern. Their structure is correctly described by
pattern modules with more than two determinant bits.

In the same way as for the two-cluster pattern, we define
the pattern module as a hypercube of dimension dM , where dM

is the number of determinant bits. There are two groups which
are represented by only one node in the pattern module. One
of them is labeled S1. All nodes in group S1 have the same
determinant bits b1 · · · bdM

. The other groups are ordered such
that the determinant bits of Sj differ in j − 1 positions from the
determinant bits of S1. It is clear that there are dM + 1 groups.
Groups Sj and SdM+2−j are equivalent; they have the same
size and linking properties (see below). In typical patterns,

011930-7
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occupation breaks the symmetry. We usually label the smallest
group of the more occupied half as S1, which is, of course,
arbitrary.

The size of the groups can be obtained by elementary
combinatorics. Since the ith group deviates in i−1 out of

dM determinant bit positions of S1, there are ( dM
i−1 ) choices.

This number is multiplied by the number of pattern modules
on the base graph given by 2d−dM . The group size is

|Si | = 2d−dM

(
dM

i − 1

)
, i = 1, . . . ,dM + 1. (7)

The factor ( dM
i−1 ) is called the relative group size, since it is the

group size normalized by the size of S1. It is independent of
the base graph dimension d and the number of mismatches m.

As an example, we can construct two-cluster patterns on
a base graph G

(m)
d by means of pattern modules with exactly

one occupied node (S1). The dimension of the pattern module
dM then has to equal the number of allowed mismatches m.
The number of qualitatively distinguishable groups is m + 1,
etc. A two-cluster pattern can emerge if the lower threshold
is tL � 1 and the upper threshold obeys 1 � tU � d − m. The
two-cluster pattern on one-mismatch graphs described in [13]
is an instance of such a pattern. However, in the one-mismatch
case one half of all nodes are occupied; the other half are stable
holes.

2. Linking

Each node on G
(m)
d has κ = ∑m

k=0( d
k

) links, κ is constrained

by the allowed number of mismatches m. We consider a pattern
with dM determinant bits. Each node in group Si is linked to Lij

neighbors in group Sj . The Lij are the entries of the link matrix
L. L defines the architecture of a pattern built of modules of
dimension dM .

The dynamics of a node depends on the number of occupied
neighbors. The mean occupation is a typical common property
of nodes belonging to the same group. Thus, the knowledge
of the group membership of the node’s neighbors is of crucial
importance to understand its statistical properties.

Within the concept of pattern modules L can be derived
combinatorially. Recall that the determinant bit string of a
node in Sl deviates in l−1 bits from the determinant bit string
of a node v1 in S1. In the following we consider a node v(i)

chosen such that the i − 1 bits inverse to the corresponding
bits of v1 are left-aligned; its nondeterminant bits are denoted
by B. This choice is without loss of generality, because all the
arguments do not depend on the labeling of the bit position.
From the nodes in Sj we choose v(j ) such that the j − 1 bits
inverse to the corresponding bits of v1 are right-aligned and
the nondeterminant bits are B. There is no other node in Sj

with fewer mismatches to v(i).
We have to distinguish whether the partial bit strings

of length i − 1 and j − 1 do overlap. These cases are
discriminated by the value of �ij = dM − i − j + 2. There
are three cases.

(i) �ij = 0. All determinant bits of v(i) and v(j ) are
complementary.

(ii) �ij > 0. v(i) and v(j ) share �ij determinant bits with
v1. This case is illustrated as

v1

v(i)

v(j )

b1 . . . bi−1

b1 . . . bi−1

b1 . . . bi−1︸ ︷︷ ︸
i−1 bits

bi . . . bdM−j+1

bi . . . bdM−j+1

bi . . . bdM−j+1︸ ︷︷ ︸
�ij =dM−i−j+2 bits

bdM−j+2 . . . bdM
,

bdM−j+2 . . . bdM
,

bdM−j+2 . . . bdM
.︸ ︷︷ ︸

j−1 bits

(iii) �ij < 0. v(i) and v(j ) share |�ij | determinant bits which
are inverse to the corresponding bits of v1, see diagram below:

v1

v(i)

v(j )

b1 . . . bdM−j+1

b1 . . . bdM−j+1

b1 . . . bdM−j+1

bdM−j+2 . . . bi−1

bdM−j+2 . . . bi−1

bdM−j+2 . . . bi−1︸ ︷︷ ︸
−�ij =i+j−dM−2 bits︸ ︷︷ ︸

i−1 bits

bi . . . bdM
,

bi . . . bdM
,

bi . . . bdM
.︸ ︷︷ ︸

dM−i+1 bits

The number of mismatches between v(i) and v(j ) is |�ij |. If
|�ij | � m there is a link between v(i) and v(j ). In this case there
are further nodes in Sj which link to v(i), the number of which
is calculated combinatorially. There are m − |�ij | additionally
allowed mismatches which can appear among nondeterminant
and/or determinant bits.

In cases (ii) and (iii) there are further nodes in Sj with |�ij |
mismatches to v(i). These are obtained by distributing the |�ij |
mismatches among the dM − i + 1 right-aligned bits in case
(ii), or among the i − 1 left-aligned bits in case (iii). This leads

to ( dM−i+1
�ij

) and ( i−1
|�ij | ) nodes in the respective cases.

Now we consider additional mismatches. Among the d −
dM nondeterminant bits we can distribute l mismatches in(

d − dM

l

)

different ways.
Among determinant bits additional mismatches can only

appear in pairs. This is relevant for m − |�ij | � 2. If we
invert one bit in v(j ), the resulting node is not in Sj since
the number of bits complementary to v1 is changed. We have
to invert a second bit so that the number of mismatches with v1

remains constant. The number of nodes in Sj with |�ij | + 2k

mismatches to v(i) is computed as follows.
In case (ii) we invert k bits in the i − 1 left-aligned bits

of v(j ). There are ( i−1
k

) possibilities. To compensate for this,
we have to invert k bits among the j − 1 right-aligned bits
of v(j ). Altogether, there are now �ij + k mismatches to v(i)

living on the dM − i + 1 right-aligned bits. There are ( dM−i+1
�ij +k

)
possibilities to distribute them. Thus, we have

(i − 1k)

(
dM − i + 1

�ij + k

)

nodes in Sj with �ij + 2k mismatches to v(i).
Case (iii) is similar. We invert k bits in the dM − i + 1

right-aligned bits of v(j ), there are ( dM−i+1
k

) possibilities. To
compensate this, we have to invert k bits among the dM −
j + 1 left-aligned bits of v(j ). Together, �ij + k mismatches
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to v(i) live on the i − 1 left-aligned bits. There are ( i−1
|�ij |+k

)
possibilities. This leads to(

dM − i + 1
k

)(
i − 1

|�ij | + k

)

nodes in Sj with |�ij | + 2k mismatches to v(i).
The result in case (i) is obtained setting �ij = 0, and the

result for redistributing only |�ij | mismatches derived before
is reproduced for k = 0.

Since the total number of mismatches between linked nodes
can not exceed m, l and k are constrained by l + 2k + |�ij | �
m. Summarizing, we obtain for �ij � 0

Lij =
∑
l,k=0

(
d − dM

l

)(
i − 1

k

)(
dM − i + 1

�ij + k

)

× 1(l + 2k + �ij � m), (8)

and for �ij � 0

Lij =
∑
l,k=0

(
d − dM

l

)(
i − 1

|�ij | + k

)(
dM − i + 1

k

)

× 1(l + 2k + |�ij | � m). (9)

In some cases the evaluation of the sums in Eqs. (8) and (9)
leads to simple rules (see [81]).

Of course, the total number of links of a node is

dM+1∑
j=1

Lij = κ. (10)

The link matrix L = (Lij ) has a symmetry given by

Lij = LdM+2−i,dM+2−j . (11)

If the link matrix entries of the ith row are multiplied by the
size of group Si , the resulting matrix with entries �ij = |Si |Lij

additionally obeys �ij = �ji .
It may be of interest to know the number of links from a

node of Si to nodes of Sj with a given number of mismatches
μ, which is denoted by L

μ

ij . It is obtained replacing in Eqs. (8)
and (9) 1(l + 2k + |�ij | � m) by δl+2k+|�ij |,μ , which gives,
for example, for �ij � 0

L
μ

ij =
∑

k

(
d − dM

μ − 2k − �ij

)(
i − 1

k

)(
dM − i + 1

�ij + k

)
. (12)

Obviously, it holds Lij = ∑m
μ=0 L

μ

ij .

3. Architecture

For the link matrix and, thus, for the architecture of
patterns we can state a number of general properties. Because
|�ij | = |dM − i − j + 2| � m is the necessary and sufficient
condition for the existence of links between groups i and j ,
all nonzero matrix entries are situated on a band along the
secondary diagonal (see the illustration of the general structure
of the link matrix in Fig. 7). The width of this band is 2m + 1;
that is, m controls the range of influence of a group. Group Si

interacts with the 2m + 1 groups SdM+2−i−m, . . . ,SdM+2−i+m.
We always find groups with self-coupling, because there

is always a quadratic block of nonzero matrix entries in the
center of L. Such groups are called core groups. The size of

+1dM

no self−
coupling

no self−
coupling

m

0

1

m

...

ij =

ij =

ij =|Δ  |

|Δ  |

|Δ  |
core

FIG. 7. The general structure of the (dM + 1) × (dM + 1) link
matrix. Matrix entries along the 2m + 1 solid diagonal lines are
nonzero [cf. Eqs. (8) and (9)]. All other entries are zero. Groups
in the center (gray square) couple to themselves and are naturally
called core groups. Among the groups without self-coupling we can
further distinguish groups that couple to the core from those which
do not. See further discussion in the text.

the core, that is, the number of core groups, depends on m and
on the existence of a central element in L. Such an element
exists if dM is an even number. Thus,

No. of core groups =
{

m if either m or dM odd,

m + 1 otherwise.

(13)

Groups without self-coupling exist if the number of groups
dM + 1 is larger than the number of core groups. Such groups
are related to the square submatrix of L with all entries equal
to zero (cf. Fig. 7).

The number of core groups for a given m depends only on
whether dM is even or odd but is independent on d. We can
represent the content of Fig. 7 in an alternative way exploiting
that groups with index i have the same properties as those
with index dM + 2 − i. In Fig. 8 these groups are on the same
position in the two parallel strands. The core groups are on the
right end of the diagram. We distinguish two cases, with even
and odd number of core groups, respectively, which form the
“head” of a caterpillar. If we increase dM by two, this does not
change, but only the “tail” of the caterpillar gains an additional
segment. This observation can be used to determine the scaling
of the group sizes for large d (cf. the appendix of this paper).

Note that all these general properties in this section are
structural information about the patterns. They only depend
on the parameters d, m and on the choice of a pattern module
dM .

The above analysis, visualized in Figs. 7 and 8, shows that
there always exist core groups which are linked internally and
to each other. If the module dimension dM is large enough, we
additionally have peripheral groups linked with the core. For
dM still larger, groups may occur which are not linked to the
core. Thus, already on this stage we can say that the model
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FIG. 8. Groups and their linking for even (top) and odd dM

(bottom) on a two-mismatch base graph. The lines show possible links
between nodes of the groups. The circles indicate the self-coupling
within the core groups. It is suggestive to call arrangement of the
groups caterpillar representation.

has the potential to describe a core-periphery architecture,
as proposed in the second generation concept of idiotypic
networks [6].

4. Center of mass

In the simulations time series of 2d nodes are generated,
for example, to calculate the mean occupation. In order to
identify patterns in real time it has proven useful to reduce
this information by introducing—in analogy to classical
mechanics—a center of mass vector in dimension d. We
consider occupied nodes, n(v) = 1, as unit point masses in
a d-dimensional space [−1,1]d . The position vector r(v) of a
node v encoded by the bit chain bd bd−1 · · · b1 with bi ∈ {0,1}
has components ri(v) = 2bi − 1 in this space. The center of
mass is defined as

R = 1

n(G)

∑
v

n(v)r(v). (14)

The definition of r(v) ensures symmetry with respect to r = 0,
which implies that for any symmetrically occupied pattern, for
example, the completely occupied base graph, we have R = 0.

Figure 9 is a typical example of a time series of the d

components of R. Stationary states are characterized by small
fluctuations of the components Ri around some average values
Ri , think, for example, of a moving average. The value of Ri

makes it possible in the typical case to decide whether i is a
determinant bit position.

In general, for all nondeterminant positions i we have Ri ≈
0. For any choice of determinant bits, the nondeterminant bits
run through all combinations of zeros and ones. Therefore,
supposing that all nodes within a group are occupied with the
same probability, the expected contribution of each group to
the nondeterminant components of R is zero.

For patterns which break the symmetry, the Ri for deter-
minant bit positions i are nonzero, positive or negative. We
explain in the following example, what can be inferred from
this information.

We consider a pattern with dM = 4. Figure 10 shows the
determinant bits which contribute to the groups of this pattern.

-1

-0.5

 0

 0.5

 1

 0  500  1000  1500  2000  2500

R
i

Time

FIG. 9. (Color online) A typical time series of the center of
mass vector components, from here on G

(2)
12 with [tL,tU ] = [1,10]

for p = 0.01. The evolution starts from an empty base graph, which
is gradually occupied, thus breaking the symmetry. A stationary state
is reached after about 1300 time steps. Four components fluctuate
around nonzero mean values, R1,R7,R10 ≈ −0.5, and R11 ≈ 0.5.
Hence, as explained in the text, it is an architecture with dM = 4
determinant bits and all nodes in S1 have ·10 · ·0 · · · · · 0. The time
series of global quantities in Fig. 1 describes a different realization,
which also evolves to a dM = 4 pattern.

Nondeterminant bits are not shown. In S2 in each bit position
the respective bits of S1 predominate, in S4 those of S5

predominate. In S3 the respective bits of S1 and S5 occur with
the same frequency (cf. Fig. 10).

For a symmetry breaking pattern where n(S1 ∪ S2) >

n(S4 ∪ S5), the sign of a determinant component Ri is
determined by the corresponding determinant bit bi(v1) of
a node v1 in S1, sgn Ri = ri(v1) = 2bi(v1) − 1. The other way
round, measuring sgn Ri we can infer bi(v1). If n(S1 ∪ S2) <

n(S4 ∪ S5) we can return to the case above by relabeling the
groups. The determinant bits bi(v1) of the pattern in Fig. 9 are
0 for i = 1,7,10 and 1 for i = 11.

The expectation value Ri for a given pattern is easily
computed in terms of the expected occupation of the different
groups n(Sj ). For a given j a fraction (dM − j + 1)/dM of the
occupied nodes contributes ri(v1), and a fraction (j − 1)/dM

contributes −ri(v1). For a determinant bit at position i we
obtain

Ri ≈
⎡
⎣ 1

n(G)

dM+1∑
j=1

dM − 2j + 2

dM

n(Sj )

⎤
⎦ ri(v1), (15)

S1 1000

S2 1001 1010 1100 0000

S3 1011 1101 0001 1110 0010 0100

S4 0110 0101 0011 1111

S5 0111

FIG. 10. For a pattern with dM = 4 we arrange the four determi-
nant bits as they contribute to the five groups S1, . . . ,S5 for the case
that the determinant bits of S1 are 1000, corresponding to Fig. 9.
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where we have supposed that the fluctuations of n(G) are small.
If i is a nondeterminant bit position, the arguments leading to
Eq. (15) do not apply, but following a different line we obtain
Ri ≈ 0, as explained above.

For the example shown in Fig. 9 we know from simulations
that a static pattern occurs where all nodes of S2 are occupied
and the others are empty, that is, n(G) = n(S2). This leads to
Ri ≈ 0.5 ri(v1).

For the typical case of a symmetry-breaking pattern, the Ri

make it possible to identify the determinant bits directly and in
real time. This procedure is remarkably robust against defects
in the pattern. For symmetric patterns, for example, n(S1 ∪
S2) = n(S4 ∪ S5) in the above example, Eq. (15) gives Ri = 0;
determinant and nondeterminant bits cannot be distinguished
this way.

V. ARCHITECTURE OF SPECIFIC PATTERNS

In the previous section we derived the structural properties.
Here we apply these results to a zoo of specific patterns
observed in simulations on G

(2)
12 with [tL,tU ] = [1,10]. This

restriction allows a certain completeness of the overview. For
other parameters different patterns can be found, but inspection
of several examples indicates that the building principles
generally apply.

We start with the static patterns with dM = 2, 4, and 6 and
point out their common properties. We show how the concept
of pattern modules needs to be extended to explain a more
sophisticated static pattern. Finally, we describe the complex
dynamic pattern which is built of modules of dimension dM =
11. For all examples below and a few more cases the link
matrices are explicitly listed in [82].

A. Simple static patterns

The simplest static pattern is the dM = 2 pattern with
characteristic two clusters, discussed in detail in Sec. IV A.
For the ideal pattern Eq. (15) gives Ri ≈ 1 ri(v1) for both
determinant bit postions; all other Ri ≈ 0, which is in
accordance with simulation.

In the static regime, for 0 < p � 0.03, we frequently
observed a pattern with eight clusters. It can be described
with a pattern module of dimension dM = 4.

It has five groups, which are illustrated in Fig. 11 together
with their links according to the link matrix [Eqs. (8) and
(9)]. Group S2 is highly occupied and its nodes form the eight
clusters (Fig. 12). S3, S4, and S5 are the groups of stable holes
and S1 is the group of singletons. Note the symmetry of the
structure in the figure, by which we could swap the groups
S2 and S4, and the groups S1 and S5. The same symmetry is
reflected in the binomial coefficients in the formula for the
group sizes [Eq. (7)] and can be seen in the link matrix [cf.
Eq. (11)].

The number of occupied nodes according to Eq. (7) is |S2| =
( 4

2−1 ) × 28 = 1024 and the number of singletons (unstable

holes) is |S1| = ( 4
1−1 ) × 28 = 256. The group of stable holes

consists of three subgroups, the total number of stable holes is
given by |S3| + |S4| + |S5| = (6 + 4 + 1) × 28 = 2816. This
is in agreement with the observations given in Table I.

4

Stable holes

Singletons
36

9
18 27

3

8−Cluster
40

40

41

36
11

37
37

6 1

5

36
9

3

218
27

FIG. 11. Detailed view of the architecture of the eight-cluster
pattern. As in Fig. 5 the circle sizes correspond to the group sizes.
The arrows and the numbers next to them indicate how many nodes
of a group exert influence on the nodes of another group according to
the link matrix.

For 0 < p � 0.03 we find occasionally a dM = 6 pattern
with characteristic 30 clusters. It is rare, but once established
it remains stable for a long time. For the determinant bit
positions in the ideal pattern Eq. (15) yields Ri ≈ 0.33 ri(v1)
as in simulations.

Its seven groups and their linking are schematically shown
in Fig. 13. Each node in group S3 has six links within the group.
Thus, a completely occupied S3 is stable. There are ( 6

2 ) = 15
nodes in the pattern module which belong to S3. These are
linked to the corresponding 15 nodes of the opposite module,
thus forming the 30 cluster. The stable hole groups S4 to S7

are suppressed; S1 and S2 are singletons.

B0100

B0001

B0010

B1000

B0001

B0010

B0100

B1000

_

_

_

_

FIG. 12. A cluster of eight occupied nodes as found in a snapshot
of the occupied subgraph in the dM = 4 architecture. It has the
topology of a cube in three dimensions. The cluster consists of nodes
in S2, which are all occupied up to few defects. The nodes are labeled
with their bit strings. The four digits represent the determinant bits.
For simplicity and readability we give the determinant bits of the
architecture realization in which S1 has determinant bits 0000. B
represents the string of nondeterminant bits, and B represents its
inverse. All links have two mismatches.
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Stable Holes

Singletons Cluster

Hubs
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1
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32

57

FIG. 13. The architecture of the 30-cluster pattern. As in Fig. 8
the lines show possible links between nodes of the groups.

These simple static patterns dM = 2, 4, 6 have in common
a very regular structure and a mechanism of self-support and
suppression. There is one fully occupied core group with a
self-coupling within the threshold window [tL,tU ] = [1,10].
Its nodes form clusters, sustain themselves, and suppress all
other groups except for the singletons, which are surrounded
by stable holes only. The occupation of singletons increases
slowly with increasing influx p. Since singletons have only
weakly occupied neighbors (stable holes) they are a hypothet-
ical place for self. However, these patterns have only a very
limited adaptivity.

At p = 0 the group of singletons will be emptied, the
remaining occupied nodes which are connected to at least
tL occupied nodes survive. An influx p � 0 perturbs the
pattern and tests its stability. Increasing p further leads to
more and more defects until, finally, the whole pattern will be
destabilized.

All patterns observed in simulations can be well explained
with the concept of pattern modules. On the contrary, not all
patterns that can be constructed with pattern modules, have
been actually observed. For many unobserved patterns we can
explain why they are either forbidden or very rare.

By the pattern module dM = 8 we can construct a static
112-cluster pattern in the same manner as 2-, 8-, and 30-
cluster patterns. We occupy the core group S4, which consists
of clusters of size 112. Each node in such a cluster has 10
occupied neighbors, all within S4. A small perturbation by
occupying an additional neighbor destabilizes the pattern. This
is the reason for its rareness. For even dM � 10 the number
of links within the core group exceeds tU so that a completely
occupied core is impossible.

For odd dM the self-coupling of the core groups is so
strong, Lii � 12 > tU (cf. [82]), that static patterns with one
completely occupied group are excluded. We could increase
tU to allow some of these static patterns.

For our choice of m = 2 in patterns with dM � 7 there
are groups, at the end of the tail of the caterpillar, outside
the range of influence of the core. An occupied core is not
able to suppress these groups. The range of influence could be
increased by increasing m.

B. Static pattern with two modules

There are static patterns that cannot be explained with a
single module, but by an extension of the concept to two pattern
modules. We explain this with the following example.

B 010 100

B 100 100

B 001 100

B 010 010B 100 010

B 010 001

B 100 001

B 110 000

B 001 010

B 001 001

B 011 000

B 101 000

B 111 000
B 111 000

B 000 100

B 000 001

B 000 010

B 000 100

B 010 100
B 100 100

B 001 100

B 000 001

B 010 010

B 100 010

B 000 010

B 010 001 B 100 001

B 110 000

B 001 010

B 001 001B 011 000

B 101 000

_

_

_

_

_

_

_

_ _

_

_

_

_

_

_

_

FIG. 14. A 24 cluster and two 4 clusters as observed in a
snapshot of the occupied subgraph in the 2 module architecture
with dM = d ′

M = 3. The nodes are labeled with their bit strings.
The nondeterminant bits are subsumed under B or its inverse B ,
respectively. The two groups of three digits represent the determinant
bits, corresponding to the first and second modules. For readability
the determinant bits are chosen such that group S1 ⊗ S ′

1 is encoded
by 000 000. All links have two mismatches. Figure created using
yEd [80].

In the regime of static patterns 0 < p � 0.035, we often
find a pattern that is characterized by large star-shaped clusters
of size 24 and accompanying small clusters of size 4 with one
central node surrounded by three separate nodes attached to it
(cf. Fig. 14).

It has six determinant bits, but the structure cannot be
explained by a single pattern module of dimension 6. However,
an architecture constructed with two pattern modules of
dimension dM and d ′

M with dM = d ′
M = 3 is in full agreement

with the observation.
A node group is now denoted by Si ⊗ S ′

j ; the former
corresponds to the first module, the latter to the second one.
The group S1 ⊗ S ′

1 has determinant bits b1b2b3 b′
1b′

2b′
3; in

the example given in Fig. 14 we have chosen 000 000.
The index k of Sk has the same meaning as for a single
module. The determinant bits of group Si ⊗ S ′

j deviate in
i − 1 bits from b1b2b3 and in j − 1 bits from b′

1b′
2b′

3. The
deviations in the first set of bits are independent from those
in the second set of bits. Therefore, not only seven groups
are generated as for a single module of dM = 6, but we find
(dM + 1)(d ′

M + 1) = 4 × 4 = 16 groups. The relative size of
group Si ⊗ S ′

j is ( dM

i−1 )( d ′
M

j−1 ). Also the link matrix can be
calculated. The number of links from a node vij ∈ Si ⊗ S ′

j
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to nodes in Sr ⊗ S ′
s is given by

Lij,rs =
∑

l,k,k′=0

[(
d − dM − d ′

M

l

)

×
(

i − 1

k + max(0, − �ij )

)(
dM − i + 1

k + max(0,�ij )

)

×
(

r − 1

k′ + max(0, − �′
rs)

)(
d ′

M − r + 1

k′ + max(0,�′
rs)

)

× 1(l + 2k + 2k′ + |�ij | + |�′
rs | � m)

]
, (16)

where �′
rs = d ′

M − r − s + 2 in analogy to �ij . This is
a condensed notation for the four cases discriminated by
�ij ,�

′
rs ≷ 0.

We obtain the ideal 24 clusters if we occupy the groups
S2 ⊗ S ′

2 for the nodes on the ring and S3 ⊗ S ′
1 for the

peripheral nodes. Similarly, the small 4 clusters are build of
occupied groups S4 ⊗ S ′

1 as the central node and S1 ⊗ S ′
2 as

the attached nodes. In this static pattern more than one group is
occupied. These groups mutually stimulate each other instead
of supporting themselves.

For two modules the center of mass components Ri

differ not only between determinant and nondeterminant bit
positions, but also between determinant bits belonging to
different modules. For the determinant bit at position i Eq. (15)
becomes

Ri ≈
⎡
⎣ 1

n(G)

dM+1∑
j=1

d ′
M+1∑
j ′=1

d
(′)
M − 2j (′) + 2

d
(′)
M

n(Sj ⊗ S ′
j ′ )

⎤
⎦ ri(v1,1),

(17)

where ri(v1,1) is the position vector component of a node in
S1 ⊗ S ′

1 and the prime in parentheses at d
(′)
M and j (′) applies

only if i is a position in the second module. For our pattern
with dM = d ′

M = 3 we obtain Ri ≈ 0.25 for the first module
and Ri ≈ 0.50 for the second.

An extension to several modules of possibly different
dimension appears natural.

C. Dynamic pattern

In simulations starting from the empty base graph for
p � 0.03 we only find a dynamical, stationary pattern with
complex architecture. It was first observed in simulations
in [13]. There, six groups of nodes sharing statistical properties
were identified and the architecture was described on a
phenomenological base. There are groups of singletons, stable
holes, two peripheral groups, and two core groups. A snapshot
of the occupied nodes and their linking is given in Fig. 3.

All structural properties, namely the number and size of the
groups and their linking, can be explained within the concept
of pattern modules using pattern modules of dM = 11. This
leads to 12 groups, which for a certain range of p can be
merged to the 6 phenomenological groups above. Groups S1

to S3 are groups of singletons, and groups S8 to S12 are stable
holes [see Fig. 15 (top) and Table III].

Table III in the first two rows gives the mapping from the
12 groups Si to the 6 groups S̃j found empirically in [13]. The
derived group sizes |Si | are in excellent agreement with the

Core

21

12 11 8

Periphery

3

10

6

7

5

9

4

Stable Holes

Singletons

Stable Holes

Singletons

1 2 3 4

101112 9

6

7

5

8

FIG. 15. (Color online) Visualization of the 12-group structure
for 0.03 � p � 0.045 (top) and for p � 0.045 (bottom). As in
Fig. 8 the lines show possible links between nodes of the groups.
The coloring of the groups in the upper figure corresponds to the
color of the respective nodes in Fig. 3, according to the qualitative
classification.

measured group sizes. Also, the sizes of the subgroups S8 , S9 ,
S10 , S11 , and S12 correctly sum up to 1124, which is exactly
the statistically measured number of stable holes (see Table I
in [13]). Besides the structural information, Table III also
shows group averages of local node characteristics, such as
mean lifetime and mean occupation. For the group occupations
〈n(v)〉Si

for p = 0.028 given in Table III we can determine Ri ,
for the determinant bits Eq. (15) and direct observation give
Ri ≈ 0.29.

We calculated the link matrix for this pattern (cf. Table IV).
In contrast to the static patterns that emerge for low influx p in
this structure we also find perfect matches and one-mismatch
links, but they are simply outnumbered by the two-mismatch
links.

The structural properties and the mean occupation of the
groups obtained in simulations make it possible to understand
the qualitative behavior. The phenomenological classification
in holes, singletons, etc., depends on p.

For a range 0.03 � p � 0.045 the following qualitative
groups appear. There are stable holes as in static patterns.
Singletons are surrounded by stable holes. Core groups couple
to all groups except for singletons. The number of self-
couplings is larger than the upper threshold tU . Therefore,
a complete occupation is not stable. However, there are many
configurations of partial occupation. The periphery couples
to the core groups and to stable holes. It is stimulated by
stable holes, which are momentarily occupied during the influx
step, and by the stationary occupied core. It is the group with
the highest occupation. The core groups have more links to
occupied groups than the periphery and therefore its mean
occupation is smaller than that of the periphery.

Although the pattern only evolves for p � 0.03, the
connected part of the network, the giant cluster, survives if the
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TABLE III. The node characteristics of the 12-groups structure. Data from 500,000 iterations for p = 0.028.

Qualitative classification Singletons Periphery Core Stable holes

Group S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12

Phenomenological group [13] S̃4 S̃4 S̃4 S̃5 S̃6 S̃3 S̃2 S̃1 S̃1 S̃1 S̃1 S̃1

Group size |Si | 2 22 110 330 660 924 924 660 330 110 22 2
Mean occupation 〈n(v)〉Si

0.206 0.193 0.193 0.321 0.477 0.069 0.030 0.000 0.000 0.000 0.000 0.002
Mean lifetime 〈τ (v)〉Si

9.11 8.53 8.56 16.86 32.55 2.66 1.10 0.00 0.00 0.00 0.00 0.07
Occupied neighbors 〈n(∂v)〉Si

0.01 0.01 0.01 0.84 1.88 8.94 10.56 19.63 19.66 27.78 21.05 15.27

influx is stopped. Since tL = 1, all isolated nodes disappear.
Starting with a small p � 0.03 from the giant cluster leads to
a similar scenario as described in Sec. III A, where the giant
cluster decays. This shows that the dynamic pattern requires
a sufficiently high influx to emerge and to remain stationary.
The influx permanently tests the stability of this pattern against
random perturbations.

Increasing the influx above p � 0.045 also the core groups
are suppressed by a growing population of peripheral nodes.
The occupation of the core groups thus converges to the
occupation of the stable holes while in the same process
the occupation of peripheral groups and singletons converges.
Thus, based on the same pattern module as above we can
distinguish considering mean occupation and lifetime only two
groups, stable holes and singletons [cf. Fig. 15 (bottom)]. Note,
that taking the number of occupied neighbors into account we
can still distinguish groups S6, . . . ,S9.

For even higher p � 0.07 the dynamic pattern becomes
transient. It often breaks down and rebuilds with a different
orientation on the base graph. Nodes can no longer be
permanently assigned to one of the 12 groups, but they
change their group membership with every new formation
of the pattern. Thus, a statistical characterization of nodes by
temporal averages is impossible.

For still larger p � tU/κ = 0.127 the dynamics is com-
pletely dominated by the random influx. The graph is so
densely occupied after the influx that typically the upper
threshold of the window rule is exceeded.

For dM � 7 holes at the tail of the caterpillar are not
sufficiently suppressed by the core, cf. the discussion at the

TABLE IV. Link matrix for dM = 11. Missing entries are zero.
This is an instance for the general structure shown in Fig. 7.

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12

v1 55 22 2
v2 45 20 12 2
v3 36 18 20 4 1
v4 28 16 26 6 3
v5 21 14 30 8 6
v6 15 12 32 10 10
v7 10 10 32 12 15
v8 6 8 30 14 21
v9 3 6 26 16 28
v10 1 4 20 18 36
v11 2 12 20 45
v12 2 22 55

end of Sec. V A and Fig. 8. Suppression by the periphery,
dM � 7, and by singletons, dM � 11, is required. Otherwise,
these holes could become occupied, which would destabilize
the complete pattern. Since singletons need sufficient influx,
those patterns occur only for higher p. Interestingly, among
several candidates only the dynamic pattern with dM = 11
has been observed on G

(2)
12 for our setting of [tL,tU ] and

0 < p < 0.11. It is also the only observed pattern with odd
module dimension.

In this context we recall that the autonomous dynamics of
the idiotypic network was a truly central feature of Jerne’s
original concept [4]. The existence of core and periphery fits
perfectly to the second generation idiotypic networks of Varela
and Coutinho [6].

VI. CONCLUSIONS

We considered a minimalistic model [13] of the idio-
typic network which evolves towards a complex functional
architecture. The main mechanisms are the random influx of
new idiotypes and the selection of not sufficiently stimulated
idiotypes. Numerical simulations have shown that after a
transient period a steady state with a specific architecture
is reached. Generally, groups of nodes sharing statistical
properties can be identified, which are linked in a characteristic
way.

In the present paper we achieved a detailed analytical
understanding of the building principles of the emerging
patterns. Modules of remarkable regularity serve as building
blocks. We can calculate size and connectivity of the groups
in agreement with numerical simulations.

The described building principles are formulated general-
izing regularities found by a careful analysis of the simplest
pattern. The architectures of all patterns observed so far can
be described by these simple building principles.

With increasing influx p we observe a transition from a
static regime (periodic patterns with defects) to a dynamic
regime (stationary architecture with groups of nodes sharing
statistical properties with fluctuating occupation). With further
increasing influx, in the random regime, the nodes no longer
remain in definite groups for a longer period of time (cf. Fig. 4).

With all necessary caution we could ask, “What is the
working regime of the model network?”

The perfect dM = 2-pattern of idiotype–anti-idiotype pairs
is stable and complete: Every node of the base graph has at
least one occupied neighbor. Any antigen is surely recognized,
including the self, which implies autoimmune reactions. The
dM = 4-pattern and the other static patterns with dM > 4
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contain a group of singletons surrounded by stable holes,
which provides room for self [83]. However, these patterns
are essentially static with few dynamic defects. They are very
rigid and therefore not adaptive.

This is in contrast to the dynamic regime, where we
have a stationary architecture with a densely connected
core, a periphery, and singletons. The nodes stay within the
corresponding groups but their occupation is dynamic [84],
which allows adaptation and plasticity. The influx is necessary
for the emergence of the dynamic pattern; it permanently tests
its stability and sustains the pattern.

A network that consists of a central and a peripheral part
is envisaged in the concept of second generation idiotypic
networks [6]. The central part is thought to play an essential
role, for example, in the control of autoreactive clones;
the peripheral part is thought to provide the response to
external antigens and to keep a localized memory. An ad hoc
architecture similar to the one described here was used
in [85] to investigate the role of the idiotypic network in
autoimmunity.

As discussed above, the influx of new idiotypes decides
which pattern emerges. If we stop the influx, once a pattern has
established, occupied singletons disappear as well as isolated
occupied nodes from other groups. All other components of
the network freeze, for example, in the dM = 11-architecture
the connected occupied nodes of core and periphery. Now a
sufficiently small influx would test the stability of this pattern
but is not enough to sustain it; the pattern decays and a static
pattern corresponding to the new influx emerges. Starting from
a static pattern, increasing the influx raises the number of
defects. For an influx high enough the static pattern disappears
and a dynamic one emerges.

While the model is clearly immunologically inspired, it is
worth pointing out that the results are interesting in themselves.
The process of self-ordering is genuinely evolutionary. The
local processes of addition and deletion of nodes involve
randomness (random influx) and selection (window rule), they
have a global impact. On a longer time scale we observe
an evolution towards a complex architecture. Depending on
the parameters this architecture can consist of many regularly
arranged small modules or of few large modules covering
the complete base graph. Most interestingly, for a range of
parameters, we find a dynamic stationary pattern comprising a
central and a peripheral part. Also, evolved real world networks
like internet [86] and brain [87] exhibit central and peripheral
parts. The analytical understanding of the principles opens
the possibility to consider networks of biological size and
to investigate their scaling behavior, for example, exploiting
renormalization group techniques (cf. [88]).

We emphasize that the model investigated in this paper
is minimalistic and of high symmetry. Some extensions of
the model appear natural, for example, weighting the links
depending on the number of mismatches, using bit strings of
different lengths, allowing parallel translations of bit strings,
or deleting links randomly. This reduces the symmetry of the
base graph and may change the density of the linking. The
base graph is then not necessarily regular; that is, nodes can
have a different number of links. Further, several levels of
occupation could be allowed. Some of these extensions seem
necessary to investigate certain immunologically motivated

problems. First results of simulations on models modestly
modified along these lines show that groups of nodes sharing
statistical properties organized in a stationary architecture
exist and indicate that the concept of pattern modules still
applies [89,90].

Ongoing studies investigate the evolution of the network
in the presence of a permanent self-antigen or an invading
foreign antigen. In the dynamic regime the network organizes
such that the self has only rarely occupied neighbors [89].
In the static regime bistable stationary states are found such
that a foreign antigen induces a transition from one state to
another (memory) state [89,90]. More details will be reported
elsewhere.

We also want to study the changes in the architecture during
the lifetime of an individual. Further variations of the dynamics
include hypermutation during cell proliferation [91] and a
delay of deletion of unstimulated clones.

In a forthcoming article [92] we report on a modular
mean field theory to compute statistical group characteristics
for arbitrary parameters and any given pattern. The mean
occupation, the mean lifetime, and the mean occupation of
the neighborhood are in good agreement with the simulations.
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APPENDIX: SCALING OF THE RELATIVE GROUP SIZE
WITH INCREASING SYSTEM SIZE

Suppose the biological system can express about 1011

different genotypes for antibodies [3]. This would correspond
to a bit string length d = 36. The system size in simulations is
limited by the computer resources. Still, today the biological
system size is hard to reach. On the other hand, the thermody-
namic limit is not of interest, because the biological system is
large but finite. Therefore, the scaling of qualitative properties
with increasing system size is important.

In the following we consider patterns with odd dM = d −
1. For dM � 7 we find from the “caterpillar representation”
(cf. Fig. 8) an architecture of two core groups, two peripheral
groups, and several groups of stable holes and of singletons.
With increasing d only the tail of the caterpillar grows, that
is, the number of stable hole and singleton groups increases.
How does the relative size of the different qualitative groups
scale with d?

The size of the groups is given by Eq. (7), which reduces
for dM = d − 1 to

|Si | = 2

(
d − 1
i − 1

)
, i = 1, . . . ,d. (A1)

We can order the groups with increasing i; then the two
core groups are the two central groups for i = d/2 − 1 and
d/2, which both have the same size. Thus, the total size of the
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core groups is

|C| = 22

(
d − 1
d/2

)
. (A2)

The peripheral groups are the two groups to the left of the
core groups, i = d/2 − 2 and d/2 − 3, which have the total
size

|P | = 2

[(
d − 1

d/2 − 2

)
+

(
d − 1

d/2 − 3

)]
. (A3)

Elementary algebra yields

|P | = d(d − 2)

(d + 2)(d + 4)
|C|. (A4)

To the left of the peripheral groups are the groups of
singletons, S, and to the right of the core groups are all groups
of stable holes, H (cf. Table III for the example with d = 12).

Because of ( n

m
) = ( n

n−m
) we have

|H | = |S| + |P | (A5)

and obviously

|S| + |P | + |C| + |H | = |Gd | = 2d . (A6)

With this knowledge we infer

|H | = 1/2(|Gd | − |C|) (A7)

and

|S| = |H | − |P |. (A8)

For large d we obtain in Stirling approximation

|C| ≈
√

2

π
2d+1 1√

d

(
1 − 3

4d2
+ · · ·

)
. (A9)

Thus, the relative size scales with d as

|C̃| = |C|
|Gd | ≈ 2

√
2

π

1√
d

(
1 − 3

4d2

)
∼ d−1/2. (A10)

In the thermodynamic limit |C̃| and |P̃ | tend to zero. For
a realistic size of the network, for example, d = 36, we have
for the qualitative groups |C̃| ≈ 0.266, |P̃ | ≈ 0.214, |H̃ | ≈
0.367, and |S̃| ≈ 0.153. |C̃| and |P̃ | together account for a
half of all nodes. Of course, the parameters p and [tL,tU ] have
to be suitably adjusted such that a pattern of the supposed
architecture actually emerges.
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