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Phenotypic plasticity stimulated by cooperation fosters pattern diversity of bacterial colonies
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Colonies of flagellated bacteria on agar plates are known to take on diverse morphologies. A diffusion-reaction
model is proposed for bacterial-colony pattern formation on a surface due to time scale separation between the
slow mass migration of bacteria from the point of inoculation, and the fast, but localized, dynamics of bacterial
phenotypic plasticity stimulated by public-goods cooperation and phenotypic switching. By considering two
switchable phenotypes in the population, the model generates pattern diversity typifying those reported by
experimental studies.
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I. INTRODUCTION

Bacteria have survived the harshest environments on Earth
through their uncanny ability to adapt. Striking illustrations
of such adaptability are the diverse colony patterns they
create (e.g., by Bacillus subtilis) [1,2]. On a flat agar plate,
morphology ranges from the featureless disk to fringelike and
branchy structures [3]. While previous models attempted to
address how these patterns form, an explicit link between
pattern diversity and the thrust for survival, especially the
role of cooperation within that context [4–6], has yet to be
made. A recent proposal suggests that bacterial survival in
social settings rests on the plasticity between sedentary and
nomadic lifestyles [7]. On one hand, bacteria might stay in
cooperative consortia such as biofilms which offer protection
against antibiotics, thus promoting population growth; on the
other hand, they might retain high mobility to enhance the
prospects of foraging [8]. However, each lifestyle also poses
risks: the sedentary phenotype is vulnerable to competitive
degradation due to overcrowding, and the nomadic phenotype
is threatened by the higher chances of encountering antimicro-
bial substances. A mathematical model is hereby proposed to
show how bacteria might capitalize on phenotypic plasticity
in colony formation to adapt to conditions presented by their
environment.

The evolution of bacterial colony on an agar plate is
modeled by a diffusion-reaction system, wherein bacteria
density grows and propagates in time within a Laplacian
nutrient field. In this model, bacteria can take on two
phenotypes, namely, proliferator and migrator. The two-
phenotype picture is motivated by the typology devised in
models of colony growth, e.g., swimmers and swarmers [9],
and cooperators and defectors [6], and accords with the
discovery of two developmental states of B. subtilis during
mid-log growth phase [10]. Proliferators have low mobility
compared to migrators, but migrators have a lower relative
population growth rate than proliferators. Furthermore, since
bacteria are known to exhibit phenotypic plasticity [11], the
model allows for switching from one phenotype to another
at a certain rate. Phenotypic switching is widely considered
as a hedge tool that bacteria utilize to adapt to uncertain
environments [11].

II. BACTERIAL-COLONY PATTERN FORMATION:
MATHEMATICAL MODEL WITH BIOLOGICAL

JUSTIFICATION

The following system is the proposed mathematical model
that is able to generate five morphotypes discerned previously
by experimental studies on colony pattern formation by B.
subtilis [3,12]: DLF (diffusion-limited fractal); RE (rough
edged); DBM (dense-branching morphology); CT (concentric
terraces); and SD (spreading disk):
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)
x

+ 4
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}
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}
τy − αy + αx , (2)

∂tn(�r,t) = Dn∇2n − μ(x + y)ρ . (3)

While the above system [Eqs. (1)–(3)] is defined in the
same spirit as known diffusion-reaction models of bacterial
pattern formation (see Ref. [13] for a review), such types
of models could not account for all patterns, especially the
DLF and CT, without auxiliary stochasticity or assumptions
of noise statistics (see for instance Ref. [2]). For the purpose of
incorporating noise into the model, a coarse-grained approach
is chosen for solving the system with consideration of the
fact that the bacterial colony is not exactly a continuum field
in the microscopic scale but rather one consisting of discrete
bacterial cells.

The system is discretized and solved over a square grid of
size L. A grid element (denoted “cell” hereinafter) at position �r
is described at any time t by local densities x(�r,t) and y(�r,t) of
proliferators and migrators, respectively, and the nutrient level
n(�r,t). The variable ρ = n/(ñ + n) is based on the Michaelis-
Menten kinetics for microbial growth by nutrient uptake [14].
By suitable rescaling, ñ = 1 is set without loss of generality
[15]. Lastly, the parameter μ, which represents the per-capita
rate of nutrient consumption, is fixed at 4 (per cell per 	t)
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TABLE I. Rates in the model.

Rate Value Definition Reference

β 0.044 	t−1 Maximum specific birth rate [16]
κx 0.125 Proliferator carrying capacity [17]
κy 1.25 Migrator carrying capacity
ξ 0.2 	t−1 Cost of public-good production
α 0.0098 	t−1 High per-capita switching rate [18]

0.12 	t−1 Low per-capita switching rate

without loss of generality (i.e., its exact value has negligible
influence on the results).

Table I presents a summary of the rates and constants,
including carrying capacity (the inverse of which is a rate). In
total, the model has two independent free parameters: initial
nutrient level n0, and τ , which serves as proxy for agar content,
hence surface softness.

A. Time scale separation

The crucial assumption made in solving the diffusion-
reaction system is the separation of time scales between macro-
scopic colony development (i.e., the incubation time it takes to
produce a discernible colony pattern) and the microscopic pop-
ulation dynamics, arising from phenotypic plasticity, at length
scales corresponding to 	r (about 200 μm). Experimental
observations indicate that the fastest growing pattern (i.e., the
SD) takes about half a day (12 h) to grow a diameter of about
5 cm [3]. On the other hand, microscopic imaging observations
of the colony edge and interior indicate the presence of vortical
flows which seem to facilitate bacteria mixing within time
scales in the order of <1 s [19–21]. Mixing in turn is seen
to facilitate bacterial interactions as it allows grouping and
regrouping on the fast time scale. Furthermore, doubling time
for bacteria is within 25–30 min in the case of Bacillus subtilis
so that a considerable number of binary-fission events should
have taken place within the chosen time unit 	t of 14 min.
This leads us to the simplification that the diffusion and
reaction parts in Eqs. (1)–(3) may be treated separately. Thus,
each part may be solved in a modular manner using different
approaches, and subsequently combined together to provide
the full solution. In particular, the reaction parts are solved
using a stochastic Gillespie method acting on population
numbers X and Y converted from x and y, respectively (see
Sec. III A), whereas the diffusion parts (assumed to have a
slow effect on the pattern) are solved using finite-difference
schemes acting on density values x and y (Sec. III B).

B. Boundary and initial conditions

Zero-flux boundary conditions apply to the nutrient field in
Eq. (3) because nutrients are not replenished throughout the
incubation period, in accordance with reported experiments
[3,13]. Initially, nutrients are uniformly spread across the
agar plate, and a bacteria inoculum is placed at the center of
the plate. Motivated by experimental accounts, the inoculum
is made up of vegetative colony-forming units (c.f.u.) for
which the authors in Ref. [3] have outlined an experimental
procedure. In standard procedures for inoculation, bacteria are

first cultured in fermented nutrient broth and then brought
out (and subsequently inoculated onto an agar plate) after
they have reached a certain growth phase (i.e., middle to
upper part of the log phase) [22]. In the log phase, bacteria
are rapidly participating in binary fission (hence, vegetative),
from which it is surmised that they are less flagellated on
the basis of molecular mechanisms akin to the flagellation
synthesis constraint seen among eukaryotes [23], through
which fissioning cells synthesize less flagella [7]; hence, the
inoculum is likely to be made up of mostly proliferators.
Furthermore, the inoculation procedure aims to obtain an
almost pure bacterial population of a certain phenotype [22].
Accounting for minor deviations from purity, the inoculum
used in the simulations is set with a composition of �97%
proliferators, and placed at the center of the grid. Deducing
from reported optical-density measurements of the inoculum
[3], a 200 × 200 μm2 patch should contain about B0 = 8000
bacteria. Lastly, nutrients are distributed uniformly across the
grid at initial level n0.

C. Motility mechanisms

The diffusion functions Dx and Dy describe the en-masse
mobility of proliferator and migrator phenotype, respectively.
These functions are motivated by two known classes of
bacterial surface translocation, hereby referred to as active and
passive motility [24,25]. Active motility is based on flagella
and works best on a soft medium. On the other hand, passive
motility (driven by outward population pressure) is facilitated,
for instance, by surfactants secreted by bacteria themselves
and is an adaptation used for translocation on harder surfaces.
Thus, we define the following:

Dy(ρ,x) =
{

4ρ for active motility,

0.125x for passive motility,
(4)

Dx(ρ,x) = γDy , (5)

wherein the factor γ < 1 denotes the slow relative mobility of
proliferators. For simplicity, γ = 0.2 is fixed. While the factor
4 in Eq. (4) is arbitrarily chosen, it is motivated by previous
experimental studies that estimate bacterial mobility around
the same order of magnitude as nutrient diffusivity Dn on
soft surfaces [3]. The proportionality with ρ is prompted by
the energy requirement to drive flagella, which is supported
by the observation of no (or minimal) bacterial movement at
the colony interior where nutrient is depleted first. The factor
0.125 in Eq. (4) is arbitrarily set to emphasize that colony
expansion powered by passive motility is much slower than
nutrient diffusion. It is proportional to x because mobility
is facilitated by proliferators secreting public goods, such as
surfactant [3].

D. Background Fisher-type population dynamics

The rate βρ in Eqs. (1) and (2) represents specific birth rates.
Since ρ � 1, β represents a maximum specific rate which
has been estimated experimentally. In B. cereus, for example,
β ≈ 0.19 per hour [16]; so, in the model β = 0.044 (per unit
time, 	t = 14 min).

In more precise terms, the densities x and y are converted
into population numbers X and Y , respectively, whereby B0
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serves as a scaling factor (Sec. III C). The conversion is
necessary in carrying out the stochastic Gillespie algorithm
for solving the reaction kinetics part. Since 	r = 1, it follows
that x = X/B0 and y = Y/B0. The nominal carrying capacity
for migrators Ky is set at 10 000 (to the same order as Bmax)
from which follows that κy = Ky/B0 = 1.25. On the other
hand, Kx = 1000 (an order lower) for proliferators so that
κx = 0.125.

Combining rates of the form βρ − (x + y)/κ in the reaction
part of Eqs. (1) and (2) reveals a logisticlike term. When further
combined with a diffusion term, the right-hand sides of Eqs. (1)
and (2) describe a Fisher-type diffusion-reaction system,
which is commonly implemented in modeling bacteria-colony
patterns [26].

E. Public-goods cooperation

The terms within {· · · } in Eqs. (1) and (2) represent per-
capita rates due to public-goods cooperation [5,27]. The factor
4 denotes the strength of frequency-dependent selection arising
from the said cooperation phenomenon. Proliferators invest a
portion of their energy reserves ξρ into the public good within
the cell they belong to. The contributions are then pooled (i.e.,
xρ) and divided equally among all members of the cell; hence,
a dividend of xρ/(x + y) is received by each. The maximum
specific contribution ξ by an individual proliferator is ξ �
0.2 	t−1, although simulation results reveal that even ξ �
0.095 	t−1 does not significantly change the morphological
diagram of generated patterns.

The presence of τ in Eq. (2) sets the current model
apart from usual public-goods cooperation models wherein
the advantage due to defection or cheating is apparent only
in the population growth rates [6,27]. A tradeoff between
proliferation and mobility is hypothesized vis-a-vis the flag-
ellation synthesis constraint seen in eukaryotes [23]. For
migrators, the dividend is used primarily to maintain their
higher relative mobility by means of flagella at the expense
of proliferation. This explains why τ < 1 in Eq. (2). In the
model, τ is linked with mobility by way of the factor γ in
Eq. (5), i.e., τ < 1 ⇒ γ < 1, which expresses the tradeoff
above hypothesized. However, no assumptions are made about
the function τ (γ ) since further biological observations are
needed to specify such function.

The above formulation for the public-goods cooperation is
also in agreement with a recent generalization to Hamilton’s
rule applied to microbial cooperation [5]. The generalized
Hamilton’s rule allows for variation in the benefits received,
in terms of increased lifetime reproduction, depending on the
individual type. Furthermore, it eliminates the assumption of
additivity, thus allowing for strong selection effects typical of
microbial populations [5].

F. Phenotypic switching

The coupling terms involving α in Eqs. (1) and (2) are
motivated by findings that isogenic bacteria undergo a process
known as phenotypic switching, which leads to diversification
[11]. Such a process has also been known to control surface
motility in B. subtilis through the action of certain genes
involved in the biosynthesis of surfactin (a lipoprotein) and

flagella [28]. Estimates on rates from previous studies suggest
that there is a directional bias in the rates (i.e., faster in one
direction compared to the other) [29–31]. But, for simplicity
the model assumes that phenotypic switching is direction
invariant. The per capita switching rate α is within the realm
of high-frequency variation, in the order of between 10−3

and 10−2 per generation [30,32]. Assuming a generation time
between 26–65 min (in the case of B. subtilis incubated at
37 ◦C [33]), it is considered in the model that α = 0.0098 	t−1

for low-rate phenotypic switching, based from experimental
estimates [18]. A high rate is also considered with α =
0.12 	t−1.

Furthermore, the per capita switching rate α is generally
constrained to be a function of the initial nutrient level n0;
particularly, α(n0) > 0 is a decreasing function with n0, which
is motivated by the finding that increasing stress conditions
(associated with decrease in n0, for example) speeds up
switching rates [34].

III. NUMERICAL METHODS

The diffusion-reaction system is solved by treating sepa-
rately the diffusion and reaction parts, and then combining the
results to move the solution a time step forward. The diffusion
part describes the macroscopic, continuum, but rather slow,
dynamics of colony expansion (time scale of at least 12 h [3]).
On the other hand, the reaction kinetics reflects the rapid
reorganization of local populations (in terms of phenotypic
composition) in all cells within the scale of 14 min.

A. Gillespie method: Reaction substep

Rather than solving the reaction kinetics deterministically,
a stochastic Gillespie method is employed in a similar manner
detailed in Ref. [35]. The motivation for this is that bacteria
colonies are truly described as a population of discrete entities
rather than as a continuum field. Each reaction rate is converted
into a so-called propensity, which is a probability per unit time
that the corresponding process takes place at all. By letting
X = X(�r,t) and Y = Y (�r,t) be the number of proliferators
and migrators, respectively, within cell at position �r at time
t , the propensities may be expressed in a straightforward
manner for each reaction term. Furthermore, let B0 denote
the initial number of bacteria of the inoculum. From Eq. (1),
the corresponding propensities are

a0 = a0[X → X + 1] = βρ

4
X, (6)

a1 = a1[X → X − 1] =
(

X + Y

4κxB0

)
X, (7)

a2 = a2[X → X + 1] =
(

ρX

X + Y

)
X, (8)

a3 = a3[X → X − 1] = ξρX, (9)

a4 = a4[X → Y ] = α

4
X , (10)

wherein the expression within [· · · ] describes the process
(“creation” or “annihilation” of a single individual of a certain
phenotype) represented by a particular propensity. Similarly,
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the propensities from Eq. (2) may be written as follows:

a5 = a5[Y → Y + 1] = βρ

4
Y, (11)

a6 = a6[Y → Y − 1] =
(

X + Y

4κyB0

)
Y, (12)

a7 = a7[Y → Y + 1] =
(

ρX

X + Y

)
τY, (13)

a8 = a8[Y → Y − 1] = 0, (14)

a9 = a9[Y → X] = α

4
Y. (15)

Reactions are calculated starting at time i = 0 over a total
time substep δt = 	t/4 as detailed further in Sec. III B, which
also explains the factor 1/4 in Eqs. (6), (7), (10)–(12), and (15).

Two random numbers, namely, ϕ1 and ϕ2, from a uniform
distribution between 0 and 1 are drawn for the sake of
determining the length of the time interval ε from one event
to the next, and for deciding which reaction event occurs. By
defining A = ∑9

j=0 aj , ε is calculated as follows:

ε = − ln(ϕ1)/A.

To illustrate the basic scheme of the Gillespie algorithm, for
example, the reaction represented by propensity a3 is chosen if
(
∑

j�3 aj )/A < ϕ2 � a3/A. After the event takes place, time
is updated such that i → i + ε. Further reactions can still take
place as long as i < δt .

B. Alternating direction implicit method: Diffusion substep

In order to solve the diffusion step, the operator-splitting
scheme (also known as alternating-direction implicit, or ADI)
is used whereby the time step is split into four parts that
correspond to the four axes (up-down, left-right, and two
diagonals) along which the finite spatial differences for the
diffusion part are evaluated. Thus, given 	t , each substep
δt corresponds to a time interval of only 3.5 min. For each
δt , the order of evaluation with respect to axis is random.
The ADI scheme used in this study is based on an isotropic
finite-difference stencil proposed in Ref. [36].

C. Full solution at one time step �t

A crucial step in the numerical method is the interconver-
sion between density and population numbers. This is done by
setting the size of a cell 	r to unity so that the cell area is
also unity. The system [Eqs. (1)–(3)] is rescaled with respect
to B0. If x is density and X is the corresponding number, then
x = X/B0. Stochastic effects due to the finiteness of B0 and
the errors of interconversion from number to density and back
seem to be less pronounced if B0 is almost of the same order as
the maximum capacity per cell Bmax. Another source of error
with interconversion is the resolution limit 1/B0. If density x

is below that limit, it will yield a zero count for X. But, as
long as B0 is large enough, the resolution limit should pose
minimal numerical error.

For each δt , x(t) and y(t) for all cells are converted into
numbers and put into the Gillespie algorithm (Sec. III A) to
yield updated X(t + δt) and Y (t + δt) numbers, which are then
converted back into updated densities: x(t + δt) and y(t + δt).

Also updated is the nutrient level n(t + δt). The diffusion step
is subsequently solved to yield even more updated x, y, and n

for all cells. The same process is done in all the other substeps
until the full 	t is used up, at which time the variables have
been updated to their values x(t + 	t), y(t + 	t), and n(t +
	t) for all �r .

D. Colony pattern visualization

In order to visualize the colony pattern, the density at each
cell is calculated by counting all existing bacteria as well as
all bacteria that died in that cell. This method is reasonable
because when a bacterium dies within a cell, it remains in
that cell; furthermore, it is in agreement with colony patterns
photographed in experimental observations [3].

IV. RESULTS

Figure 1 presents morphological diagrams for patterns gen-
erated by the model, and is plotted with respect to the control
parameters n0 and τ . Patterns are distinguished by visual
inspection. Regimes of a particular pattern are recognized
and are denoted as “phases.” Figure 1 (A) corresponds to a
bacteria population exhibiting active motility and for which
phenotypic switching takes place at low rate (see Table I).
On the left side of the diagram are phases characterized
by high-density uniform disks dominated by proliferators,
whereas on the right side is the low-density SD phase
dominated by migrators [3]. Increasing τ from left to right
corresponds to a change in the outcome of the public-goods
game from proliferator dominance to prisoner’s dilemma.
The intermediate phases A2 and A3 feature an alternation
of dominance between phenotypes. Phase A3 corresponds to
the CT with its characteristic terraces, whereas A2 appears like
the DBM with its dense branches at the interior.

Figure 1(B) is a diagram of patterns generated by imposing
active motility but at high switching rate α. The primary effect
of higher α is to make the DBM branches prominent (B2), and
the CT terraces narrower (B3), compared to those shown in
Fig. 1(A). Phase B1 is similar to A1, whereas B4 resembles a
rosette rather than a uniform SD pattern as in A4. The “bright
spots” on B4 patterns are due to the sporadic presence of
proliferators induced by migrators switching into proliferators
at higher rates.

Figure 1(C) illustrates the patterns generated by imposing
only passive motility at low phenotypic switching rate. The
left side of the diagram consists of patterns which expand
much slower (∼103 	t) compared to phases in Figs. 1(A)
and 1(B) (∼102 	t), whereas the right side is a no-growth
phase (C4). Phase C2 corresponds to the DLF with its self-
similar branches, the fractal dimension of which is estimated
at df = 1.72 using the box-counting method, and is within the
range of experimental estimates [37]. Phase C1 is an RE, the
edge roughness of which is quantified by a Hurst exponent
H = 0.78, which is in agreement with known estimates on
B. subtilis colonies [38]. Phase C3 is characterized by dense
branches and a rough edge, similar to that reported in Ref. [39],
within the same region of parameter space.

Salient phase boundaries are analytically accounted for. The
C1–C2 boundary may be accounted for by the Mullins-Sekerka
instability of the colony front, which is present in C1 but not in
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FIG. 1. (Color online) Morphological diagrams. Data points
represent samples of different pairs of initial nutrient level n0

and of “substrate softness” parameter τ . Distinct pattern regimes
(“phase”) deduced by inspection are labeled by numbers, wherein
lines serve as guides that delineate phase boundaries. Representative
patterns are shown for each phase. (A) active motility, low per capita
phenotypic switching rate α = 0.0098 	t−1; (B) active motility,
high α = 0.12 	t−1; and (C) passive motility, α = 0.0098 	t−1.
Phase boundaries A3–A4 and C3–C4 denote the onset of migrator
dominance at low α, whereas the phase boundary C1–C2 for τ � 0.6
is an outcome of a Mullins-Sekerka front instability. Recognized
patterns: A3, B3 (CT); A4 (SD); B2 (DBM); C1 (RE); C2 (DLF). A
composite diagram A3 + A4 + B2 (bottom) + C1 + C2 approximates
experimental morphological diagrams reported previously [3].

C2. A perturbation analysis reveals a dispersion relation ω(q),
which states the growth rate ω of a particular perturbation
mode of wave number q along the front. Two extreme cases are
analyzed: n0 	 1 and n0 
 1. In the former case, ω(q) > 0,
∀q > 0, whereas in the latter case, ω(q) < 0, ∀q > 0.

A simplified analysis of the traveling colony front is carried
out through a rescaled form of Eq. (3):

∂tn = ∇2n − μb
n

n + 1
, (16)

x x

d

v v(x)
ζ, y ζ, y

ζ = 0

ζ = −d

ζ = ζ0(x)

ζ = −d(x)

(a) (b)

FIG. 2. (Color online) Sketch of the plane-wave sharp interface
in the comoving frame (ζ ,x), where ζ = y − vt with v being the
front velocity. The regions are designated as e (external uncolonized
area), a (active region), and i (inactive region). (a) Unperturbed plane
wave: ζ = 0 is designated as the front, whereas the tail is behind it
at ζ = −d; (b) perturbed plane wave: ζ0(x) = δ cos qx and d(x) =
d − δ cos qx; the velocity of the front is now designated as a function
of x.

where b = x + y denotes the total bacterial density at the
front, which is approximately constant as the colony expands
outward. Equation (16) may be written into an approximate
form for n0 
 1 as

∂tn ≈ ∇2n − K , (17)

where K is a constant denoting the fixed consumption rate at
the front by a constant density of bacteria, and since n/(n +
1) → 1 at the front for large n0. On the other hand, for small
n0, Eq. (16) may be written into an approximate form as

∂tn ≈ ∇2n − kn , (18)

where k is a fixed consumption rate per nutrient owing to
n/(n + 1) ≈ n at the front for small n0. Equations (17) and (18)
are solved by treating front propagation as a sharp interface
problem (see Fig. 2). A comoving axis is defined by assigning
a variable

ζ = y − vt ,

which moves with the front at velocity v. The plane wave is
perturbed by an oscillatory function

δ(x) = δ cos qx ,

whose amplitude δ 	 1 and wherein q denotes the wave
number of that perturbation.

The goal is to determine a dispersion equation of the form

ω(q) = δ̇

δ
,

which relates the growth rate of amplitude to the wave number
q of the perturbation. If ω(q = a) > 0, then the mode with
wave number a grows in time; on the other hand, if ω(a) < 0,
then the a mode decays in time.

In the large-n0 case, perturbation of the interface leads to
the following solution:

n[ζ + δ(x)] = n0(ζ ) + n1(ζ )δ(x) = n0 + n1δ cos qx . (19)

Based on the proposed solution [Eq. (19)] and the definition
for ζ , Eq. (17) may be rewritten in one-dimensional form
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(neglecting explicit dependence with time t) as follows:

∂2n0

∂ζ 2
+ v

∂n0

∂ζ
− K� = 0,

(20)
∂2n1

∂ζ 2
+ v

∂n1

∂ζ
− q2n1 = 0 ,

where � = 1 in region a in which nutrient is actively
consumed, and � = 0 in regions e and i (see Fig. 2).

A particular solution to Eq. (20) is found by introducing the
following boundary and asymptotic conditions:

lim
ζ→∞

ne(ζ ) = n0, (21)

ne[ζ0(x)] = na[ζ0(x)], (22)

∂ζ ne[ζ0(x)] = ∂ζ na[ζ0(x)], (23)

na[−d(x)] = ni[−d(x)] = λn0, (24)

∂ζ na[−d(x)] = ∂ζ na[−d(x)], (25)

lim
ζ→−∞

ni(ζ ) = λn0 , (26)

wherein ζ0(x) = δ cos qx and d(x) = d − δ cos qx. The factor
λ < 1 denotes the fraction of the initial nutrient level n0 left
unconsumed at the inactive region. The general forms of the
solutions for each region are as follows:

ne(ζ,x) = A0
e − B0

e

e−vζ

v
+ {

A1
ee

−α̂ζ + B1
e e

−β̂ζ
}
δ cos qx,

na(ζ,x) = Kζ

v
+ A0

a − B0
a

e−vζ

v
+ A1

ae
−α̂ζ δ cos qx,

ni(ζ,x) = A0
i − B0

i

e−vζ

v
+ {

A1
i e

−α̂ζ + B1
i e

−β̂ζ
}
δ cos qx ,

where the A’s and B’s are coefficients to be determined, and
α̂ = (v + √

v2 + 4q2)/2 and β̂ = (v − √
v2 + 4q2)/2.

The coefficients are solved by applying the boundary
conditions into Eq. (20), and truncating the resulting terms
up to first order in δ. The important aspect is the perturbed
solution na(ζ,x) for the active region, which is essentially the
interface itself. Thus,

A0
a = n0 − K

v2
, B0

a = −K

v
e−vd , A1

a = K

v
e−α̂d .

Because the interface propagates due to passive-type motility,
which is density dependent and rather slow, it is reasonable to
assume that v 	 1. This is confirmed by the large amount of
incubation time required to see RE and DLF patterns exhibiting
that type of motility. Thus, a further approximation is made
such that

α̂ ≈ |q| ,
so that the perturbed solution for the active region is now (up
to first order in v and δ) as follows:

na(ζ,x) ≈ n0 − K

v2
(1 − e−v(ζ+d)) + Kζ

v

+ K

v
e−|q|(ζ+d)δ cos qx . (27)

Furthermore, the interface width d is determined from the
condition stated by Eq. (24):

d = (1 − λ)vn0

K
. (28)

The perturbation analysis by Gerlee and Anderson [40]
proposed an identity related to the normal velocity of the
propagating front:

∂2ζ0

∂t ∂x
= ∂2na

∂ζ ∂x

∣∣∣∣
ζ=ζ0

, (29)

which by virtue of Eqs. (27) and (28) yields the following
dispersion equation:

ω(q) = δ̇

δ
= −

[
K2

(1 − λ)v2

] |q|d
n0

e−|q|d . (30)

Equation (30) tells us that the growth rate ω < 0 for all
wave numbers, which implies that any perturbation dies out
eventually as the front propagates outward.

On the other hand, for the small-n0 case, the governing
equation (18) now takes on the dimensionally reduced form

∂2n0

∂ζ 2
+ v

∂n0

∂ζ
− k�n0 = 0,

(31)
∂2n1

∂ζ 2
+ v

∂n1

∂ζ
− (k� + q2)n1 = 0 ,

wherein � is defined as before. Consequently, the general form
of the solution is the same for regions e and i as in the previous
case. But, now the general solution for the active region a now
takes on the following form:

na(ζ,x) = A0
ae

−σ̂ ζ + B0
a e

−τ̂ ζ + A1
ae

−ϕ̂ζ δ cos qx ,

wherein σ̂ = (v + √
v2 + 4k)/2, τ̂ = (v − √

v2 + 4k)/2, and
ϕ̂ = (v +

√
v2 + 4k + 4q2)/2. By applying the boundary con-

ditions onto Eq. (31) and by considering v 	 1, the following
coefficients are determined up to first order in v:

A0
a = 1 + e−2d

√
k

2 sinh(2d
√

k)

vn0√
k

+ O(v2),

B0
a = 1 + e2d

√
k

2 sinh(2d
√

k)

vn0√
k

+ O(v2), (32)

A1
a = −

√
kvn0e

−d
√

k

|q| +
√

k + q2
(1 + coth(d

√
k)) + O(v2).

Furthermore, the interface width d is determined from the
condition stated by Eq. (24):

d = 1√
k

sinh−1

(
v

λ
√

k

)
. (33)

By applying the identity in Eq. (29) into the perturbed
solution na(ζ,x), and by considering further that v 	 1, the
dispersion equation is determined as

ω(q) = −
√

k + q2A1
a(q) , (34)

along with Eqs. (32) and (33). It turns out that ω > 0 for all q,
but is a decreasing function of q.
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ω(q)

q

k = 0.1; d ≈ 5.9
k = 1.0; d ≈ 0.9

K = 0.02; d ≈ 9.9

K = 0.015; d ≈ 13.2

−

−

−

FIG. 3. (Color online) Dispersion equation ω(q) for two extreme
cases of nutrient level n0. The plots are derived by setting v = λ =
0.01. For the high-n0 case, the plots are generated using Eq. (30), and
d is calculated through Eq. (28) with n0 = 20. For the low-n0 case, the
plots are generated from Eq. (34), and d is calculated through Eq. (33).

Superimposing plots based on Eq. (34) with those based
on Eq. (30) presents us with a qualitative comparison of the
front instability for large n0 and small n0. Figure 3 presents that
comparison. The growth rate ω(q) > 0, ∀q for the low-n0 case,
which means that short-wavelength perturbations are amplified
in time as the front propagates outward. This is consistent with
the branched morphology of the DLF, which is observed at low
n0 in the simulations. On the other hand, ω(q) < 0, ∀q > 0 for
the high-n0 case, which means that perturbations with nonzero
wave numbers decay in time, thereby resulting in a more stable
front without gaps. This is consistent with the RE observed at
high n0.

There should exist a crossover of the behavior of ω(q) with
respect to q from low to high n0 if the full nonlinearity of the
original governing equation [i.e., the nonlinear dependence
with n in Eq. (16)] is accounted for. Thus, it is shown that the
Mullins-Sekerka instability is influenced by the initial nutrient
level.

What the above analysis means is that for low n0, the
front is unstable to spatial perturbations so that gaps form
along the front, exactly the mechanism known to generate
branches of the DLF [3]. On the other hand, for high
n0, spatial perturbations along the front decay as the front
propagates outward resulting in a stable front. Hence, the
RE in phase C2 has a compact interior. A video animation
compares the evolution of DLF and RE according to the said
mechanism [41].

Finally, the A3–A4 and C3–C4 boundaries denote the value
of τ above which migrators dominate the front. For low α such
that the effect of phenotypic switching is approximately 0, it
can be shown that the per capita reaction rates Rx and Ry in
Eqs. (1) and (2), respectively, obey Rx < Ry for τ > 1 − ξ .

At the front, it is assumed that n0 is high enough so
that one can make the approximation ρ ≈ 1. Furthermore,
based on simulations, one may reasonably consider that
x,y → 0 at the front (i.e., bacteria density is too thin as it
propagates outward). The inequalityRx < Ry implies that the
migrator phenotype dominates the front. That inequality, along
with the aforementioned assumptions, leads to the following

FIG. 4. (Color online) (a) CT by active motility (n0 = 16, τ =
0.6; γ = 0.2; α = 0.0098; ξ = 0.2; time = 600	t ≈ 5.8 days).
Circles indicate different times: solid (t1 = 150	t) corresponds to
an onset of terrace formation; dashed (t2 = 252	t) to onset of
rapid mass migration. (b) Phase scatterplot (migrator density y vs
proliferator density x) snapshots at t1 (dark dots) and t2 (bright dots).
Nullclines are shown as black curves. The hollow circle is the unstable
equilibrium p∗

u, and the solid circle is the stable equilibrium p∗
s . Wide

gray arrow pointing toward (0,0) indicates the effect of migration
that induces a flow to the right and closer to p∗

u, which repels the
trajectory and pushes it toward p∗

s . A migration-induced cycle thus
generates the CT structure. The nonlinear mechanism is animated in
video format [41].

condition:

τ > lim
x,y→0

[
1 − ξ

x + y

x
− (

κ−1
x − κ−1

y

) (x + y)2

4x

]
. (35)

Equation (35) is simplified by taking the constitutive
relation x = x(y) = χy, where χ is a proportionality constant.
This relation simply states that the density x of proliferators
at the front is determined by proportion to the density y of
migrators at the front, which is reasonable by considering that
phenotypic switching gives rise to a certain proportion of one
phenotype as a result of the presence of the other phenotype.
Thus, Eq. (35) is simplified by evaluating the limit along the
path in phase space for which x(t) and y(t) move together in
the same direction. Hence, only the limit as y → 0 is taken:

τ > lim
y→0

[
1 − (1 + χ )ξ − (

κ−1
x − κ−1

y

)
(1 + χ )2y/4

]
,

which simply gives
τ > 1 − (1 + χ )ξ . (36)

By considering that α is small, the amount of proliferators
switching from migrators is expected to be small so that χ 	
1. Hence, Eq. (36) further simplifies into τ > 1 − ξ , which for
ξ = 0.2 gives the transitional value of τ to be τ ∗ = 0.8.

As a matter of perspective, the condition Rx < Ry implies
migrator dominance in a prisoner’s dilemma sense [6], which
explains the low-density, migrator-dominated SD in phase A4
as well as the no-growth phase C4. As passive motility is
defined in Eq. (4) is proportional to proliferator (public-good
producing) density x, and since low α precludes migrators
from switching into proliferators, the resulting low x at the
front inhibits colony expansion for C4.

Finally, the CT [Fig. 4(a)] is rather curious because of its
fringelike appearance. CT is also by far the most non-trivial
of patterns formed by bacterial colonies because it does not
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seem to fit into the notion of continuous outward propagation
by a growing colony.

A linear stability analysis is carried out on Eqs. (1) and (2)
at the colony front, where ρ ≈ n0/(1 + n0), to elucidate the
nonlinear mechanism behind CT structure. Assuming α 	 1,
three fixed points are revealed, two of which are within the
domain x,y � 0, namely, stable p∗

s = (0,{βρ − α}κy) and
unstable p∗

u = [{(4 + β − ξ )ρ − α} κx,0]. A phase scatter plot
in Fig. 4(b) demonstrates the dynamics leading to terrace
formation. The trajectories are repelled by p∗

u, which implies
that a front of proliferators are eventually taken over by
migrators in prisoners-dilemma-like fashion [6]. The dynamics
converges toward p∗

s (an absorbing state). However, the
ensuing rapid outward migration thins out the front density,
forcing the dynamics toward (0,0), which is not a fixed point.
Subsequently, the flow is pushed toward the right approaching
p∗

u once more and thus creating a cycle. This explanation
accords with the two-thresholds hypothesis on the formation
of concentric patterns in colonies of Proteus mirabilis and B.
subtilis, which asserts that the alternation between migration
and terrace formation is triggered not by quorum sensing but
by localized phenotypic density variations [3,42].

V. DISCUSSION

A two-scale diffusion-reaction model has been proposed
to account for the pattern diversity of bacterial colonies.
It explicitly considers that survival in bacterial colonies is
a dilemma between sedentary (proliferation for population

growth) and nomadic (migration for foraging) lifestyles [7]. It
merges concepts and ideas from diffusion-reaction modeling
and the evolutionary game theory of public-goods cooperation,
which, to the best of my knowledge, has not been implemented
in previous models. The approach in solving the model also
avoids the necessity for assuming extraneous noise statistics
because the fluctuations are incorporated naturally as an
offshoot of the discreteness of bacterial colonies. Pattern
diversity is widest in scope at low phenotypic switching rates.
Incorporating additional adaptive mechanisms through which
bacteria recognize surface softness and respond accordingly by
shifting between active and passive motility (e.g., [43]) would
further justify a composite morphological diagram based on
Fig. 1 that accounts for all known colony patterns as has been
reported previously [3].

In the hopes of understanding the workings of ever more
complex biological systems, this study opens up a gateway
through which evolutionary game theory can be tested in
colony-forming bacterial populations that develop spatial
structures. It also contributes an opportunity to validate our
understanding of bacterial self-organization based on what is
currently known in microbiology about how bacteria adapt to
uncertain and fluctuating environmental conditions.
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