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DNA polymerase (DNAP) is a dual-purpose enzyme that plays two opposite roles in two different situations
during DNA replication. It plays its a normal role as a polymerase catalyzing the elongation of a new DNA
molecule by adding a monomer. However, it can switch to the role of an exonuclease and shorten the same
DNA by cleavage of the last incorporated monomer from the nascent DNA. Just as misincorporated nucleotides
can escape exonuclease causing a replication error, the correct nucleotide may get sacrificed unnecessarily by
erroneous cleavage. The interplay of polymerase and exonuclease activities of a DNAP is explored here by
developing a minimal stochastic kinetic model of DNA replication. Exact analytical expressions are derived for
a few key statistical distributions; these characterize the temporal patterns in the mechanical stepping and the
chemical (cleavage) reaction. The Michaelis-Menten-like analytical expression derived for the average rates of
these two processes not only demonstrate the effects of their coupling, but are also utilized to measure the extent
of replication error and erroneous cleavage.
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I. INTRODUCTION

DNA polymerase (DNAP) replicates a DNA molecule;
the sequence of the nucleotides, the monomeric subunit of
DNA, on the product of polymerization is dictated by that on
the corresponding template DNA through the Watson-Crick
complimentary base-pairing rule [1]. DNAP moves step by
step along the template strand utilizing chemical energy input
and, therefore, these are also regarded as a molecular motor
[2,3].

A unique feature of DNAP is that it is a dual-purpose
enzyme that plays two opposite roles in two different circum-
stances during DNA replication. It plays its normal role as a
polymerase catalyzing the elongation of a new DNA molecule.
However, upon committing an error by the misincorporation of
a wrong nucleotide, it switches its role to that of an exonuclease
catalyzing the shortening of the nascent DNA by cleavage
of the misincorporated nucleotide at the growing tip of the
elongating DNA [4]. The two distinct sites on the DNAP
where, respectively, polymerization and cleavage are catalyzed
are separated by 3–4 nm [5]. The nascent DNA is transferred
back to the site of polymerization after cleaving the incorrect
nucleotide from its growing tip. The elongation and cleavage
reactions are thus coupled by the transfer of the DNA between
the sites of polymerase and exonuclease activity of the DNAP.
However, the physical mechanism of this transfer is not well
understood [6].

In this paper we develop a minimal kinetic model of
DNA replication (more precisely, that of the “leading strand”
which can proceed continuously) that captures the coupled
polymerase and exonuclease activities of a DNAP within the
same theoretical framework. From this model, we derive the
exact analytical expressions for (i) the dwell time distribution
(DTD) of the DNAP at the successive nucleotides on the
template DNA, and (ii) the distribution of the turnover times
(DTTs) of the exonuclease (i.e., the time intervals between the
successive events of cleavage of misincorporated nucleotide
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from the nascent DNA). The mean of these two distributions
characterizes the average rates of elongation and cleavage,
respectively; we show that both can be written as Michaelis-
Menten-like expressions for enzymatic reactions which reveals
the effect of coupling explicitly.

In our model, the kinetic pathways available to the correct
and incorrect nucleotides are the same. However, it is the ratio
of the rate constants that makes a pathway more favorable to
one species than to the other. A similar assumption was made
by Galas and Branscomb [7] in one of the earliest models
of replication. Therefore, in spite of the elaborate quality
control system, some misincorporated nucleotides can escape
cleavage; such a replication error in the final product is usually
about 1 in 109 nucleotides. Moreover, occasionally a correct
nucleotide is erroneously cleaved unnecessarily; such “futile”
cycles slow down replication [8].

We define quantitative measures of these two types of
error and derive their exact analytical expressions from our
model for “wild type” DNAP. Using special cases of these
analytical expressions, we also examine the effects of two
different mutations of the DNAP [5]: (i) the “exodeficient”
mutant that is incapable of exonuclease activity, and (ii) the
“transfer-deficient” mutant on which the rate of transfer to the
exonuclease site is drastically reduced.

II. MODEL

Almost all DNAPs share a common “right-hand-like”
structure. Binding of the correct dNTP substrate triggers
closing of the “hand” which is required for the formation of
the diester bond between the recruited nucleotide monomer
and the elongating DNA molecule. The kinetic scheme of our
stochastic model of replication is shown in Fig. 1. The rate
constants for the correct and incorrect nucleotides are denoted
by ω and �, respectively; the same subscript is used in both
the cases for the same transition.

Let us begin with the situation where the DNAP is ready
to begin its next elongation cycle; this mechanochemical state
is labeled by the integer index 1. In principle, the transition
1 → 2 consists of two steps: the binding of the dNTP substrate
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FIG. 1. The kinetic model of DNA replication. The chemome-
chanical states of a single DNAP and the allowed transitions are
shown along with the corresponding transition probabilities per unit
time (the rate constants). The corresponding rate constants for the
incorrect nucleotide are denoted by the symbol � (see the text for
details).

and the formation of the diester bond. The overall rate of this
step is ωf for a correct substrate and �f for an incorrect
substrate.

Occasionally, because of the random fluctuation of the hand
between the “open” and “closed” conformations, the dNTP
may escape even before the formation of the diester bond; this
takes place with the rate constant ωr . If the recruited dNTP is
incorrect, the hand remains open most of the time and the rate
constant for the rejection of the dNTP is �r (�r � ωr ). Note
that dNTP selection through 1 � 2 involves a discrimination
between the correct and incorrect dNTP substrate on the basis
of free energy gained by complementary base pairing with the
template.

The transition 2(i + 1) → 1(i + 1) corresponds to the
relaxation of the freshly incorporated nucleotide to a con-
formation that allows the DNAP to be ready for the next cycle.
The rate constants for this step are ωh and �h, respectively,
for correctly and incorrectly incorporated nucleotides. Alter-
natively, while in the state 2(i + 1), the DNAP can transfer the
growing DNA molecule to its exonuclease site; this transfer
takes place at a rate ωpf (�pf ) if the selected nucleotide is
correct (incorrect). Since �h � ωh, and �pf � ωpf , the
misincorporated nucleotide most often gets transferred to the
exonuclease site whereas relaxation, rather than transfer, is
the most probable pathway when the incorporated nucleotide
is correct.

The actual cleavage of the diester bond that severs the
nucleotide at the growing tip of the DNA is represented by the
transition 3(i + 1) → 1(i). For a correct nucleotide, ωpr � ωe

indicating that the DNA is likely to be transferred back to
the polymerase site without the unnecessary cleavage of the
correct nucleotide. In contrast, for an incorrect nucleotide,
�pr � �e which makes error correction a highly probable
event. Moreover, �pr � ωpr,�e � ωe. Since the trimmed
DNA is transferred to the polymerase site extremely rapidly
[4], each of the rate constants ωe and �e incorporate both the
trimming and transfer.

Interestingly, the full kinetic scheme in Fig. 1 can be viewed
as a coupling of a purely polymerase-catalyzed reaction
(shown in the left panel of Fig. 2) and a purely exonuclease-
catalyzed reaction [shown in the right panel of Fig. 2]; the
transition with the rate ωpr couples these two reactions.

FIG. 2. “Purely” polymerizing reaction (left panel) and “pure”
exonuclease reaction (right panel).

Strictly speaking, for an exodeficient DNAP [5], ωe = 0 =
�e although the rates of forward and reverse transfer between
the sites of polymerase and exonuclease activities may not
be necessarily negligible. Similarly, either ωpf = 0 = �pf

or ωpr = 0 = �pr (or, both) can be the cause of transfer
deficiency of the DNAP.

III. RESULTS AND DISCUSSION

A. Distribution of dwell time

The DTD considered here arises from intrinsic stochasticity
and not caused by any sequence inhomogeneity of the mRNA
template [9]. For a molecular motor that is allowed to step
backward as well as forward, we use positive (+) and negative
(−) signs to represent the forward and backward steps,
respectively. For example, ψ+−(t) is the conditional DTD
(cDTD) [10] when a forward step is followed by a backward
step and p+− is the probability of such a transition. Therefore,
the DTD can be written as

ψ(t) = p+−ψ+−(t) + p++ψ++(t) + p−+ψ−+(t)

+p−−ψ−−(t). (1)

In our model two consecutive backward steps are forbidden,
which implies that p−−ψ−−(t) = 0. We calculate the cDTD
following the standard method [11] that has been used
successfully earlier for the calculation of cDTD for some other
motors (see, for example, Ref. [10]).

Let Pμ(j,t) be the probability of finding the DNAP in
the μth (μ = 1,2,3) chemical state at the j th site [i.e., at
the discrete position xj (j = −∞, . . . − 1,0,1, . . . ∞)]. Then
master equations for Pμ(j,t) are

dP1(j,t)

dt
= −ωf P1(j,t) + ωrP2(j + 1,t) + ωhP2(j,t)

+ωeP3(j + 1,t), (2)

dP2(j,t)

dt
= ωf P1(j − 1,t)

− (ωr + ωpf + ωh)P2(j,t)+ ωprP3(j,t), (3)

dP3(j,t)

dt
= ωpf P2(j,t) − (ωe + ωpr )P3(j,t). (4)

In terms of the Fourier transform

P̄μ(q,t) =
∞∑

j=−∞
Pμ(xj ,t)e

−iqxj (5)

011913-2



ERROR CORRECTION DURING DNA REPLICATION PHYSICAL REVIEW E 86, 011913 (2012)

of Pμ(xj ,t), the master equations can be written as a matrix
equation,

d

dt
P̄(q,t) = M(q)P̄(q,t), (6)

where P̄(q,t) is a column vector whose three components are
P̄1(q,t),P̄2(q,t),P̄3(q,t) and

M(q) =
⎡
⎣ −ωf ωh + ωrρ−(q) ωeρ−(q)

ωf ρ+(q) −(ωh + ωr + ωpf ) ωpr

0 ωpf −(ωe + ωpr )

⎤
⎦
(7)

with ρ+(q) = e−iqd and ρ−(q) = eiqd ; d being the step size,
i.e., xj+1 − xj = d. Taking Laplace transform of (6) with
respect to time,

P̃μ(q,s) =
∫ ∞

0
P̄μ(q,t)e−st , (8)

the solution of the master equation in the Fourier-Laplace
space is

P̃(q,s) = R(q,s)−1P̃(0), (9)

where

R(q,s) = sI − M(q), (10)

and P̃(0) is the column vector corresponding to the initial
probabilities.

Now we define

P̃ (q,s) =
3∑

i=1

P̃i(q,s), (11)

which can be calculated from

P̃ (q,s) =
∑3

i,j=1 Cj,iPj (0)

|R(q,s)| , (12)

where Cj,i are the cofactors of the R(q,s).
The determinant of the matrix R(q,s) is a third order

polynomial of s and can be expressed as

|R(q,s)| = s3 + αs2 + β(q)s + γ (q). (13)

Note that α is independent of q whereas β and γ are the
functions of q. For the explicit form (7) of M the coefficients
α, β(q), and γ (q) are given below:

α = ωe + ωf + ωh + ωpf + ωpr + ωr ; (14)

β can be expressed as

β(q) = β(0) + β+[1 − ρ+(q)] + β+−[1 − ρ+(q)ρ−(q)],

(15)

where

β(0) = ωeωf + ωeωh + ωeωpf + ωf ωpf + ωf ωpr

+ωhωpr + ωeωr + ωprωr, (16)

β+ = ωf ωh, (17)

and

β+− = ωf ωr . (18)

Similarly,

γ (q) = γ+[1 − ρ+(q)] + γ+−[1 − ρ+(q)ρ−(q)] (19)

where

γ+ = ωeωf ωh + ωf ωhωpr (20)

and

γ+− = ωeωf ωpf + ωeωf ωr + ωf ωprωr . (21)

For convenience, we define the 2 × 2 diagonal matrix

ρ(q) =
[

ρ+(q) 0
0 ρ−(q)

]
, (22)

the column vector

�(s) = 1

s

[
1 − p++ψ++(s) − p+−ψ+−(s)
1 − p−+ψ−+(s) − p−−ψ−−(s)

]
, (23)

and the 2 × 2 matrix

ψ(s) =
[

p++ψ++(s) p+−ψ+−(s)
p−+ψ−+(s) p−−ψ−−(s)

]
, (24)

where ψ±±(s) are the Laplace transforms of the cDTDs
ψ±±(t).

P̃ (q,s) and cDTD are related [11] by the equation

P̃ (q,s) = pT
0 [I − ψ(s)ρ(q)]−1�(s), (25)

where p0 is the vector of initial conditions. For example, pT
0 =

(10) corresponds to the given condition that the motor has
taken the initial step in the forward ( + ) direction.

Thus, in principle, if one can calculate P̃ (q,s), one can use
the relation (25) to solve for ψ±±(s) and, then taking inverse
Laplace transform, obtain ψ±±(t). To calculate P̃ (q,s), one has
to use an appropriate set of initial conditions consistent with
the definition of the dwell times. The set P1(0) = 0,P2(0) =
1,P3(0) = 0 ensures that the first step is taken forward. In
other words, in our calculation, we start the clock by setting it
to t = 0 when the DNAP reaches the state 2 at j from state 1 at
j − 1. Therefore in this case p−− = 0 = p−+. Corresponding
to this initial condition, we now define

P̃+(q,s) = P̃ (q,s)|{P1(0)=0,P2(0)=1,P3(0)=0} (26)

and, from equation (25), we get [11]

1

sP̃+(q,s)

∣∣∣∣
{ρ−(q)=0}

= 1 − ρ+(q)p++ψ̃++(s)

1 − p++ψ̃++(s) − p+−ψ̃+−(s)
. (27)

Equation (27) can be re expressed as

1

sP̃+(q,s)

∣∣∣∣
{ρ−(q)=0}

= a0 + a+ρ+(q), (28)

where

a0 = 1

1 − p++ψ̃++(s) − p+−ψ̃+−(s)
,

a+ = − p++ψ̃++(s)

1 − p++ψ̃++(s) − p+−ψ̃+−(s)
. (29)
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Hence,

p++ψ̃++(s) = −a+
a0

(30)

and

p+−ψ̃+−(s) = a0 + a+ − 1

a0
. (31)

Therefore next we obtain 1
sP̃+(q,s)

|{ρ−(q)=0} directly from (12)
and, by comparing it with equation (28), find out the expres-
sions for a0 and a+; substituting these expressions for a0 and
a+ into Eqs. (30) and (31) we get p++ψ̃++(s) and p+−ψ̃+−(s),
respectively.

Using the same initial condition, from Eq. (12), we get

P̃+(q,s) = s2 + s {α − ωr [1 − ρ−(q)]} + β(0) − [1 − ρ−(q)](ωeωpf + ωeωr + ωprωr )

s3 + αs2 + β(q)s + γ (q)
.

(32)

Therefore,

1

sP̃+(q,s)

∣∣∣∣
{ρ−(q)=0}

= s3 + αs2 + s[β(0) + β+ + β+−] + γ+ + γ+− − (sβ+ + γ+)ρ+(q)

s3 + s2(α − ωr ) + s[β(0) − (ωeωpf + ωeωr + ωprωr )]
. (33)

Comparing Eq. (33) with Eq. (28) we identify a0 and a+ and
substituting these expressions for a0 and a+ into (30) we get

p++ψ̃++(s) = sβ+ + γ+
s3 + αs2 + s[β(0) + β+ + β+−] + γ+ + γ+−

= sβ+ + γ+
(s + ω1)(s + ω2)(s + ω3)

, (34)

where ω1, ω2, and ω3 are roots of the following equation:

ω3 − αω2 + ω[β(0) + β+ + β+−] − (γ+ + γ+−) = 0.

(35)

Inverse Laplace transformation of equation (34) gives the exact
expression of p++ψ++(t) :

p++ψ++(t) = e−ω1t (γ+ − β+ω1)

(ω1 − ω2)(ω1 − ω3)
+ e−ω2t (γ+ − β+ω2)

(ω2 − ω1)(ω2 − ω3)

+ e−ω3t (γ+ − β+ω3)

(ω3 − ω1)(ω3 − ω2)
. (36)

Similarly, using the expressions of a0 and a+ in Eq. (31),
we get

p+−ψ̃+−(s)

= s2ωr + s(β+− + ωeωpf + ωeωr + ωprωr ) + γ+−
s3 + αs2 + s[β(0) + β+ + β+−] + γ+ + γ+−

.

(37)

Inverse Laplace transformation gives the exact expression of
p+−ψ+−(t),

p+−ψ+−(t) = e−ω1t
(
γ+− − c1ω1 + ω2

1ωr

)
(ω1 − ω2)(ω1 − ω3)

+e−ω2t
(
γ+− − c1ω2 + ω2

2ωr

)
(ω2 − ω1)(ω2 − ω3)

+e−ω3t
(
γ+− − c1ω3 + ω2

3ωr

)
(ω3 − ω1)(ω3 − ω2)

. (38)

Note that by putting s = 0 in Eqs. (34) and (37) we get the
“branching probabilities”

p++ = γ+
γ+ + γ+−

, (39)

p+− = γ+−
γ+ + γ+−

, (40)

which satisfy the normalization condition p++ + p+− = 1.
The cDTDs ψ+−(t) and ψ++(t) are plotted in Figs. 3 and 4,
respectively, for a few different values of the parameters ωr and
ωf . In both the figures, the most probable dwell time increases
with decreasing ωr and decreasing ωf .

In the same matrix-based formalism, the average velocity
of a DNAP is given by the general expression [11]

Vp = −i
γ̇ (0)

β(0)
, (41)

0 0.1 0.2 0.3 0.4
Dwell time (s)

0

1

2

3

4

5

P
ro

ba
bi

li
ty

 D
en

si
ty

ω
r
=0 s

-1

ω
r
=1s

-1

ω
r
=3s

-1

ω
r
=5s

-1

FIG. 3. (Color online) Probability density of conditional dwell
time, ψ+−(t), is plotted for a few different values of parameter ωr .
The values of other parameters are (all in s−1) ωf = 20.0, ωpf = 30.0,
ωpr = 15.0, ωh = 40.0, and ωe = 4.0.
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FIG. 4. (Color online) Probability density of conditional dwell
time, ψ++(t), is plotted for a few different values of parameter ωf .
The values of other parameters are (all in s−1) ωr = 5.0, ωpf = 30.0,
ωpr = 15.0, ωh = 40.0, and ωe = 4.0.

where the dot indicates the derivative with respect to q. The
right-hand side of Eq. (41) can be evaluated for our model of
DNAP using the explicit expressions (19) and (16) for γ (q)
and β(0), respectively. For the purpose of showing the close
relation of Vp with the Michaelis-Menten (MM) equation for
the average rates of enzymatic reaction, we now assume that
dNTP binding is rate limiting (the general framework of our
theory does not need this assumption). Under this assumption,
we can write

ωf = ω0
f [dNTPc] and �f = �0

f [dNTPw] (42)

where [dNTPc] and [dNTPw] are the concentrations of the
correct and incorrect substrates, respectively, and that ω0

f �
�0

f . In this case, the average velocity of the DNAP, i.e., the
average rate of polymerization, can be expressed in a MM-like
form,

V (c)
p = K̃cat[dNTPc]

K̃M + [dNTPc]
, (43)

for the correct nucleotides, where

K̃cat = ωh(ωe + ωpr )

ωpr + ωe + ωpf

(44)

and the effective Michaelis constant is

K̃M = (ωpr + ωe)(ωh + ωr ) + ωpf ωe

ω0
f (ωpr + ωe + ωpf )

. (45)

Replacing ω by � and [dNTPc] by [dNTPw] we get the average
rate of polymerization V w

p for the wrong nucleotides. In the
limit of negligible exonuclease activity, the kinetic diagram
shown in Fig. 1 reduces to the scheme shown in the left
panel of Fig. 2 which is the standard MM scheme with a
single intermediate complex; in this limit the expressions for
K̃cat and K̃M are consistent with those for the standard MM
scheme [12].

B. Distribution of turnover time for exonuclease

In this section we derive the DTT for exonuclease activity
of the DNAP. We insert a hypothetical state P ∗

1 such that

P3
ωe→ P ∗

1
δ→ P1, (46)

where in the limit δ → ∞, P1 and P ∗
1 become identical and

we recover our original model.
For the simplicity of notation, in this subsection we drop

the site index without loss of any information. The master
equations for Pμ(t) (μ = 1,2,3) and that for P ∗

1 (t) are
dP1(t)

dt
= −ωf P1(t) + (ωr + ωh)P2(t), (47)

dP2(t)

dt
= ωf P1(t) − (ωr + ωpf + ωh)P2(t)

+ωprP3(t), (48)

dP3(t)

dt
= ωpf P2(t) − (ωe + ωpr )P3(t), (49)

dP ∗
1 (t)

dt
= ωeP3(t). (50)

For the calculation of DTT, we impose the initial condition
P1(0) = 1, and P2(0) = P3(0) = P ∗

1 (0) = 0. Suppose that
f (t) denotes the DTT. Then, f (t)
t is the probability that one
exonuclease cycle is completed between t and t + 
t , i.e., the
DNAP was in state 3 at time t and made a transition to the
state 1∗ between t and t + 
. Obviously, f (t)
t = ωeP3(t)
and, hence,

f (t) = ωeP3(t). (51)

Using a compact matrix notation, Eqs. (47)–(49) can be written
the form

d

dt
Q(t) = NQ(t), (52)

where

N =

⎡
⎢⎣

−ωf ωh + ωr 0

ωf −(ωh + ωr + ωpf ) ωpr

0 ωpf −(ωe + ωpr )

⎤
⎥⎦ (53)

and

Q =
⎡
⎣P1(t)

P2(t)
P3(t)

⎤
⎦. (54)

Solution of Eq. (52) in Laplace space

Q̃(s) = S(s)−1Q̃(0), (55)

where

S(s) = sI − N. (56)

Solution (55) for the assumed initial conditions provides

P̃3(s) = (−1)1+3C13

|S(s)| (57)

which, explicitly in terms of the rate constants, takes the form

P̃3(s) = ωf ωpf

s3 + α′s2 + β ′s + γ ′ , (58)
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FIG. 5. (Color online) Probability density of turnover time for
unproductive exonuclease mode of enzyme; f (t) is plotted for a few
different values of parameter ωpf . The values of the other parameters
are (all in s−1) ωf = 20.0, ωr = 5.0, ωpr = 15.0, ωh = 40.0, and
ωe = 4.0.

where

α′ = ωe + ωf + ωh + ωpf + ωpr + ωr, (59)

β ′ = ωf ωpf + ωeωh + ωeωpf + ωf ωpf + ωf ωpr + ωhωpr

+ωeωpr + ωprωr
, (60)

γ ′ = ωf ωpf ωe. (61)

Since in the Laplace space Eq. (51) becomes

f̃ (s) = ωeP̃3(s), (62)

we get

f̃ (s) = ωeωf ωpf

s3 + α′s2 + β ′s + γ ′ = ωeωf ωpf

(s + υ1)(s + υ2)(s + υ3)
(63)

as the DTT in the Laplace space.
Taking the inverse Laplace transform of Eq. (63), we get

the DTT,

f (t) =
[

ωf ωpf ωe

(υ1 − υ2)(υ1 − υ3)

]
e−υ1t +

[
ωf ωpf ωe

(υ2 − υ1)(υ2 − υ3)

]

× e−υ2t +
[

ωf ωpf ωe

(υ3 − υ1)(υ3 − υ2)

]
e−υ3t , (64)

where υ1,υ2,υ3 are solution of the following equation:

υ3 − (ωe + ωf + ωh + ωpf + ωpr + ωr )υ2

+(ωf ωpf + ωeωh + ωeωpf + ωf ωpf + ωf ωpr

+ωhωpr + ωeωpr + ωprωr
)υ − (ωf ωpf ωe) = 0. (65)

This DTT is plotted in Fig. 5. Plots are consistent with the
intuitive expectation that increasing ωpf leads to a decrease of
the turnover time.

Suppose 〈t〉 denotes the mean time gap between the
completion of the successive exonuclease reactions catalyzed
by the DNAP. Then the average rate Ve = 1/〈t〉 of the
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FIG. 6. (Color online) �p and �e plotted against ωpr while the
ratio �pr/ωpr = 0.1 is kept fixed. The three curves correspond to
ωe = 1.0, 2.0, 3.0 s−1. The values of the other parameters are (all in
s−1): ωf = 1.0, �f = 10−5, ωpf = 0.1, �pf = 10.0, ωr = .1, �r =
1.0, ωh = 10.0, �h = 0.1.

exonuclease reaction can be expressed in a MM-like form [13],

V (c)
e = Kcat[dNTPc]

KM + [dNTPc]
with Kcat = ωpf ωe

ωe + ωpf + ωpr

,

(66)

for the correct nucleotides where KM = K̃M . Replacing ω by
� and [dNTPc] by [dNTPw] in (66) we get V (w)

e for the wrong
nucleotides. In the limit ωh → 0, ωpr → 0, the kinetic diagram
shown in Fig. 1 reduces to the simpler scheme shown in the
right panel of Fig. 2 which is essentially a generalized MM-like
scheme with two intermediate states. Not surprisingly, in this
limit, the average rate of the exonuclease reaction is consistent
with that of the MM-like scheme with two intermediate
states [12].

C. Quantitative measures of error

Note that �p = Ṽ (w)
p /(Ṽ (w)

p + Ṽ (c)
p ) is the fraction of

nucleotides misincorporated in the final product of replication.
Similarly, the fraction �e = V c

e /(V c
e + V w

e ) is a measure of the
errorneous severings, i.e., fraction of the cleaved nucleotides
that were incorporated correctly into the growing DNA. Since
ωpr is the strength of the “coupling” between the two different
enzymatic activities, we plot �p and �e against ωpr in Fig. 6
for a few typical sets of values of the model parameters.

Decreasing �e with increasing ωpr is a consequence of the
escape route via ωpr for the correctly incorporated nucleotides
that get transferred unnecessarily to the exonuclease site.
It is the increasing number of such correctly incorporated
nucleotides recused from the exonuclease site that leads to
the raising of �p with increasing ωpr . The limiting values
of �p and �e in the limit of large ωpr are determined by
the corresponding limiting expressions Ṽ (c)

p 
 (ωf ωh)/(ωh +
ωf + ωr ), and V (c)

e 
 (ωf ωpf ωe)/[ωpr (ωh + ωf + ωr )]. (Ex-
pressions for Ṽ (w)

p and V (w)
e are similar in the limit of

large �pr .)
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IV. SUMMARY AND CONCLUSION

Here we have theoretically investigated the effects of the
coupling of two different modes of enzymatic activities of a
DNAP; in one of these it elongates a DNA whereas in the other
it shortens the same DNA. We have addressed fundamental
questions here in the context of DNA replication [14]. The
effects of tension on the polymerase and exonuclease activities,
which have been the main focus of the earlier works [14], will
be reported elsewhere [15]. The mechanism of error correction
by DNAP is somewhat different from the mechanism of
transcriptional proofreading which is intimately coupled to
“back tracking” of the RNA polymerase [16,17].

We have derived exact analytical formulas for the cDTD
and DTT which will be very useful in analyzing experimental
data in single DNAP biophysics, particularly its stepping
patterns and enzymatic turnover. In spite of their coupling,
the average rates of both the enzymatic activities are MM like;

the analytical expressions for the effective MM parameters
explicitly display the nature of the coupling of the two kinetic
processes. We have also reported exact analytical expressions
for the fractions �p and �e which measure replication error
and erroneous cleavage; these expressions can be used for
analyzing data from both single molecule [5] and bulk [18]
experiments on wild-type and mutant DNAPs.
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