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Multifractal dynamics of turbulent flows in swimming bacterial suspensions
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We experimentally investigate the self-propelled two-dimensional turbulent flows of Escherichia coli
suspensions in thin liquid films at two different cell concentrations. It is found that the flow has fluctuating
vortices with a broad range of scales and intensities through the nonlinear interaction of the swimming bacteria.
Increasing cell concentration increases the total propelling power and the nonlinear interaction. It causes the
generation of vortices with larger scale, lower frequency, and higher intensity. It also widens the histograms
of the flow velocity and the velocity increment between two spatially separated points with more stretched
non-Gaussian tails. From the scaling analysis of the structure function Sq (r) of the qth moment of the velocity
increment between two points with spatial separation r , nonlinear relations between the scaling exponent ζq of
Sq (r) and q are found for both cell concentrations, which manifests the multifractal dynamics. The multifractality
can be enhanced by increasing cell concentration.
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I. INTRODUCTION

Turbulence is a state of physical systems with many excited
degrees of freedom strongly deviating from equilibrium [1].
It widely exists in different nonlinear extended systems.
In hydrodynamic or wave turbulence, the spatiotemporal
fluctuation of motion over a broad range of scales is usually
associated with power law scaling of the power spectrum
[2–4]. Multiscaling and multifractal behaviors have also been
observed. Channel flow turbulence [5], gravity–capillary-wave
turbulence of surface wave [6], and drift-wave turbulence in
tokamak [7,8] are a few good examples. Nevertheless, the
above studies have been limited to passive systems under
strong external drive and weak dissipation over a broad range
of spectra.

Systems such as bacteria [9–25], school of fishes [26],
cells [27], and self-propelled particles [28] and rods [29,30]
are nonlinearly coupled self-propelled systems exhibiting rich
dynamical behaviors. For example, in bacterial suspensions,
abnormal diffusion [9–11], enhanced mixing [12], and vis-
cosity reduction [13,14] have been observed. At high cell
concentration, hydrodynamic interactions and chemical signal
cause strong mutual coupling to correlate bacterial motions
[15,31]. The interplay of the above strong mutual coupling, the
bacterial self-propelling, and the anisotropic rodlike bacterial
shape leads to the self-organized bacterial clustering, coherent
motions, or even turbulent flows with fluctuating vortices
[16–22].

In hydrodynamic turbulence, energy is usually pumped
in from the external drive on a large scale. Through the
self-similar cascading of vortices from large scale to small
scale, energy is cascaded through the inertial regime in which
the Reynolds number Re is large. It leads to the Kolmogorov
power law distribution of fluctuations over the broad inertial
regime until termination by the strong dissipation at the small
scale limit. In contrast, in the dense bacterial flow, Re is much
smaller than 1 due to the low speed (a few tens of μm/s) and
the small spatial scale (10−3–10−1 mm). Intuitively, turbulence
cannot occur in the absence of the inertial regime due to the
high dissipation. However, the energies that have cascaded
from the self-propelled individual bacteria compensate for the

dissipation. Cisneros et al. proposed an alternative Reynolds
number Bs, defined as the ratio of thrust forces by dense
bacteria to collective dissipation in the collective phase [18].
At high bacterial concentration, Bs � 1 and bacteria exhibit
coherent motion in the form of moving clusters with different
scales. The strong nonlinear interaction with neighboring
clusters causes growths, disruptions, and velocity variations
of clusters. It thereby causes the strong spatial and temporal
fluctuations of the velocity field over a broad range of scales.
The energies provided by the individual bacteria can thereby
cascade to the large scale through the above process, which
leads to a flow with the power spectrum following power law
scaling over a broad regime. This flow can also be called
turbulence because of its excited many degrees of freedom
with energy cascading and strong deviation from equilibrium,
similarly to other passive turbulence [1].

In previous studies of bacterial turbulence, the distribution
and fluctuation of bacterial cluster size and the spatial and the
temporal correlations of flow velocity have been used as major
measures [16–22]. Whether multiscaling behavior exists and
if so what kinds occur are still interesting open questions. In
this work, these issues are addressed using Escherichia coli
(E. coli) suspensions in a thin liquid film.

The structure function [7,32,33] is a powerful tool used
to investigate the multiscaling dynamics in turbulence. The
q-order structure function is defined as Sq(r) = 〈|νr |q〉 for the
longitudinal velocity difference νr = Vx(x + r,y) − Vx(x,y)
between two points separated by a distance r , where Vx is the
velocity component in the x direction and 〈· · ·〉 is the ensemble
average. For the higher moment q, the large difference in the
tail of the histogram of νr provides a larger contribution to
Sq . If the velocity field is self-similar over some range of r ,
the structure function can be scaled as Sq(r) ∼ rζq . In a pure
self-similar case without multifractal behaviors, ζq is a linear
function of q and the system is monofractal. The deviation
from the linear relation signifies the multifractal dynamics.

In this work, the scaling behavior of the two-dimensional
turbulent bacterial flow with various vortex sizes in a thin
liquid film is studied experimentally at two different cell
concentrations. The local velocity is obtained through particle
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imaging velocimetry (PIV). Conventional measurements of
the power spectrum, the spatial and the temporal correlations
of velocity, and the histogram of Vx are conducted [18,19]. In
addition, the multiscaling behaviors in turbulent bacterial flow
are investigated using the histograms of νr and the structure
functions Sq(r). It is found that increasing cell concentration
enhances the large-scale vortices with stronger intensities and
longer persistent times, broadens the histograms of Vx and
νr , and causes the more stretched non-Gaussian tails. It also
leads to the more nonlinear relation between ζq and q, which
manifests the higher degree of multifractality of the flow
dynamics at higher cell concentration.

II. EXPERIMENT

The E. coli cells (wild-type RP437) are grown at 37 ◦C and
shaken at 260 rpm in L broth (1 wt. % tryptone, 0.5 wt. % yeast
extract, and 0.5 wt. % NaCl). Overnight cultures are diluted
1% in T broth (1 wt. % tryptone and 0.5 wt. % NaCl), grown
at 30 ◦C, and shaken at 260 rpm. After 4 h, cells are harvested
in midexponential phase. The cell concentration of the liquid
suspension is measured by optical density (optical absorption)
at a wavelength of 600 nm (OD600). In the linear range (0.1 <

AOD600 < 0.5), AOD600 = 0.1 represents 1 × 108 cells/ml [34].
The cells are then separated from the media by centrifugation
(5000 rpm, 10 min), washed, and finally suspended with
motility buffer (6.2 mM K2HPO4, 3.8 mM KH2PO4, 67 mM
NaCl, and 0.1 mM ethylenediamine tetra-acetic acid, pH
7.0) containing 0.5 wt. % glucose and 0.002 wt. % Tween
20 [23–25]. Then the cells are condensed to two different
concentrations of n � 3 × 1010 and 7.5 × 109 cells/ml for
runs I and II, respectively.

To prepare the thin liquid film with bacterial suspensions,
a homemade system similar to that of Ref. [15] is used. A
0.6-μl drop of bacterial suspension is placed between four
movable supporting nylon fibers with a diameter of 20 μm
in a chamber with water-saturated air. The drop is stretched
to a (3 × 3)-mm2 thin film by slowly moving the fibers. The
elasticity and surface tension created by the surfactant Tween
20 are sufficient to sustain the film for few minutes. The cell
concentration is uniform under the uniform supplies of the
primary chemoattractant (oxygen) from both sides of the air-
film interfaces and the fast stirring of the fluid by bacteria [15].
Phase contrast images are recorded by a video camera with
640 × 480 pixels at a 200-Hz sampling rate. The velocity field
is extracted from consecutive images by the PIV software
MatPIV in MATLAB [35].

III. RESULTS AND DISCUSSION

Figure 1(a) shows typical snapshots of the velocity field
represented by arrows at different times for run I (top row)
and run II (bottom row). Vortices with different shapes, sizes,
and lifetimes coexist. Their corresponding vorticities with two
different directions and different strengths are depicted by the
colors of the contour plots. The higher cell concentration
of run I leads to the appearance of larger and stronger
vortices with higher vorticity than those of run II at lower
cell concentration. The vortex circled by the large dashed
ellipse is a typical example of the large vortex about 110 μm

FIG. 1. (Color online) (a) Typical snapshots of the fields of
velocity and vorticity at different times for high-cell-concentration
run I (top row) and low-cell-concentration run II (bottom row). The
arrows correspond to the local velocity and the color reflects the local
vorticity. The circled region shows the example of the coexistence
of the small vortices inside the large vortex. The large vortex has
the longer lifetime. (b) Temporal evolutions of Vx at fixed points for
both runs. (c) Spatial evolution of Vx at a fixed time for both runs.
The higher-concentration run I exhibits the more turbulent flow with
vortices that have larger spatiotemporal scales and larger amplitude
fluctuations.

in diameter. Inside the large vortex, the coexisting smaller
vortices (circled by the small dashed ellipses) can also be
observed. The similar patterns between the left and the middle
panels with 0.25-s separation of run I in Fig. 1(a) manifest that
the large vortices have lifetimes longer than those of the small
vortices. For example, in the large ellipse, the large vortex
remains similar, but the small vortices are different. Figure 1(b)
depicts the temporal variation of the local velocity Vx in the
x direction at a certain fixed point for t = 0–50 s. The right
column shows the magnified plots. Figure 1(c) shows typical
plots of Vx versus x. The stronger fluctuation associated with
the increasing intensity of the slower and larger-scale modes
of run I is mainly contributed by the larger-scale vortices
with slower dynamics. Namely, increasing cell concentration
increases the mean lifetime, the mean size, and the mean
intensity of vortices. The increase of the standard deviation
of the velocity fluctuation from 4.8 to 11 μm/s from run II to
run I is further evidence that the flow becomes more turbulent
with increasing cell concentration.

The concentration dependence of coherent motions can
also be evidenced by the larger width of the longitudinal
spatial correlation function Cr [Fig. 2(a)] and the temporal
correlation function Cτ [Fig. 2(b)] for Vx from two points
at the same y but separated by distance r and time interval
τ , with increasing cell concentration. The negative value of
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FIG. 2. (Color online) (a) and (b) Plots of the spatial correlation
function Cr and the temporal correlation function Cτ of Vx versus
r and τ , respectively, for both runs. (c) and (d) Plots of the power
spectra of Vx , i.e., Sf and Sk versus f and k, respectively, for both
runs. The numbers indicate the scaling exponents of the adjacent gray
straight lines.

Cr results from the two nearest vortices, which tend toward
opposite rotating directions. Thus r =101 μm (70 μm) for the
most negative value of Cr in run I (II) stands for the mean
inter vortex distance of the neighboring large-scale vortices.
Here Cτ exhibits two-step relaxation. The decay of Cτ from 1
to 0.85 (0.56) for run I (II) within 5 ms is the fast relaxation.
The slow relaxation results from the rearrangement of the
coherent motions. The two-step relaxation was also observed
in a previous experimental study of bacterial flow on a dense
agar gel substrate [19]. However, our fast relaxation time
scale is much shorter because the dynamics and the average
swimming speeds (∼20 and ∼10 μm/s for runs I and II,
respectively) in our free standing film are 10 times faster than
those on their dense agar gel substrate.

Figures 2(c) and 2(d) show the power spectra Sf and
Sk , where f and k are the frequency and the wave number,
respectively. Over the entire range of both spectra, the
higher-concentration run I has larger intensities than the
lower-concentration run II. The nearly parallel curves for
the two runs in each spectrum at the high-f and the high-k ends
could be mainly attributed to the individual high-frequency and
short-range motion, which is weakly coupled. The increasing
deviations of the two curves toward the low-f and the
low-k ends manifest the easier generation of the slow and
large-scale vortices under the effects of increasing nonlinear
interaction and energy input with increasing concentration
[15,17,22,25].

Note that unlike hydrodynamic turbulence, bacterial flow
is highly dissipative. The local energy injected by the self-
propelled bacteria provides a source to sustain the inverse
energy cascade under strong dissipation. A bacterial swim-
ming number Bs = Fn/Fμ = 6πnaL2ν/U proposed by
Cisneros et al. [18] is an alternative Reynolds number used
to explain the possibility of turbulent flow when Re � 1. Here
Fn and Fμ are the force density provided by the bacteria and

FIG. 3. (Color online) (a) Plots of PV versus Vx . (b) Plots of Pν

versus νr at different separation r . Solid curves are the best Gaussian
fits. Increasing cell concentration from run II to run I not only
widens the core of PV but also induces two humps at the large-|Vx |
ends, centered at Vx = ±54.4 μm/s, which are the typical collective
swimming speeds at high cell concentration. The Pν of run I also
shows the broader distribution with a more stretched non-Gaussian
tail.

the viscous dissipation force density in the collective phase,
respectively; L, a, n, ν, and U are the observed correlation
length, cell radius, cell concentration, speed of the single-cell
motion, and speed of the collective motion, respectively. In
our experiments, n is about 1010–1011 cells/ml, a ∼ 0.5 μm,
L ∼ 100 μm, and ν/U ∼ 1. In addition, Bs is about 103–104,
which explains the presence of turbulence without an inertial
regime.

Figure 3(a) shows PV , the probability distribution function
(PDF) of Vx . The solid smooth curves are the best Gaussian
fits. The PV of run II shows the nearly Gaussian distribution.
Increasing cell concentration not only widens the core of the
PV but also induces two humps at the large-|Vx | ends, centered
at Vx = ± 54.4 μm/s. The emergence of the hump at the
large-|Vx | end at high cell concentration was also reported by
Peruani [36]. It could be attributed to the stronger large-scale
cooperative motion with increasing nonlinear interaction and
the larger total input of driving energy.

Beyond the above conventional measurements, let us
explore the multiscaling behavior of the dynamics. In previous
studies of hydrodynamic turbulence, the multifractal scaling
behaviors of the dynamics were examined by computing the
q-order structure functions Sq(r) = 〈|νr |q〉 of the longitudinal
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velocity increment [7,32,33], namely,

Sq(r) =
∫

Pν |νr |qdνr , (1)

where Pν is the PDF of the longitudinal velocity increment
νr = Vx(x + r,y) − Vx(x,y) between two points separated by
a distance r at fixed y.

Figure 3(b) depicts Pν at different r . The solid smooth
curves correspond to the best Gaussian fits. The Pν of
run II shows the nearly Gaussian distribution. Increasing cell
concentration broadens the distribution. For example, from
run II to run I, the standard deviations of νr at r = 5.6 and
100 μm increase by factors of 1.3 and 2.0, respectively. It
again manifests the more turbulent flow at the higher cell
concentration. The Pν of run I also has the more stretched
non-Gaussian tail under the more coherent large-scale motion.
The small-νr regime is mainly contributed by the small velocity
fluctuation belonging to the same vortex or the different
vortices with small relative velocity in the x direction. The
stretched non-Gaussian tail is mainly contributed by the two
points belonging to the different vortices with large velocity
deviation. It corresponds to the large abrupt fluctuation in run I
of Fig. 1(c). For large r (e.g., 100 μm), the random-phase
velocity fluctuations accumulated over the smaller vortices
with various sizes suppress the non-Gaussian tail and broaden
the distribution core.

The left panels of Figs. 4(a) and 4(b) show plots of Sq versus
r . For run I, Sq obeys the power law scaling

Sq(r) ∼ rζq (2)

with nearly constant ζq over a wide range of r . For run II, ζq

decreases with increasing r . The former indicates that the self-
similar power law scaling with a similar dynamical selection
rule can be extended to a wide range of r through stronger
driving and nonlinear coupling at higher cell concentration. It
agrees with the power spectrum with a larger scaling exponent
in Fig. 2(d). However, the behavior of run II indicates the much
weaker increase of intensity of the vortices with increasing
size, reflected by the small scaling exponent in the small-k
regime at low cell concentration in Fig. 2(d).

Note that Sq at q = 2 corresponds to the variance of νr .
Its scaling exponent ζ2 < 1 indicates that the change of νr

with r is an antipersistent process due to the presence of many
small vortices with similar intensities, similarly to that of the
non-Markov subdiffusion process [37]. With increasing cell
concentration from run II to run I, ζ2 becomes larger in the
presence of the more turbulent flow with larger fluctuations.

The Lipschitz-Hölder exponent α is defined as the local
scaling of the measurement νr through |νr | ∼ rα [37]. If Pν ∼
r−f (α), Sq(r) follows

Sq(r) =
∫

r−f (α)+qαdα ∼ rζq . (3)

In addition, Pν decreases and |νr |q increases with increasing
|νr |. For each q, Sq is dominated by the integrand r−f (αq )+qαq ,
which is the maximum value at the optimum |ν∗

r | ∼ rαq .
Therefore, from Eq. (3), ζq follows

ζq = −f (αq) + qαq, (4)

FIG. 4. (Color online) (a) and (b) Plots of Sq versus r and S3 at
different q, respectively. The red straight lines are the best fits for the
power law scaling Sq (r) ∼ rζq . The constant scaling exponent over a
wider region for run I shows that the similar dynamical selection rule
can be extended to a wider range of r at higher cell concentration. The
constant scaling exponent of the power law scaling between Sq and S3

for both runs over the whole range of S3 indicates that ESS holds. (c)
Plot of ζq versus q. The slopes of the adjacent straight lines indicated
by the numbers correspond to the Lipschitz-Hölder exponent αq . The
nonlinear relation between ζq and q is evidence of the multifractal
nature of the dynamics.

where αq can be determined from the following equation:

d

dα
{−f (α) + qα}

∣∣∣∣
α=αq

= 0. (5)

From Eqs. (4) and (5),

αq = d

dq
ζq (6)

can be obtained.
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The Sq is dominated by the small (large) |ν∗
r | for the small

(large) q. The scaling behavior of Sq at larger q corresponds
to testing the scaling behavior in r space for large |νr | events.
The scaling exponents ζq versus q are plotted in Fig. 4(c). The
slopes at different q represent the scaling exponent αq for the
corresponding dominated |νr |. For run I, ζq is linear with q

in the low-q regime with αq = 0.27. However, for q > 5, the
ζq curve starts to bend and αq reaches 0.02. The nonconstant
slope of the nonlinear ζq-q curve implies multiple values of
αq and thereby the multifractal dynamics of the turbulence. It
can be attributed to the non-Gaussian tail of Pν , which plays
a more important role at large q. In contrast to run I, the
scaling exponents for run II show weaker nonlinearity with
αq = 0.12 and 0.03 at the low- and high-q ends, respectively.
This implies that the more turbulent flow with increasing cell
concentration exhibits a higher degree of multifractality. Note
that for the same q, the wider spread distribution of run I makes
|ν∗

r | larger than that of run II. Namely, at the high-q end, the
more serious bending of ζq probes αq of the larger |ν∗

r | from
the more stretched non-Gaussian tail of the Pν curves of run I
in Fig. 3(b). Also note that for the hydrodynamic turbulent
flow, αq = 1/3 (i.e., ζq = q/3) in the small-q regime [2]. The
reason for the deviation between our results and those of the
hydrodynamic turbulent flow needs to be further investigated
theoretically.

Finally, from the scaling relation between Sq and S3 [right
panels of Figs. 4(a) and 4(b)], we examine the extended self-
similarity (ESS) that holds in hydrodynamic turbulence [38].
The constant scaling exponent over a wide range of S3 is
evidence that ESS also exists in the self-propelled dissipative
bacterial flow.

IV. CONCLUSION

In conclusion, we experimentally investigated the self-
propelled two-dimensional turbulent flows of Escherichia coli
suspensions in thin liquid films at two different cell con-
centrations and observed evidence of multiscaling behavior.
The interplay of self-propulsion, the nonlinear interaction,
and the rodlike geometry of the swimming bacteria lead
to the formation of turbulent flow consisting of vortices of
various sizes and intensities. Increasing cell concentration
enhances the total self-propelling power and the mutual
interaction, which generate larger and stronger vortices with
longer persistent time and lower frequency. It broadens the
histograms of Vx and νr and causes the formation of the
stretched non-Gaussian tails. The nonlinear relation between
q and the scaling exponent ζq of the structure function Sq

manifests the multifractal scaling of the turbulent flow, which
can be enhanced by increasing cell concentration. Comparing
to passive hydrodynamic turbulence and wave turbulence,
which have energy cascading in the opposite direction in
k space and low dissipation in the broad inertia range, a
similar finding of multifractal dynamics in our system could
shed some light on the study and the understanding of the
generic multiscaling behaviors in other coupled self-propelled
dissipative systems.
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