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Constraints on the synchronization of entorhinal cortex stellate cells
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Synchronized oscillations of large numbers of central neurons are believed to be important for a wide variety
of cognitive functions, including long-term memory recall and spatial navigation. It is therefore plausible that
evolution has optimized the biophysical properties of central neurons in some way for synchronized oscillations
to occur. Here, we use computational models to investigate the relationships between the presumably genetically
determined parameters of stellate cells in layer II of the entorhinal cortex and the ability of coupled populations
of these cells to synchronize their intrinsic oscillations: in particular, we calculate the time it takes circuits of
two or three cells with initially randomly distributed phases to synchronize their oscillations to within one action
potential width, and the metabolic energy they consume in doing so. For recurrent circuit topologies, we find that
parameters giving low intrinsic firing frequencies close to those actually observed are strongly advantageous for
both synchronization time and metabolic energy consumption.
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I. INTRODUCTION

The synchronized activity of large numbers of neurons is
a common phenomenon in mammalian brains. Such activity
is a stereotypical feature of electroencephalography (EEG)
and local field potential (LFP) recordings, in which certain
frequency ranges are strongly dominant depending on the
brain region, wakefulness state, and current behavior of the
animal. While much about the functional role and behavioral
correlates of large-scale neural synchrony remains speculative
or unknown [1], there is increasing agreement that it plays an
important role in information processing and coding.

Recently, the θ rhythm (approximately 8 ± 4 Hz) has
attracted much attention experimentally and theoretically. The
synchronization of cell groups oscillating at θ frequencies in
the frontal and visual cortexes has been shown to be corre-
lated with short-term memory recall tasks [2]. θ -frequency
oscillations also appear to play an important role in the
encoding of spatial information by the hippocampal formation.
Hippocampal place cells fire intermittent γ -frequency (25–
50 Hz) bursts of action potentials when the animal is in a
cell’s corresponding place field, with the bursts occurring at
successively earlier phases of the background hippocampal θ

rhythm as the animal moves through the place field [3]. That
is, in the hippocampus, the θ oscillation appears to enable the
phase coding of location (while the instantaneous firing rate
itself may encode speed [4]). Phase precession also allows for
the spikes from multiple place cells to occur within a single
θ cycle, a time range conducive for spike timing-dependent
plasticity and, presumably, the consolidation of long-term
memories [5].

Much of the communication between the hippocampus
and the neocortex is via the entorhinal cortex (EC). Principal
neurons throughout the EC receive inputs from different areas
of the neocortex, and the main outputs of the EC are the
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perforant pathway axons of the stellate cells in layer II, which
project primarily to the dentate gyrus in the hippocampal
formation. The dentate gyrus projects in turn to hippocampal
region CA3, which projects to CA1, which then projects back
to EC layer V. The pyramidal cells in layer V project back to
the neocortex as well as to layers II and III. Additionally, layer
II has a large number of recurrent connections [6].

These anatomical connections make it probable that the
behavior of hippocampal place cells is strongly influenced by
the entorhinal cortex, and in particular by the stellate cells of
layer II. Further evidence of this has come from the recent
discovery of grid cells in layers II and III of the medial
entorhinal cortex [7]. Grid cells are like hippocampal place
cells in that they selectively fire whenever the animal is within
certain spatial regions, but unlike place cells, each grid cell
is associated with multiple such regions, which appear to be
arranged on a triangular or hexagonal grid. In layer II, the
grid spacing and orientation are similar between grid cells at
the same location along the dorsoventral axis, and the relative
offset between any two cells’ grids is randomly distributed;
the grid spacing is also known to be larger for more ventrally
located grid cells [7]. Grid cells therefore appear to represent
a preliminary stage to place cells in the representation and
processing of spatial information. Models have been proposed
to explain how place cells firing at only a single location can
result from the summation of multiple grid cell inputs [8,9],
as well as how the periodic grid cell firing pattern itself
forms from the interference patterns of oscillatory inputs with
slightly different frequencies depending on the direction of
movement [10].

In the entorhinal cortex, as in the hippocampus, there
is a local θ rhythm. In layer II, phase-precession effects
in the firing of individual grid cells with respect to the
background entorhinal θ as the animal moves through the
multiple grid regions have been observed, similar to what is
seen in hippocampal place cells and fields. Both the entorhinal
θ rhythm and the grid cell phase precession persist even when
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the hippocampus is inactivated or removed, suggesting that
the grid cells are where the phase-precession phenomenon
originates [11].

The establishment and maintenance of a stable entorhinal
θ rhythm therefore appears to be a crucial component in the
information processing and long-term memory consolidation
performed by the entorhinal-hippocampal system. Studies
of layer II stellate cells indicates that the interaction of
a hyperpolarization-active cation current (h current) and a
persistent sodium current can give rise to a θ -frequency
subthreshold oscillation of the membrane potential in a single
isolated cell [12,13]. Interestingly, the subthreshold oscillation
frequency of individual stellate cells decreases in the ventral
direction [14], possibly due to changes in the time constants
of the h current [15]; there may therefore be a functional link
between the subthreshold frequency and the grid spacing, as
suggested by top-down models [10]. The large-scale entorhinal
θ rhythm thus seems to be due to the synchronization of large
numbers of intrinsically oscillating stellate cells that are to
some degree heterogeneous in their intrinsic characteristics.
However, much about the ways in which this synchronization
is effected, such as the network topology, the involvement
of layer II interneurons and of principal neurons in other
entorhinal layers, and the extent of excitatory versus inhibitory
coupling, remains comparatively unclear [16,17].

Despite these gaps in experimental knowledge about the
stellate cell network, there has been considerable interest
among modelers and theorists in this system since bio-
logically realistic models first became available about ten
years ago. Individual stellate cell models have been studied
extensively from the point of view of dynamical systems
theory [18,19], and networked stellate cell models have been
used to study how synchronization is affected by parameters
such as coupling strength and noise [20] and to simulate phase
precession [21].

An important consideration that has been largely ne-
glected in stellate cell synchronization studies as well as
in studies of neural synchrony more generally is metabolic
energy consumption. In order to function properly, neurons
must consume metabolic energy to power the ATPase ion
pumps that maintain ionic concentration gradients across the
membrane [22,23]. These signalling-related energy costs are
quite substantial, representing by far the largest proportion of
metabolic energy consumed in the brain [24]. Optimizations
taking energy constraints into account have proven critical to
understanding the observed values of parameters such as ionic
channel densities in the squid giant axon [25], mean firing
frequencies [26], and quantal failure rates [27]. However, very
little research has been done on the relationship of energy
consumption to network properties, and the few studies that
have been published have looked only at the classic Hodgkin-
Huxley model [28] or at simplified, nonbiologically realistic
models [29] without the intrinsic subthreshold oscillatory
behavior of stellate cells.

It seems likely that metabolic energy constraints would
strongly influence the optimality of the parameters that govern
the synchronization of multiple neurons. Generally speaking,
we might expect neurons that took longer to synchronize would
consume more energy in doing so, since metabolic energy
is consumed during action potentials as well as during the

intervals between them. Thus, fast synchronization is likely
beneficial both for its own sake and also for energetic cost.
In this study, we investigate both the energy consumed during
synchronization and the total time for the synchronization to
occur from an initially random state.

Couplings between neurons can take the form of excitatory
or inhibitory chemical synapses or direct electrical synapses,
and all of these are likely to have different effects on
synchronization time and energy consumption; for example,
inhibitory coupling has been shown to lead to better synchro-
nization of Hodgkin-Huxley neurons than excitatory coupling
[30], while electrical coupling has been shown to be even
more effective in synchronizing quadratic integrate-and-fire
neurons [31].

The intrinsic oscillation frequency of the neurons could also
influence the energy- and time-optimal values of the coupling
and network parameters. One reason is that the relative
energy costs of action potentials and quiescence depend on
the spiking frequencies. Even at rest, transmembrane ionic
currents still exist and lead to metabolic energy consumption.
For sufficiently low frequencies, more energy is consumed
during these interspike periods than by the action potentials
themselves.

Finally, the network topology itself is likely to be an
important factor influencing synchronization time and energy.
Studies of topology and synchrony have reached a diverse
range of conclusions about the optimal topology for syn-
chronization and stability depending on the neuronal model
type [32–36]. To our knowledge there have been no systematic
studies of this sort thus far using stellate cell models, nor ones
which explicitly consider the time for synchronization to occur
or the metabolic energy consumed in doing so.

II. METHODS

A. Stellate cell model

Our monocompartmental stellate cell model is based on
[20], which is itself based on the experimentally based
multicompartmental model presented in Refs. [12,13]. The
ionic currents in the model consist of a fast and persis-
tent Na+ current, a delayed-rectifier K+ current, and a
hyperpolarization-activated cation current with separate fast
and slow components, as well as a leak current (assumed to be
K+). For cell i, where 1 � i � N and N is the total number
of cells in the network, we define the membrane potential Vi

to be the electric potential of the interior with respect to the
extracellular medium. Since N � 3 in this study, we refer to
these small networks alternatively as circuits. The membrane
potential obeys

C
dVi

dt
= Iext,i − INa,i − INaP,i − IKdr,i ,

− IH,i − IL,i −
N∑

j=1

Is,ij , (1)

where Is,ij is the synaptic current from cell j to cell i, and Iext,i

is the external input current to the cell (apart from synaptic
inputs). In keeping with standard conventions, Iext,i is defined
to be >0 for inward (positive) current, while all the other
currents are defined as negative for inward current.
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The ionic currents are

INa,i = ḠNa,im
3
i hi(Vi − ENa),

INaP,i = ḠNaP,ixi(Vi − ENa),

IKdr,i = ḠKdr,ini(Vi − EK), (2)

IH,i = ḠH,i(0.65Hf i + 0.35Hsi)(Vi − EH ),

IL,i = GL,i(Vi − EK).

Note the approximately 2:1 ratio between the fast (Hf ) and
slow (Hs) components of the h current, which is based on
experimental recordings [12].

The ionic current state variables obey

dsi

dt
= s∞(Vi) − si

τs(Vi)
= αs(Vi)(1 − si) − βs(Vi)si, (3)

where s = m, h, x, n, Hf , or Hs , and

s∞ = αs/(αs + βs), (4)

τs = 1/(αs + βs). (5)

The kinetic rate coefficients αs and βs are functions of voltage.
Empirical results fits are given in, e.g., [20].

The synaptic currents are

Is,ij = Ḡs,ij zij (Vi − Es,ij ). (6)

We allow for the connection strength (Ḡs,ij ) and the synaptic
reversal potential (Es,ij ) to vary for each synapse. By defini-
tion, excitatory chemical synapses have a value of Es,ij above
(more depolarized than) the firing threshold, and inhibitory
ones have a value of Es,ij beneath it.

The stellate cell model was implemented using
NEURON/NMODL [37], supplemented by parameter-sweeping
software written in PYTHON. The simulations were performed
on a 26-CPU Beowulf cluster running Gentoo Linux and used
a 25-μs time step. MATLAB was used for plotting and numerical
analysis.

B. Synchronization

Although precise mathematical measures of synchroniza-
tion such as the Kuramoto order parameter [38] exist for
populations of relatively simple oscillators with explicit
phase variables, more general definitions for highly nontrivial
oscillators like biologically realistic neurons are somewhat
elusive in the literature. We can clearly call a group of
neurons synchronized if they all fire at the same times,
but it is less clear how to characterize their degree of
synchronization when they do not. There are many ways
to define a phase difference; the simplest is just to use the
time difference between spikes modulo the period. Thus, two
regularly spiking neurons with period T can be said to have
a phase difference of T/2 if their action potentials are half
a period apart. Groups of three or more neurons can have
their synchronization quantified by, e.g., the sample standard
deviation of their phases. Phases for off-limit cycle neurons
can be defined by “isochrons,” subspaces of the dynamical
system state space from which trajectories asymptotically go
to the same point on the limit cycle as an on-cycle point at
a certain phase [39]. However, calculating isochrons in all
but the simplest cases is computationally extremely intensive,
particularly for high-dimensional systems. More generally,

there is no reason to prefer one measure of synchronization
to another unless the biological relevance of the measure
is apparent. In the brain, the local field potential is what is
usually measured experimentally, but predicting the LFP from
the individual activity of nearby neurons remains a largely
unsolved problem [40].

We adopt a somewhat different approach here and calculate
the mean time it takes a group of neurons to synchronize
their firing from an initially random distribution of phases.
Synchronization is defined to have occurred when all of the
action potential peaks are within one action potential width,
approximately 3 ms, of each other. The mean synchronization
time Tsync is averaged over a representative sample of initial
phase conditions. For the two-neuron results below, Tsync was
averaged over 200 evenly spaced initial phase differences
between the neurons from −T/2 to +T/2. For three and more
neurons, because of computational time constraints, we used a
Monte Carlo approach and randomly selected 200 initial phase
conditions assuming uniform distributions for all the phases.
We verified for several representative cases that our calculated
values of Tsync were not significantly changed by rerunning
the simulations with different random phases, by increasing
the number of phase points to 1000, or by decreasing the sim-
ulation time step from 25 to 5 μs. The statistical fluctuations
due to the random sampling are of order a few percent and
account for the slightly bumpy appearance of Figs. 8–11.

The metabolic energy consumed during synchronization
is due to the ATPase Na+/K+ ionic pump in the neuronal
membrane, which must restore the resting ionic concentration
gradients after a period of electrical activity. The energy
cost is proportional to the number of Na+ ions which cross
the membrane and can be calculated by integrating the Na+

current [41]. For the purposes of this study, we assume that
the h current and leak current are comprised of separate
Na+ and K+ channels with the same kinetics. While cells
consume metabolic energy regardless of whether or not they
are coupled or synchronized, since we are interested in the
energy cost specifically associated with synchronization, we
begin counting energy consumption only from the onset of
synaptic coupling (the dashed vertical lines in Figs. 1 and 2).

C. Topology

The neuronal circuits simulated here consist of two or three
identical stellate cells connected by excitatory or inhibitory
synapses (see Table I). Excitatory synapses have a reversal
potential of Es,ij = 0 mV, and inhibitory synapses have Es,ij =
−50 mV. We verified that our main qualitative results were
generally insensitive to the exact value of Es,ij . All of the
synapses in a circuit have the same weight, represented by the
synaptic conductance Ḡs .

We excluded network topologies with self-connected
neurons and/or completely isolated neurons lacking either
incoming or outgoing synaptic connections. For two iden-
tical neurons and a given value of Ḡs , there are then five
qualitatively distinct connection topologies: mutual excitatory
connections, mutual inhibitory connections, one excitatory and
one inhibitory connection, and one neuron driving the other via
an excitatory or inhibitory connection without any feedback.
We simulated all of these circuits. For three neurons, there are
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TABLE I. Unless otherwise specified, the following parameter
values, which are based on experimental measurements, were used
in the stellate cell model. Note that the model is isopotential. The
value of the membrane capacitance C includes gating capacitances.
The conductance values are the maximal possible ones (i.e., with all
channels open).

Symbol Meaning Value/Units

A surface area 1000 μm2

C membrane capacitance 1.5 μF/cm2

ḠNa fast Na+ conductance 52 mS/cm2

ḠKdr K+ conductance 11 mS/cm2

GL leak conductance 0.5 mS/cm2

ḠH h conductance 1.5 mS/cm2

ḠNaP persistent Na+ conductance 0.5 mS/cm2

Ḡs synaptic conductance 0.01 mS/cm2

ENa Na+ reversal potential 55 mV
EK K+ reversal potential − 90 mV
EL leak reversal potential − 65 mV
EH h-current reversal potential − 20 mV

0 (excit)
Es synaptic reversal potential mV

− 50 (inhib)
Iext external bias current − 0.00225 mA/cm2

78 distinct network topologies. We simulated the ten of these
topologies that are fully recurrent, meaning that every neuron
has both incoming and outgoing connections, and are also
synaptically uniform in that all synapses in the circuit are either
excitatory or inhibitory (in line with experimental observations
that a given neuronal type only makes one or the other). We also
simulated several additional three-neuron circuits in which
the synapse types were mixed and/or one neuron made only
presynaptic connections with the others, in which case it could
be considered as “driving” the synchronization.

III. RESULTS

Figures 1 and 2 are examples of the simulations on
which our results are based. Stellate cell neurons with given
values for the persistent sodium conductance ḠNaP and the
h-current conductance ḠH and initially firing out of phase
with each other have mutual synaptic coupling turned at a time
represented by the dashed vertical line. Then, the simulated
time that it takes for their firings to synchronize to within
one action potential width (about 3 ms) is calculated. We
also calculate the total metabolic energy consumed during the
synchronization process.

The h current and persistent sodium conductances have a
strong effect on the intrinsic firing frequency of an isolated
stellate cell (SC) neuron, as shown in Fig. 3. The frequency
increases monotonically with both ḠNaP and ḠH , rising by a
factor of nearly 10 for a twofold increase in both. Of the other
three membrane ionic conductances, only the leak conductance
GL has an effect of similar magnitude on the frequency. (We
did not systematically vary GL because it is restricted to a
much smaller range: above about 0.5 mS/cm2, the neuron
stops firing.)

Our goal was to determine whether certain values for ḠNaP

and ḠH are better than others for the time and energy costs
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FIG. 1. Two identical stellate cells with intrinsic 8-Hz firing
frequencies are initially one-third of a period (40 ms) out of phase.
At t = 1000 ms, mutual excitatory coupling is turned on, and the
cells synchronize to within 1 action potential width (3 ms) by about
t = 1900 ms. The amounts of metabolic energy (solid black line)
consumed during action potentials and interspike intervals are fairly
similar. We only calculate metabolic energy consumption from the
onset of synaptic coupling, although each cell individually consumes
energy before the coupling is turned on. The brief higher-frequency
spiking at the beginning is an initial transient.

of synchronization. The most general assumption about the
initial phases of the cells before synaptic coupling is turned
on is that they are randomly distributed. Therefore, for each
circuit configuration (number of cells N , circuit topology, and
synaptic strength Ḡs) and each pair of ḠNaP and ḠH values,
we averaged Tsync and Usync over the different possible sets of
initial phases, assuming a uniform distribution (see Sec. II B).

In Figs. 4 and 5, we show a typical result. In this case, for two
neurons with mutual excitatory synaptic coupling with Ḡs =
0.01 mS/cm2, the mean synchronization time as a function of
ḠNaP and ḠH has a conspicuous “valley” of minima in which
Tsync is several times lower than it is for nearby (ḠH ,ḠNaP)
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FIG. 2. Three identical 8 Hz cells are initially out of phase by
20 ms increments. All-to-all excitatory coupling is turned on at t =
1000 ms.
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FIG. 3. The intrinsic spiking frequency (f , in Hz) of stellate cell
neurons is strongly influenced by the channel densities or maximum
conductances of the persistent sodium current (ḠNaP) and h current
(ḠH ). In the region below the bottom left contour, the neuron does
not fire (i.e., frequency goes to 0).

values. We show a top-down view of the Tsync surface in
Fig. 5. The Tsync minima, shown by dots, lie very close to the

FIG. 4. The mean time for two symmetrically coupled neurons
with random initial phases to synchronize to within one action
potential width (Tsync) is shown as a function of ḠH and ḠNaP. There
is a valley of minima around the 20-Hz isofrequency contour. Here
and in all subsequent figures of this type, the synaptic conductance
is Ḡs = 0.01 mS/cm2, but the existence and locations of valleys of
minima are largely independent of the value of Ḡs over the range
0.006 � Ḡs � 0.06 mS/cm2. Darker shades of grey correspond to
lower values of Tsync, i.e., faster synchronization. The resolution for
both ḠH and ḠNaP is 0.01 mS/cm2. The embedded line and circles
show the points considered for the phase response curve calculations
in Figs. 13 and 14.

FIG. 5. Top-down view of the surface in Fig. 4. The color bar
shows the value of Tsync in ms. The valley bottom, i.e., the points at
which Tsync is lowest for each value of ḠNaP (and which are colored the
darkest), is shown by dots (•). The solid line is the 20-Hz isofrequency
contour. At the lower left edge, corresponding to the right side of the
surface in Fig. 4, Tsync rises sharply. Below this boundary, the neurons
do not fire repetitively.

20-Hz isofrequency contour, shown by a solid line. (The slight
jaggedness in these and other curves is due to the plotting and
simulation resolutions.) The energy of synchronization, Usync,
also has a valley of minima at roughly the same place (Fig. 6).

This optimal region of (ḠH ,ḠNaP) parameter space for
Tsync and Usync persists in approximately the same place for
values of Ḡs ranging from about 0.006 to 0.06 mS/cm2,
although the actual values for the synchronization time and
energy at any given (ḠH ,ḠNaP) point decrease with increasing
synaptic strength by a factor of about 10 over that range. The
low-frequency valley also persists when the mutual coupling
between two neurons is inhibitory rather than excitatory, as
shown in Fig. 7. For inhibitory coupling, we used a synaptic

FIG. 6. The mean energy consumed during synchronization for
the two neurons in Fig. 4 also has a valley of minima near the one for
Tsync.
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FIG. 7. Although it takes significantly longer for two neurons to
synchronize when they are connected with inhibitory synapses, the
valley of minima at low frequencies persists.

reversal potential of Es = −50 mV, but we verified that the
location of the valley is relatively insensitive to Es in the range
−70 � Es � −30 mV. The value of the synaptic conductance
Ḡs in Fig. 7 and in all subsequent surface-plot figures is
0.01 mS/cm2.

Valleys of minima are present in many cases for three
coupled neurons. In Fig. 8, we show Tsync as a function of ḠH

and ḠNaP for three identical neurons with all-to-all excitatory
coupling (that is, every neuron has an excitatory synapse on
every other neuron). A valley also exists for inhibitory all-to-all
coupling (Fig. 9) and for cyclic excitatory coupling, in which
neuron 1 is connected to neuron 2, which is connected to
neuron 3, which is connected back to neuron 1 (Fig. 10).

We simulated all of the ten nontrivial, fully connected
circuit topologies for three identical neurons connected with
excitatory or inhibitory synapses (but not both) of the same
strength (Ḡs), and we simulated a cyclic circuit with excitatory
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FIG. 8. The valley of minima is present for three neurons with
excitatory all-to-all coupling. The slight bumpiness here and in
Figs. 9–11 is due to the Monte Carlo phase-sampling technique used
for three-neuron circuits (see Sec. II B).

0.40.45
0.5

0.55
0.60.65

1.5

2

2.5

3

2000

4000

6000

8000

10000

12000
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FIG. 9. As in the two-neuron case, the overall synchronization
time scale is substantially larger when three neurons are connected
with all-to-all inhibitory coupling, but the valley of minima is still
present.

connections in one direction and inhibitory connections in the
other. Additionally, we simulated eight topologies in which
one neuron drives the other two via excitatory or inhibitory
connections; the other two neurons may also be connected to
each other. We found in general that the valleys of minima are
present for the first 11 circuits and the excitatory-inhibitory
cyclic circuit, but not for the eight circuits in which one
neuron drives the other two. The major difference between
the two groups of topologies is that the first 11 are recurrent: a
path of synaptic connections exists from each neuron back to
itself. The latter eight are feed-forward topologies in which one
neuron has a one-way connection to the others. Even though
these circuits also synchronize (Fig. 11), the low-frequency
range is not especially favored for synchronization time or
energy.

In Fig. 12, we show the locations of points along the valleys
of minima for several different topologies with N = 2 and N =
3. While the valley bottoms are not all in the same place, they
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FIG. 10. Minima exist for the synchronization time for three
neurons with cyclic excitatory coupling, and for recurrently connected
three-cell circuits in general.
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FIG. 11. The valley of minima almost disappears when one
neuron is connected to the other two via excitatory connections
without any feedback, although synchronization does eventually
occur. The synchronization time and metabolic energy costs are also
larger than they are for cyclic or all-to-all connections by at least an
order of magnitude. This absence of regions of significant minima and
very long synchronization times is a general feature of feed-forward
circuit topologies for three neurons.

are all in the low-frequency range. In most cases, the valleys
are broad enough to substantially include the 8–12-Hz θ firing
frequency range actually observed for stellate cell neurons.

Mathematically, the existence of a region of minima for
Tsync and Usync is a phenomenon of the system of highly nonlin-
ear coupled differential equations [Eqs. (2)–(6)] describing the
stellate cells. While a fully analytical derivation of the valleys
of minima is probably impossible, some insight can be gained
from considering the phase response curves (PRCs) for the
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FIG. 12. Locations of the Tsync minima for different two- and
three-neuron circuit topologies. +: N = 2, all-to-all excitatory; ◦:
N = 3, all-to-all excitatory; ∗: N = 3, all-to-all inhibitory; ·: N = 3,
cyclic excitatory; ×: N = 3, cyclic with excitatory connections in
one direction and inhibitory connections in the other. In all cases,
Ḡs = 0.01 mS/cm2.
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FIG. 13. The phase response curve [φ(t)] gives the change in
phase for an oscillating neuron in response to an input stimulus of
given duration and size at a time t within the neuron’s natural cycle.
The next action potential is shifted in time by φ from when it would
have been without the input stimulus; thus, negative values of φ mean
that the action potential occurs sooner. The figure shows φ(t) versus
t for five different (ḠH , ḠNaP) (mS/cm2) points on both sides of
the valley of minima; the (2.0, 0.57) mS/cm2 point is approximately
at the bottom. The input is an excitatory synaptic stimulus with Ḡs

= 0.01 mS/cm2. The phase response does not go to 0 exactly at
t = 0 because of the finite width of the input pulse. The frequency
increases as one moves to the “far” side of the valley (higher values
of the conductances), and thus the period is shorter.

cells. A phase response curve gives the change in phase of an
oscillator for an input of given strength and duration [39,42].
In Fig. 13, we show the phase response curve for a single
stellate cell subject to an excitatory input pulse with Ḡs =
0.01 mS/cm2, choosing the five pairs of (ḠH ,ḠNaP) values
shown in Fig. 4—that is, we go “down” one side of the valley
and “up” the other, with the central (2, 0.57) mS/cm2 point
approximately at the bottom.

We see from Fig. 13 that the mean size of the PRC decreases
significantly as one moves from lower to higher values of
the conductances. There is no obvious feature of the (2,
0.57) mS/cm2 PRC to indicate that it is at a minimum for
Tsync. Indeed, one might expect that the (1.6, 0.5) mS/cm2

point would correspond to the most quickly synchronizing
neurons since the typical phase change for each input pulse
is largest. However, what matters for Tsync is not the mean
phase change per input pulse but the mean phase change per
unit time. The neurons with smaller average PRCs also spike
more frequently, and therefore we might expect a tradeoff
between the mean phase change and the spiking frequency.
In Fig. 14, we plot the mean phase change divided by the
oscillation period. This quantity, the mean amount by which
the phase changes per unit time, is largest for the central point
near the valley bottom (negative values indicate that the action
potentials are stimulated to happen before they would have
otherwise). That is, we can associate each phase response curve
with a rate of synchronization, which is fastest in the valleys.
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IV. DISCUSSION

The existence of a conspicuous valley of minima in
(ḠH ,ḠNaP) phase space for mean synchronization time and
metabolic energy consumption during synchronization ap-
pears to be a fairly robust feature of coupled entorhinal cortex
layer II stellate cells (Fig. 12), at least in the two- and three-cell
circuits we studied. In all the cases in which the valleys of
minima appear, they are at low frequencies and generally
cover the 10–20-Hz range. Notably, we observed no cases
in which minima were apparent at higher frequencies such
as the 25–50-Hz γ range. The exact values of the minima
are ultimately dependent on the computational stellate cell
model and the experimental data on which it is based, and
many ion channel parameters remain estimates or guesswork
based on fits to the data. It it is quite possible that the few-Hz
discrepancy between the minima and the θ range would
decrease or disappear with a more accurate computational
model. Nevertheless, even with these limitations, it is still
remarkable that the model strongly predicts that stellate cells
with intrinsic firing frequencies of about 10–20 Hz synchronize
their firing much faster, and require much less metabolic
energy consumption to do so, than stellate cells with firing
frequencies that are significantly higher or lower.

These results persist over an order of magnitude of
synaptic coupling strength (0.006 � Ḡs � 0.06 mS/cm2) and
are generally insensitive to the value of the synaptic reversal
potential (Es) apart from its being excitatory or inhibitory. The
only important factor governing the existence of a valley of
minima appears to be the network topology: for circuits of two
or three neurons with recurrent topologies, significant valleys

are present, but they are extremely weak or nonexistent for
feed-forward topologies in which one of the neurons drives
the others without any synaptic connections back from them,
even though synchronization does eventually occur. In general,
the circuits synchronize faster for excitatory versus inhibitory
coupling and for all-to-all versus cyclic topologies, while the
feed-forward circuits are the slowest of all.

Overall, the observed values of ḠH and ḠNaP, and ac-
cordingly the experimentally observed low-frequency firing
of the stellate cells, are in the range advantageous for quick
synchronization time and minimal metabolic energy costs
during synchronization. The network topology also plays a
strong role, and while the detailed anatomy of the entorhinal
cortex remains poorly understood, the connections between
the stellate cells are known to be recurrent. Provided that the
topology allows for it, the phase response curves and firing
frequencies can be used to determine approximately where the
minima of Tsync are.

More generally, our results may provide some insight into
why the sustained oscillations seen in the brain tend to be lower
frequency. While γ frequency oscillations and hippocampal
“ripple” oscillations with frequencies of up to 200 Hz can be
measured in hippocampal LFPs, higher-frequency oscillations
generally do not last for longer than a tenth of a second.
The sustained oscillations seen in the neocortex as well as
the hippocampus, for example during memory recall tasks [2],
are generally in the θ range. If the same dynamics are operative
among the cells of these other areas, lower frequencies might
also be optimal for their synchronization time and energy
consumption.

Because of computational constraints, we have looked only
at small networks of identical neurons, and further research
will focus on more realistic scenarios such as larger numbers
of cells with more complex topologies, heterogeneous distri-
butions of intrinsic firing frequencies and synaptic weights,
the presence of channel noise, and external inputs. There
are also considerations such as synaptic plasticity, physical
volume constraints, energetic and temporal costs associated
with wiring and cell morphology, etc., that could affect
optimizations and which merit future study. Nevertheless, the
possibility exists that the observed firing frequencies of stellate
cells and of other central neurons reflect evolutionary pressures
towards fast synchronization for low metabolic energy cost.
What is important for central neurons is not only the existence
of stable synchronization states, but also the time and energy
necessary to achieve them.
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