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Effect of synaptic plasticity on the structure and dynamics of disordered networks
of coupled neurons

M. Bayati and A. Valizadeh
Institute for Advanced Studies in Basic Sciences, P.O. Box 45195-1159, Zanjan, Iran

(Received 14 March 2012; revised manuscript received 8 June 2012; published 24 July 2012)

In an all-to-all network of integrate-and-fire neurons in which there is a disorder in the intrinsic oscillatory
frequencies of the neurons, we show that through spike-timing-dependent plasticity the synapses which have the
high-frequency neurons as presynaptic tend to be potentiated while the links originated from the low-frequency
neurons are weakened. The emergent effective flow of directed connections introduces the high-frequency neurons
as the more influential elements in the network and facilitates synchronization by decreasing the synaptic cost
for onset of synchronization.
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Experimental studies indicate that excitatory synapses are
very sensitive to the temporal order of firing of pre- and
postsynaptic neurons [1]. Spike-timing-dependent plasticity
(STDP) dictates that synaptic efficacy increases if firing
of a presynaptic neuron occurs in advance of firing of a
postsynaptic neuron, and decreases if the temporal order of
firing is reversed [1,2]. Indeed, STDP is widely thought to
underlie learning processes, and in itself constitutes a broadly
interesting phenomenon [3,4].

Many studies on synchronization both at the scale of a
few neurons and in large networks reveal that with STDP
neural synchronization is more rapid and robust [5]. Compared
to networks of fixed coupling strength, in the networks in
which the couplings change according to STDP, the regions
of synchronization in the parameter space are wider; e.g., they
can suffer larger mismatch in intrinsic frequencies yet show
synchronized behavior.

While most of the early studies on synchronization prop-
erties of complex networks ignore the evolution of network
structure and the directionality of the links, recent studies
address both the effect of the links’ directionality [6–9] and
time-dependent coupling strengths [10]. When networks are
directed, the Jacobian or Laplacian matrices will have complex
eigenvalues that influence both the stability [11] and the
dynamical organization of complex networks [6,9]. Here we
study how STDP changes the structure of the directional
links of a neuronal network, in an initially (topologically)
homogeneous network consisting of nonidentical oscillators.
Starting with an all-to-all network with symmetric couplings,
we will show that disorder in the intrinsic oscillatory frequen-
cies leads to asymmetric couplings in a predictable manner;
i.e., the evolution of the network is such that the influence
of the neurons (strength of outgoing couplings) with higher
rate of activity is enhanced and in turn, the strength of
incoming coupling to the neurons with lower rate of activity
is increased. We also show that the coupling cost for the
onset of synchronization for such a network, which has
an effective network flow of the directed connections from
high-frequency to low-frequency components, is smaller than
that of a symmetric network [9]. So in a network of constant
sum of the node strengths, such effective flow of connections
leads to more organized dynamics. In turn we show that the

evolution of the synaptic strengths in the network depends on
whether or not synchrony is achieved through STDP.

The model network consists of N pulse-coupled leaky
integrate-and-fire (LIF) oscillators, each of them defined by
a linear first-order equation

C
dVi

dt
= −gl(Vi − Vl) + Ji +

∑

j

Jij , (1)

in which Vi is the membrane voltage for each neuron labeled
by i = 1,2,...,N . C is the membrane capacitance, Ji is the
external current, and Jij is synaptic current with the neurons j

and i as the pre- and postsynaptic neurons, respectively. gl is
the leak conductance and Vl the resting potential. Assuming a
threshold voltage Vth for spike generation, after dividing both
sides by J0 = gl(Vth − Vl) and defining dimensionless voltage
v = (V − Vl)/(Vth − Vl), we get

dvi

dτ
= −vi + Ii +

∑

j

Iij , (2)

where τ = t/τ0 is dimensionless time in the units of the mem-
brane time constant τ0 = C/gl . Ii = Ji/J0 and Iij = Jij /J0

are dimensionless external and synaptic currents, respectively.
In the normalized units every time a threshold value vth = 1 is
reached, the neuron fires and the voltage resets to vres = 0. The
voltage of an isolated LIF neuron with constant input current
oscillates with the period T = ln[I/(I − vth)]. The spikes are
recorded by the neuron’s response function [12] defined as
xi(t) = ∑

m δ(t − tmi ) where tmi is the time of mth firing of the
neuron i and δ(x) is the Kronecker delta function. The synaptic
current Iij is defined as

Iij = aijgij xj (t), (3)

where aij is the element of the adjacency matrix [13] which is
one when there is a direct connection between the neurons i

and j as the pre- and postsynaptic neurons and zero otherwise.
Synaptic strength gij is positive throughout this study to model
excitatory synapses. For later convenience we call the matrix
formed by the elements aijgij the weighted adjacency matrix.

In this minimal model where all the neurons have the
same time constant, inhomogeneity in the intrinsic rates of
activity is imposed by unequal external currents; e.g., the
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currents Ii can be chosen from a distribution. So throughout
the paper we call the neurons with larger feed high-frequency
neurons, and the neurons with smaller feed low-frequency
neurons. The distribution of the oscillatory frequencies can
be calculated using the relation of the oscillatory frequency
of a LIF neuron to input current as r = {ln[I/(I − vth)]}−1.
Note that inhomogeneity could also be imposed by choosing
neurons with different time constants and equal feeds.

The time-dependent synaptic coupling strength gij changes
depending on the dynamics of the presynaptic and postsynaptic
neurons. Through additive STDP gij changes by �gij , which is
independent of the current value of gij and is a function of the
time difference �t = ti − tj between the times of postsynaptic
and presynaptic spikes. Synaptic modification �gij is provided
by

�gij = A±sgn(�t) exp(−|�t |/τ±), (4)

where sgn(x) is the sign function. The parameters τ+ and
τ− determine the ranges of pre-to-postsynaptic interspike
intervals over which synaptic strengthening and weakening
occurs. A+ and A−, which are both positive, determine the
maximum amounts of synaptic modification which occur when
�t is close to zero [2]. A+ (A−) and τ+ (τ−) are used when �t

is positive (negative). Divergence of the synaptic strengths
is prevented by assuming limiting values for the synaptic
strength.

It was noted by Gilson et al. that symmetry of the coupling
matrix is broken by STDP [14,15]. We study the possible
effect of such asymmetry on the dynamics of the network
and how the dynamics in turn affects the structure of the
connections in the network. We first define the synaptic cost as
the sum of all synaptic strengths in the array G = ∑

i,j aij gij .
To quantify the asymmetry, we define link imbalance as
the difference of the synaptic strengths between two nodes
Cij = −Cji = aijgij − ajigji . Furthermore, we introduce the
strength of node i as the sum of all the outgoing synaptic
strengths, i.e., the synapses which have the neuron i as
presynaptic C+

i = ∑
j ajigji , and sensitivity of the node as

the incoming synaptic strengths, the synapses which have
the neuron i as postsynaptic C−

i = ∑
j aij gij . These sums

can also be interpreted as the sum of the elements of the
ith column and ith row of the weighted adjacency matrix,
respectively. We call the difference between the outgoing and
incoming synaptic strengths for each neuron Cj = C+

j − C−
j

the node imbalance. A positive node imbalance means the
neuron’s outgoing synapses are stronger than its incoming
synapses and vice versa. Also to quantify effective imbalance
in the network we introduce network imbalance as Cnet =
1/G

∑
i,j sgn(j − i)gij with G being the synaptic cost. In this

sum all the synapses with j > i, i.e., those for which the
index of the presynaptic neuron is larger than the postsynaptic
one, are considered with positive weight and vice versa. These
two groups of synapses are shown in Fig. 1. In the extreme
cases when all the backward (forward) links are set to zero,
network imbalance is 1 (−1) and nonzero intermediate values
of network imbalance indicate an effective imbalance in the
forward and backward synaptic strengths. Note that when all
the link imbalances are zero the network imbalance is also
zero but the inverse is not true since Cnet is averaged on all the
link imbalances. In the following we first inspect the effect of

FIG. 1. The model network with 4 neurons. The forward synaptic
links, those which have a node with larger index as presynaptic and
a node with smaller index as the postsynaptic neuron, are shown by
thick lines. Thin lines show the backward links with reverse definition.

predetermined network imbalance on the dynamic of a network
with static synapses and then we will show that STDP can
change network imbalance in a predictable manner.

We construct a fully connected network without self-
connections (aij = 1 for i �= j and zero for i = j ) and we
vary the link imbalances by assuming the synaptic strengths
as gij = 1/N [g0 + η sgn(j − i)f (|j − i|)] with constant g0

and f (ξ ) a monotonically increasing function of ξ . Then the
link imbalance Cij = 2η sgn(j − i)f (|j − i|) and the network
imbalance Cnet = η/(NG)

∑
i,j sgn(j − i)f (|j − i|) can be

controlled by the parameter η. With η = 0 all the links and
the network are balanced. Positive η constructs a network in
which nodes with larger index have larger strength and vice
versa. Please note that synaptic cost for the network remains
constant (equal to g0) when changing the imbalance parameter
η. Finally, we choose the external currents equally spaced in
the interval [I0 − δ,I0 + δ], and label the neurons in order of
increasing input current, i.e., the j = 1 neuron has the smallest
input and so on.

Now we inspect how the dynamics of the network are
affected by changing the imbalance parameter η. The network
activity is defined as the average response function of all
the neurons in the array Xnet(t) = 1/N

∑
i xi(t). In-phase

(periodic) firing of a large fraction of neurons in the array
leads to oscillatory behavior of the network activity function
with large amplitude, so the amplitude of the oscillation of the
network activity function can be used as an order parameter
showing how synchronized the firing of the neurons in the
network are. In Fig. 2(a) we have shown how the order
parameter changes when we increase the imbalance parameter
in a network with a constant synaptic cost. The plots show
that the degree of synchronization can be elevated when we
increase the strength of high-frequency neurons and decrease
their sensitivity [see also Figs. 2(b) and 2(c)]. It is also
shown that a negative network imbalance has no effect on the
coherence of the behavior of the neurons; i.e., they are outgoing
synapses from the high-frequency neurons which should be
strengthened to achieve synchrony. It is also shown in the inset
of Fig. 2(a) that mean frequency of the array increases with
the imbalance parameter, which is a reasonable consequence
of the increase of the strength of high-frequency neurons. In
such a system (when all the synapses are excitatory) increase
in the strength of the high-frequency components (while the
sensitivity of the low-frequency components increases as well)
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FIG. 2. (a) The order parameter, the average amplitude of the
network activity (see below) as a function of network imbalance, Cnet.
In a network of N = 64 neurons with all-to-all connections, input
currents are chosen as Ij = 1 + 0.0005j and synaptic strengths as
gij = 1/N [g0 + η sgn(j − i)f (|j − i|)] with f (x) = tanh(2x). The
results are shown for g0 = 0.03 (black circles) and g0 = 0.04 (gray
squares). Corresponding range of η for each value of g0 is chosen
such that all the synaptic strengths are nonnegative. Increasing η

beyond this range results in negative synaptic strengths which we
do not consider here. To calculate the order parameter in each
trial, after discarding 50 time units as transient, we have recorded
maximum and minimum values of the network activity Xnet(t) for
every 10 time units. The amplitude (difference between maximum
and minimum) is then averaged over 100 trials each containing 100
intervals. Finally we have normalized the results by the maximum
value of the response function of a single neuron. In (b) and (c) the
normalized network activity, Xnet(t), is shown for two different values
of the imbalance parameter η depicted by arrows in (a); periodic
behavior of the network activity with relatively large amplitude in
(b) indicates synchrony of the neurons. Inset of (a) shows mean
frequency of the neurons in the network vs network imbalance for
g0 = 0.03 (black line) and g0 = 0.04 (gray line). Dashed line in the
inset shows the oscillatory frequency of the neuron with the highest
intrinsic frequency in the network.

leads to increase of both the mean frequency of the network
and the degree of synchrony.

We now let the synaptic strengths evolve through STDP.
We show that dependent on initial synaptic strengths, STDP
may lead to organized dynamics in the network and this in
turn affects the emergent structure of the network. Again
we consider a fully connected network with initially equal
symmetric synaptic strengths. We assume an antisymmetric

STDP profile with usual criteria (A+ > A− and A+τ+ <

A−τ−) and zero lower cutoff for gij . We examine two
situations; in both cases the initial synaptic strengths are not
enough to overcome disorder in the array and the neurons are
unsynchronized when STDP is absent. Asymmetry induced by
STDP in one of the experiments leads to synchrony whereas
in the second experiment the neurons remain unsynchronized
in the steady state as is shown in Figs. 3 and 4.

When STDP leads to synchronized firing of the neu-
rons (Fig. 3), a net synaptic flow is constructed from the
high-frequency neurons to the low-frequency ones, which
is reflected in the value of network imbalance as it takes
a relatively large positive value (Cnet � 0.8) in the steady
state. The large positive network imbalance indicates almost
all of the weakened synapses are those from low-frequency
to high-frequency neurons and those which are strengthened
are from high-frequency neurons to low-frequency ones. We
note that asymmetry induced by STDP is in agreement with
previous studies [15], but here with the differences in intrinsic
rate of firing of the neurons, one can predict which synapses
are more likely to be strengthened and which synapses are
to be weakened. With the parameters we have chosen the
synaptic cost of the network decreases; this is of great
importance since synchrony can be achieved in spite of such
a decrement in the synaptic cost. This is consistent with
the results demonstrated in Fig. 2 which indicates positive
network imbalance lowers the synaptic cost for onset of
synchronization. Both the evolution of the synaptic cost and
final coherence of the network dynamics are dependent on
the choice of the ratio γ = (A+τ+)/(A−τ−). To check this,
we increased γ from 0.5 to 1 in increments of 0.01. With
γ � 0.7 the neurons show coherent behavior in the steady state
and they will be more synchronized if we increase γ further.
With γ � 0.8 synaptic cost also increases but nevertheless
network imbalance increases in all the range of γ which we
tested.

Emergent structure and the coherence of the dynamics
in the steady state also depend on the choice of the initial
synaptic weights. With smaller values of the initial synaptic
strengths, synchrony can be achieved by choosing larger
values for parameter γ (while keeping all the other parameters
unchanged). In an experiment with the same parameters of
Fig. 3, we have lowered the initial synaptic weights and
the plasticity has not led the neurons to synchrony (Fig. 4).
In this case the time course of the network imbalance is
dependent on the initial conditions but in all the trials final
value of network imbalance is a relatively small positive value
(about 0.2).

As noted above, positive network imbalance increases mean
frequency of the network since the mean excitation grows
with increasing strength of the high-frequency neurons. In
the presence of STDP this effect competes with the possible
decrease in synaptic cost which naturally decreases the mean
frequency. The increase in the oscillatory frequency seen in
Fig. 3(f) shows that the former effect has been overcome, but
the change is less than 4% which shows that the effect of the
imbalance has been mainly canceled by the decrease in the
synaptic cost. Note that in the inset of Fig. 2(a) where the
synaptic cost has been kept constant, increase in frequency
amounts to 15%. Since the final value of the mean frequency
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FIG. 3. (Color online) In (a) the network activity Xnet(t) is shown
when the synaptic strengths evolve through STDP. The boosted
amplitude of activity is due to transition of the network to an
oscillatory state which indicates synchrony in the array. This has
been clarified in (b) and (c) where the network activity is shown at a
magnified time scale in the initial transient state and in the final steady
state, respectively. In (d) evolution of the network imbalance Cnet is
shown. In (e) and (f) the evolution of the synaptic cost G and mean
frequency of the neurons are shown, respectively. Network imbalance
in each time step is normalized by instantaneous value of synaptic
cost G. Mean oscillatory frequencies is calculated in windows of
duration 500 time units and then normalized by number of neurons
in the network. Dotted line in (f) shows the oscillatory frequency
of the neuron with the highest intrinsic frequency. The currents are
chosen as Ii = 1 + 0.001i; lower and upper cutoffs are zero and
0.12/N , respectively. The network size is N = 64 and the initial
couplings are all equal to 0.06/N which gives the initial value for
synaptic cost G(0) = 38.4. Parameters of STDP are A+ = 10−5 nS,
A− = 0.9 × 10−6 nS, τ+ = 10 ms, and τ− = 15 ms.

FIG. 4. (Color online) In (a) the network activity is shown when
the synaptic strengths evolve through STDP for the same network as
in Fig. 3 with smaller initial synaptic strengths. All the parameters are
the same as in Fig. 3 except for the initial couplings which here are all
equal to 0.02/N which gives the initial synaptic cost G(0) = 12.8.
Plots (b) and (c) show the network activity in two different time ranges
at a magnified time scale. In (d) evolution of the network imbalance
Cnet is shown. In (e) and (f) the evolution of the synaptic cost G and
mean oscillatory frequency of the neurons are shown, respectively.
Dotted line in (f) shows the oscillatory frequency of the neuron with
the highest intrinsic frequency in the network.

depends on the evolution of both synaptic cost and network
imbalance, it is affected by the ratio γ and the initial synaptic
weights. As is seen in Fig. 4, the effects of network imbalance
and synaptic cost may cancel each other leaving the oscillatory
frequency almost equal to its initial value.
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FIG. 5. Membrane voltages of the sample neurons are given at
two different times in the initial state (upper plot) and at steady
state (lower plot). The parameters of the HH neurons and synapses
are given in the Appendix. Other parameters are A+ = 9 nS, A− =
8.6 nS, τ+ = 20 ms, and τ− = 30 ms.

We have repeated a similar experiment using Hodgkin-
Huxley neurons with conductance-based synapses (see Ap-
pendix), to assess whether the results are applicable in the
more biologically plausible models. As shown in Fig. 5, the
role of STDP is to decrease the effect of the discrepancy on the
intrinsic frequencies and organize the dynamics of the neurons.
In turn, the emergent structure of the network is shown in Fig. 6
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FIG. 6. In a network composed of 64 Hodgkin-Huxely neurons
connected with conductance-based synapses, the initially symmetric
weighted adjacency matrix (a) evolves to a nearly triangular matrix
in the steady state (b). In (c) the evolution of network imbalance is
shown. All the parameters are those of Fig. 5.

where a nearly triangular weighted adjacency matrix is formed
and network imbalance is reasonably increased.

In passing, to ascertain the effect of imbalance on the
synchronization of coupled neurons, we show that for two
weakly connected nonidentical neurons with excitatory cou-
plings, both increasing the strength of the high-frequency
neuron and decreasing its sensitivity extend the domain of
synchronization and lower the threshold synaptic cost for
the onset of synchronization. We consider two neurons with
the inputs I2 = I1 + δ which are connected by two directed
couplings with the strengths g12 and g21. With positive
mismatch parameter δ > 0 the second neuron spikes with a
higher rate. Looking for an existence criterion for the in-phase
1 : 1 synchronization, we consider the two cases in which one
of the neurons (master) fires and makes also the other neuron
(slave) fire. In the first case we assume the high-frequency
neuron first fires at time ti and the low-frequency neuron
fires just after it; i.e., the high-frequency neuron is the master
and the low-frequency neuron is the slave. With no refractory
period, firing of the slave neuron changes the voltage of the
master by g21 and the high-frequency neuron would fire again
at time ti+1 = ti + ln( I2−g21

I2−1 ). Firing of the master neuron
raises the voltage of the slave by g12, and if at the time of
the firing of the master ti+1 the voltage of the slave neuron
is larger than 1 − g12, the voltage of the slave exceeds the
threshold and it would fire just after the master neuron. This
means the neurons fire synchronously. The voltage of the
slave neuron at ti+1 is v1(ti+1) = I1{1 − exp[−(ti+1 − ti)]}
and the above criterion for in-phase firing v1(ti+1) > 1 − g12

leads to

I1 > (1 − g12)
I2 − g21

1 − g21
. (5)

With δ = I2 − I1 we have

δ < I2 − (1 − g12)
I2 − g21

1 − g21
. (6)

With fixed I2 this equation determines the domain of syn-
chronization, the maximum mismatch which the system can
suffer and yet the neurons fire synchronously. Interestingly,
increasing the forward coupling g21 broadens the domain
of synchronization while backward coupling shrinks this
domain. Since we have assumed here that the slave neuron
is the low-frequency one, it cannot exceed the high-frequency
neuron and the above equation solely determines the existence
condition for the in-phase solution. The second case, which as
we will see is possible for large values of coupling constants,
assumes that the low-frequency neuron is the master. In
this case a criterion similar to Eq. (5) exists and also we
should prevent the high-frequency neuron’s potential from
exceeding the low-frequency neuron’s potential; i.e., at the
time of next firing of the master neuron ti+1 the voltage
of the high-frequency neuron should be less than threshold.
Combining these expressions we have

I2 − I1 − g12

1 − g12
< δ < I2 − (1 − g21)

I1 − g12

1 − g12
. (7)

In the equations above two points are worth noting: For
small values of the coupling, which is the case of our study,
just the synchronized state with the high-frequency neuron
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as the master can exist and this state is destabilized by
increasing strength of the outgoing synaptic conductance of
the low-frequency neuron g21. In other words, for small values
of synaptic strengths (where the only possible in-phase state
is the state with the high-frequency neuron as the master), g12

increases synchrony and g21 opposes it. Although it can be
shown for near-threshold currents Ii ∼ 1 + O(ε) and small
synaptic strengths gij ∼ O(ε) that the effect of g21 is of
order ε2, for larger input currents the effect of the strength
of the low-frequency neuron can be comparable with that
of the high-frequency neuron. With STDP for two weakly
connected neurons, our results show that the strength of
the high-frequency neuron always increases and that of the
low-frequency neuron decreases, and as noted above both of
them enhance synchrony. When synchrony is achieved (with
the high-frequency neuron as the master), the rate of change of
the synaptic strengths increases and then they are just limited
by the cutoffs imposed on synaptic weights.

To conclude, we have shown that in systems of weakly
connected neurons with excitatory synapses, when there
is a mismatch in the intrinsic oscillatory frequencies of
neurons, an asymmetric arrangement of synaptic constants can
enhance synchrony. In this arrangement directed links from
the high-frequency elements to the low-frequency ones should
be stronger. In a two-neuron system, this result is verified
by a simple analytic reasoning. We have also shown that
spike-timing-dependent plasticity in disordered networks can
organize the firing of the neurons by imposing such asymmetry
on the matrix of synaptic strengths. While synchrony enhanced
by STDP has been reported before, here we proposed that
this effect can be related to the asymmetric rearrange-
ment of the synaptic couplings in the disordered neuronal
ensembles.

To construct a single framework for different types of
plasticity [16], it will be interesting to know how STDP at
a given synapse builds up over time. This can shed light
on the relationship between STDP and different forms of
rate-coded models of plasticity, e.g., the BCM model [17].
Our findings suggest that in the presence of disorder, the
cumulative effect of STDP for the synapses depends on the
comparative values of the oscillatory frequencies of the pre-
and postsynaptic neurons. In this regard our results are in
line with the results reported by Izhkevich and Desai [18]
for the correlated spike trains. Assuming a fixed postsynaptic
frequency we have shown that high presynaptic oscillating
frequencies result in potentiation while low frequencies lead
to depression.

Most investigations have explored STDP in excitatory
synapses, though a small subset has addressed the issue of
plasticity at inhibitory synapses [19]. Throughout the brain,
inhibitory synapses serve both to modulate excitation in
principal neurons and to regulate rhythmic circuits [20,21].
Modeling studies have suggested potential functions for
plastic inhibition in circuit rhythm generation [22] and in
balancing excitation [23]. It remains to be checked whether
our results on the functional and structural effects of STDP
in disordered networks are applicable in more biologically
plausible arrangements, e.g., in the presence of static and
plastic inhibitory synapses.

The authors gratefully acknowledge Tom Tetzlaff and
F. Ghaffar for reading the manuscript and giving useful
comments.

APPENDIX: THE HODGKIN-HUXLEY MODEL AND
CONDUCTANCE-BASED SYNAPSES

The membrane voltage of the neuron in the Hodgkin-
Huxley (HH) model is described by [24]

c
dvi

dt
+ Ina + Ik + Il + Iij = Ii . (A1)

c is the capacitance per unit area of the membrane which is
taken as 1 μF/cm2 and Ij stands for the external current. Il =
gl(vj − El) is the passive leak current and Ina = gnam

3h(vj −
Ena) and Ik = gkn

4(vj − Ek) are sodium and potassium
currents, respectively. gl = 0.3 mS/cm2 is the conductance for
the leak current and gna = 120 mS/cm2 and gk = 36 mS/cm2

are the maximum conductance for the sodium and potassium
ions, and El = 10.6 mV, Ena = 115 mV, and Ek = −12 mV
are reversal voltages for the leak, sodium, and potassium
currents, respectively. mj (hj ), the activation (inactivation)
variable of sodium, and nj , the activation variable of potas-
sium, obey the differential equations

dmj

dt
= αm(1 − mj ) − βmmj ,

dhj

dt
= αh(1 − hj ) − βhhj , (A2)

dnj

dt
= αn(1 − nj ) − βnnj ,

where α and β are functions of membrane voltage that can be
found in [24].

With conductance-based synapses the synaptic current is
described by Iij = aij ḡij sij (t − τ )(vi − Esyn) where ḡij is
the synaptic maximum conductivity and Esyn is the synaptic
reversal potential. sij (t) is the synaptic activity function defined
via

dsij

dt
= αsf (vj − vth)(1 − sij ) − βssij , (A3)

with αs and βs defining the activation and deactivation
time constants, vth = 20 mV is the threshold voltage for the
activation of the synapse, and f is the threshold function
f (x) = 1/2[1 + tanh(5x)].

The parameters we have chosen are such that with Iext = 0,
the resting potential of the neuron is zero; so the choice Esyn =
80 mV is reasonable for excitatory neurons. Inspired by typical
time constants of the activation and deactivation of excitatory
synapses with AMPA receptors, we have chosen αs = 10 ms−1

and βs = 0.5 ms−1 as the activation and deactivation time
constants for fast synapses [25].
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