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Formation of antiwaves in gap-junction-coupled chains of neurons

Alexander Urban
Department of Physics, University of Pittsburgh,100 Allen Hall, 3941 O’Hara Street, Pittsburgh, Pennsylvania 15260, USA

Bard Ermentrout
Department of Mathematics, University of Pittsburgh, 139 University Place, Pittsburgh, Pennsylvania 15260, USA

(Received 13 March 2012; revised manuscript received 17 May 2012; published 10 July 2012)

Using network models consisting of gap-junction-coupled Wang-Buszaki neurons, we demonstrate that it is
possible to obtain not only synchronous activity between neurons but also a variety of constant phase shifts
between 0 and π . We call these phase shifts intermediate stable phase-locked states. These phase shifts can
produce a large variety of wavelike activity patterns in one-dimensional chains and two-dimensional arrays of
neurons, which can be studied by reducing the system of equations to a phase model. The 2π periodic coupling
functions of these models are characterized by prominent higher order terms in their Fourier expansion, which
can be varied by changing model parameters. We study how the relative contribution of the odd and even terms
affects what solutions are possible, the basin of attraction of those solutions, and their stability. These models
may be applicable to the spinal central pattern generators of the dogfish and also to the developing neocortex of
the neonatal rat.
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I. INTRODUCTION

In the past few decades, neuroscientists have discovered
the importance of oscillations in the brain. Oscillations occur
in many neural networks and play key roles in sensory as well
as motor systems [1,2]. On the smallest scale of the nervous
system, individual neurons can behave as complex nonlinear
oscillators [3]. On a larger scale, oscillatory patterns in
electroencephalographic (EEG) recordings have been shown
to correspond to different cognitive states [3]. Phase oscillator
models (obtained from systems of weakly coupled oscillators)
have proven extremely useful in the analysis of such
systems [4,5].

A pair of symmetric weakly coupled oscillators always
has at least two possible periodic (phase-locked) states:
the synchronous state and the antiphase state (where they are
a half a cycle out of phase). Suppose that for some range
of parameters the synchronous solution is stable and, as one
of these parameters is varied, the synchronous solution loses
stability. In a symmetrically coupled system the synchronous
solution generically loses stability in a pitchfork bifurcation.
When this pitchfork bifurcation is supercritical it gives rise to
two new stable phase-locked solutions in which the phase
difference between oscillators is some constant between 0
and π . We refer to such solutions as intermediate stable
phase-locked states. Intermediate stable phase-locked states
between pairs of neurons can be produced in a variety of
neuron models by using a variety of coupling schemes as well
as by adjusting the parameters which affect the excitability
of individual neurons [6–8]. The first work examining this
behavior in conductance-based models was by Vanvreeswijk
et al. [8]. In this paper, the authors studied integrate-and-fire
as well as Hodgkin-Huxley neurons. Cymbalyuk has both
modeled and experimentally demonstrated an intermediate
stable phase-locked state in a system of two “silicon neurons”
[9,10]. These intermediate phase-locked states can lead to
wavelike behavior in large networks.

Wave activity is ubiquitous in the brain. Traveling waves of
electrical activity in the brains of animals have been observed

in a variety of species and occur in a diverse set of structures.
These structures include the retina, olfactory cortex [11],
perigeniculate nucleus [12], neocortex [13], and spinal cord
[1], among others [11–15]. In phase models, waves correspond
to constant nonzero phase differences between successive pairs
of oscillators. There are many ways to generate such phase
differences (see Ref. [16], Sec. 8.3.5) such as a gradient
in natural frequencies [4], pacemakers, or manipulation of
the boundary conditions [17]. For instance, Bressloff et al.
extended the analysis in Ref. [8] to demonstrate that such
phase shifts would arise in a ring of symmetrically coupled
integrate-and-fire neurons with delays [18]. In some swimming
organisms, it is very important that a fixed phase lag be
maintained over a wide range of frequencies. For example, in
the lamprey, the lag is about 2π/100 [4], while for the crayfish
it is 2π/4 [19]. As we will show in this paper, intermediate
stable phase-locked states provide a simple way to produce
waves with a stable fixed interoscillator phase difference.

The paper is organized as follows. We first show that
by varying the excitability of gap-junction-coupled Wang-
Buszaki neurons, we can produce intermediate stable phase-
locked states. We then explore the consequences of these
states in one-dimensional nearest-neighbor coupled chains. We
prove the existence and stability of a wide variety of complex
waves including traveling waves and antiwaves. We then study
two-dimensional arrays and find two-dimensional analogs of
antiwaves and traveling waves.

II. GAP-JUNCTION COUPLING BETWEEN PAIRS OF
WANG-BUSZAKI NEURONS

A. Measuring the phase difference between spiking neurons

The Wang-Buszaki model is a conductance based neuron
model derived from the Hodgkin-Huxley model. It was
originally used to describe fast spiking interneurons in the
hippocampus [20]. In this section we examine pairs of Wang-
Buszaki neurons reciprocally coupled with gap junctions
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FIG. 1. (Color online) (a) The phase difference between two Wang-Buszaki neurons (full model) as a function of the parameter η. The
diagram clearly illustrates a pitchfork bifurcation connecting the synchronous and antiphase solutions. (b) Plot of the phase difference for
varying values of gK. (c) Plot of the odd part of the interaction function [cf. Eqs. (8) and (9)] for different values of η (the dimensionless
temperature-dependent time constant). (d) Calculation of the odd part of the interaction function for different values of gK. The zeros of these
functions correspond to the stable phase-locked solutions.

and ask what happens as we vary parameters which affect
the excitability of the individual cells. Gap junctions are
specialized ion channels connecting the cytoplasm of the
presynaptic and postsynaptic cell. A depolarizing ionic current
is driven by the potential difference between the cells. In order
to understand the role that gap junctions play in rhythmically
oscillating networks, consider just two neurons coupled with
gap junctions. The coupled neuron equations will have the
following form:

CV̇1 = −INa − IK − IL + I0 + g(V2 − V1)
(1)

CV̇2 = −INa − IK − IL + I0 + g(V1 − V2).

These currents are given by the equations

INa = gNam
3
∞h(V − VNa),

IK = gKn4(V − VK),
(2)

IL = gL(V − VL).

C is the the membrane capacitance measured in units of
μF/cm2. The parameters VNa, VK and VL are the reversal
potentials for the ion channels. The parameters g, gNa, gK,
and gL are constants describing the conductances of their
respectively labeled ion channels. Typically, they are measured
in units of mS/cm2. The m and the h are the time-dependent
activation and deactivation variables which are described by
the equations

dh

dt
= η[αh(V )(1 − h) − βh(V )h],

(3)
dm

dt
= η[αm(V )(1 − m) − βm(V )m].

In these equations, η is an overall channel switching rate
determined by the temperature of the system [21]. The
nonlinearities αi(V ), βi(V ), as well as the parameters used
in the simulations, are referenced in the Appendix.

Previously, Pfeuty et al. have studied pairs of Wang-Buszaki
neurons with gap-junction coupling and shown that by varying
the potassium and sodium conductances, one can vary the
stability of the synchronous in-phase and antiphase states [22].
In order to find parameter regimes in which intermediate
phase-locked states exist, we varied the potassium conductance
gK and also the temperature-dependent rate constant η. Param-
eters such as these play key roles in the behavior of both central
pattern generators and large scale oscillatory networks [23,24].
The most important consequence of varying these parameters
is that the absolute refractory period decreases. The neuron
is less hyperpolarized after the action potential for larger η or
smaller gK [22]. In other words, this smaller absolute refractory
region allows for the neuron to fire more quickly [22]. Consider
the upper half of Fig. 1: Figs. 1(a) and 1(b) are calculations
of the phase difference between two Wang-Buszaki neurons
computed after 1500 ms of integration time for different
values of gK (the maximal potassium conductance) and η (the
temperature-dependent time constant). The phase difference φ

was measured as the difference between the times at which V1

and V2 cross zero, with a positive slope divided by the period
of the oscillation. Holding the stimulus current constant at
i0 = 0.63 nA/cm2 and varying either the parameter η or gK,
we are able to demonstrate a supercritical pitchfork bifurcation
in the phase difference between neurons. Figure 1(a) illustrates
the bifurcation of the system of two neurons from synchrony to
antiphase behavior as η is increased. For values of η between
5.0 and 7.0 the system passes through all possible stable
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relative phase-locked solutions varying between 0.0 and π .
Figure 1(b) is a plot of the phase difference between neurons
as we decrease gK. As we decrease gK between 8.0 and 5.0 we
also obtain intermediate stable phase-locked solutions.

B. Calculation of the interaction function

In order to simplify the analysis, we reduce our system
of neurons to a phase model. This can be accomplished by
applying Malkin’s theorem [2]. Consider two weakly coupled
systems (by weak, we mean that the coupling acts to only
affect the phase and not the amplitude of the oscillation [2])
of coupled differential equations describing tonically firing
neurons:

V ′
1 = F (V1) + εC1(V1,V2) + O(ε2), (4)

V ′
2 = F (V2) + εC2(V2,V1) + O(ε2). (5)

Then Malkin’s theorem states

V1(t) = V0(θ1) + O(ε), V2(t) = V0(θ2) + O(ε),

where V0 is the solution to the homogenous equation. Further-
more,

dθ1

dt
= 1 + εH1(θ2 − θ1) + O(ε2), (6)

dθ2

dt
= 1 + εH2(θ1 − θ2) + O(ε2), (7)

where

Hj (φ) := 1

T

∫ P

0
V ∗(t) · Cj [V0(t),V0(t + φ)]dt. (8)

Here V ∗ is the adjoint of the linearized equation (4). Let φ :=
θ2 − θ1. Then

dφ

dt
= −2εHodd(φ) := ε[H (−φ) − H (φ)]. (9)

The right-hand sides of these phase model equations are
described by interaction functions which are derived from the
full model. Zeros of Hodd(φ) determine the possible phase-
locked states and those for which H ′

odd(φ) > 0 are stable.
We calculated the interaction functions for several values

of gK and η. Figures 1(c) and 1(d) show the odd portions of the
interaction functions calculated with various parameter values.
We write these interaction functions in terms of their Fourier
series:

H (x) = a0

2
+

∞∑
n=1

[an cos(nx) + bn sin(nx)]. (10)

For example, Table I shows the first few Fourier modes of
the interaction function computed from the full model with
η = 6. This table demonstrates the substantial contribution of
higher order Fourier terms to the interaction function near the
bifurcation point.

Observe that the first two odd Fourier terms in Table I are
the dominant ones (b1,b2). As the shape of Hodd(φ) depends
only on the odd terms, aj have no effect on the existence and
stability of the locked solutions for a pair of symmetrically
coupled oscillators. However, once there are more than just two
oscillators, the even terms play an important role, particularly

TABLE I. Fourier coefficients of the interaction function, Eq. (8)
(computed from the full model with η = 6). Near the bifurcation
point from synchrony there are substantial higher order even and odd
Fourier terms.

a0 = 5.1974931

a1 = −2.9970722 b1 = 0.47408548

a2 = −0.92187762 b2 = −0.36833799

a3 = −0.44113794 b3 = −0.2577318

a4 = −0.25482759 b4 = −0.15762125

a5 = −0.16416954 b5 = −0.09083201

a6 = −0.11295291 b6 = −0.048487604

as far as stability is concerned. We find that as η changes
between 5 and 7, the Fourier coefficient b2 remains negative
and b1 goes to zero. For this reason, in the rest of this paper,
we will use a truncated version of the H function that contains
only three terms:

H (x) = b1 sin(x) + b2 sin(2x) + a1 cos(x). (11)

Unless otherwise stated, we typically take b1 = 1 and b2 =
−0.75, giving zeros of Hodd at φ = 0,π, ± cos−1(2/3) ≈
±0.847. We remark that this particular form of Hodd(φ)
arises in the bead on a hoop instability (Ref. [25],
Chap. 3.5) and in a model for the coordination of finger tapping
[26]. If b2 < 0 is fixed and negative, then as b1 decreases
from a large positive value, the synchronous solution loses
stability (at b1 = −2b2) and a branch of intermediate stable
phase-locked solutions bifurcates. This branch remains stable
until b1 becomes sufficiently negative, b1 < 2b2, whereupon
the antiphase solution is stable.

III. WAVES IN LARGE NETWORKS

This section is a study of wave behavior in both chains
and two-dimensional arrays of neurons with nearest-neighbor
coupling in regimes where there is an intermediate stable
phase-locked state for pairwise coupling. Primarily, we study
phase models which use the interaction functions (or approxi-
mations of them) derived from the Wang-Buszaki model. Our
models may be relevant to patterns of wave activity in the
neonatal rat. Peinado et al. was able to observe wave activity
in gap-junction-coupled interneurons in rat neocortex prior
to day 12 of development [13]. Furthermore, he was able to
enhance these waves by applying halothane and picrotoxin.
Picrotoxin blocks inhibitory synapses while halothane reduces
the potassium conductance. In general, he observed that the
reduction in potassium directly led to the formation of waves.
Since our intermediate stable phase-locked states can occur
in gap-junction-coupled neurons by reducing the potassium
conductance, this may be experimental evidence that this
effect plays a role in wave formation in a two-dimensional
network.

We focus on a specific type of solution to the phase
equations, known as antiwaves. Antiwaves were first studied
in two papers by Ermentrout and Kopell [17,27]. Similar
phenomena have been examined by Strogatz et al. (uniformly
twisted waves) and Blasius et al. [one-dimensional (1D)
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quasiregular concentric waves] [28–30]. Antiwaves consist of
waves either initiated at the ends and colliding in the middle or
waves initiating from the middle and terminating at the ends.
The latter are, in a sense, equivalent to one-dimensional target
patterns. The wave number for these waves (the spatial gradient
of the phase) shows an abrupt change of sign, which we will
call a kink. Similar phase waves have been demonstrated in
mechanical systems [31]. Antiwaves have been experimentally
observed in the spinal cords of dogfish [32] and may well be
present in other biological tissue. For instance, similar patterns
of electrical activity have been observed in the muscle of the
colon of a cat [33]. Central pattern generators in the fins of
electric fish have also been known to produce antiwaves [27].
These animals are able to produce a variety of complex waves
in which the “kink” or lead oscillator in the wave is able to
shift [27].

The rest of this paper is organized into several sections.
We begin in Sec. III A by discussing the basic phase models
and boundary conditions. This is followed by an analysis of
both an ordinary traveling wave (Sec. III B) and antiwave
solutions (Sec. III C). In Sec. III D, we demonstrate that the
probability of obtaining a particular solution depends on the
relative contribution of the even component of the interaction
function. We show that starting from the antiwave solution, if
the even component is sufficiently large, perturbations initiated
at one end of the chain can propagate down the chain and shift
the position of the kink. Finally, in Sec. V we demonstrate that
this analysis can be extended to higher dimensions and that a
variety of antiwave patterns are possible in two-dimensional
oscillator arrays.

A. Models and boundary conditions

The models we consider were introduced by Kopell and
Ermentrout in 1986 [17]. These models primarily describe
networks of neurons with nearest-neighbor coupling. In
analyzing these equations we apply two types of boundary
conditions: periodic boundary conditions and nonreflecting
boundary conditions. For a system of N + 1 neurons with
periodic boundary conditions, the system of phase equations
may be written

θ̇1 = ω1 + HL(θN+1 − θ1) + HR(θ2 − θ1),

θ̇2 = ω2 + HL(θ1 − θ2) + HR(θ3 − θ2),
... (12)

θ̇N+1 = ωN+1 + HL(θN − θN+1) + HR(θ1 − θN+1).

In these equations, the ωi represents the natural frequencies
of the oscillators. We denote the coupling in the two possible
directions as HL(φ) and HR(φ). In general, we assume that
the coupling is isotropic, so that HR(φ) = HL(φ) = H (φ).
Ultimately, we are interested in phase-locking behavior, and
thus we make a change in the variables: φj = θj+1 − θj . This
results in a system of N phase equations:

φ̇1 = 
ω1 + H (φ2) + H (−φ1) − H

⎛
⎝ N∑

j=1

φj

⎞
⎠ − H (φ1),

φ̇2 = 
ω2 + H (φ3) + H (−φ2) − H (−φ1) − H (φ2),

φ̇j = 
ωj + H (φj+1) + H (−φj ) − H (−φj−1) − H (φj ),

...

...

φ̇N = 
ω1 + H (−φN ) + H

⎛
⎝−

N∑
j=1

φj

⎞
⎠

−H (−φN−1) − H (φN ). (13)

In these equations 
ωi is the frequency gradient between
oscillators. In most of our simulations, we assume identical
frequencies so 
ωi = 0.

The second type of boundary condition that we use is
a variation of what are known as nonreflecting boundary
conditions [34]. Nonreflecting boundary conditions are im-
plemented in order to attempt to eliminate reflections and to
“trick” the neurons at the ends of the chains, neuron 1 and
neuron N + 1, into behaving as though the chain is infinite. If
one were to think of the chain as being a continuous system,
then the boundary conditions are simply a statement that
dφ(x,t)

dx
= 0 when evaluated at the ends of the chain. There

is a precedent for using such boundary conditions in nonlinear
oscillator problems—for an example, see Ref. [31]. Applying
these boundary conditions to our phase equations, we have [35]

θ0 = θ2,
(14)

θN+1 = θN−1,

and our phase equations become

φ̇1 = 
ω1 + H (φ2) + H (−φ1) − 2H (φ1),

φ̇2 = 
ω2 + H (φ3) + H (−φ2) − H (−φ1) − H (φ2),

φ̇j = 
ωj + H (φj+1) + H (−φj ) − H (−φj−1) − H (φj ),

...

...

φ̇N = 
ωN + 2H (−φN ) − H (−φN−1) − H (φN ). (15)

B. Traveling waves in chains of coupled oscillators

The wave solution for the traveling wave can be written

φj = jφ∗ + 
ωt, (16)

where j is the index of the oscillator and φ∗ is the phase shift
between adjacent oscillators. Substituting this solution into the
equations with nonreflecting boundary conditions, we see that
(16) is a solution provided that H (φ∗) = H (−φ∗). Since our
interaction function has both odd and even components, this
statement is true only if φ∗ is the root of H (φ)odd. Thus, the
stable phase-locked states for pairwise symmetrically coupled
oscillators determine the wave number φ∗. In a continuum
limit, we can consider θ (x,t) to be a function of both position
and time. If we take the derivative of θ (x,t) with respect to t

we obtain the expression [17]

dθ

dt
+ ∂θ

∂x

∂x

∂t
= 0, (17)

011907-4



FORMATION OF ANTIWAVES IN GAP-JUNCTION- . . . PHYSICAL REVIEW E 86, 011907 (2012)

index

ti
m

e 
(m

s)

phase model:
η=6.0

 

 

2 4 6 8 10

5

10

15

20

5

10

15

20

index

ti
m

e 
(m

s)

phase model:
η=6.0

2 4 6 8 10

5

10

15

20

5

10

15

20

index

ti
m

e 
(m

s)

η=6.2

2 4 6 8 10

5

10

15

20

5

10

15

20

index
ti

m
e 

(m
s)

η=6.2

2 4 6 8 10

5

10

15

20

5

10

15

20

index

ti
m

e 
(m

s)

η=6.2
g=.019

2 4 6 8 10

5,855

5872

5890

5908

index

ti
m

e 
(m

s)

η=6.2
g=.019

2 4 6 8 10

5872

5890

5908

index

ti
m

e 
(m

s)

full model:   g=.01
η=6.0

2 4 6 8

5438

5456

5476

5496

index

ti
m

e 
(m

s)

full model: g=.01
η=6.0

 

 

2 4 6 8 10

5817

5835

5853

5817

5835

5853

5817

5835
1

2

3

4

5

6

−60

−40

−20

0

20

40

FIG. 2. (Color online) Examples of traveling waves in both the Wang-Buszaki model (left) and the phase model (right) corresponding to
two different values of the temperature-dependent time constant η. The phase model reproduces the dynamics of the full model. Furthermore,
it is clear from the phase model that as one increases the constant η, the wavelength of the traveling waves decreases. The coupling strength in
the full model is small: It must be on the order of g = 0.01 mS/cm2 to ensure phase locking.

which is equivalent to

ω + φ∗vθ = 0,
(18)

vθ = ω

φ∗ .

This is an expression for the phase velocity of the wave.
Therefore, we see that we may identify the wave number of
the system as k = φ∗. The stable phase-locked state between
pairs of oscillators defines the wave number of a traveling
wave. In the last section it was demonstrated that as we vary
constants η and gK in the Wang-Buszaki model, the stable
fixed point changes. This translates to a change in wavelength
in a chain of neurons. Figure 2 shows a comparison between
the phase model and full model for a variety of gK and η.
The four panels on the left correspond to the full model.
The panels on the right correspond to the phase model. The
phase model quantitatively reproduces the dynamics of the full
model. The phase model clearly demonstrates that the wave
number increases for increasing η. Coupling strength in the
full model is small: It must be on the order of 0.01 to get
agreement with the phase models. Stronger coupling results in
only synchronous dynamics.

C. Antiwaves in chains of coupled oscillators

Antiwaves have been studied by Ermentrout and Kopell in
two separate publications [17,27]. The previous mechanisms
for generating antiwaves rely on extremely long chains
(essentially infinite) or chains with distal connections.

Assuming an isotropic chain with no gradient in the natural
frequencies, the intermediate stable phase-locked state defined
by H (φ∗)odd = 0 will generate traveling waves. If the fixed

point φ∗ is identified as the wave number k, then the one kink
antiwave solution can be written

φj = kj + ωt, j < j ∗,
(19)

φj = −kj + ωt, j � j ∗.

In these equations j ∗ represents the position of the kink. By
substituting the above expression into (15), we see again that
the antiwave is a solution provided that H (k) = H (−k) [k
is the root of Hodd(k)]. Figure 3 demonstrates examples of
antiwaves obtained in the Wang-Buszaki model compared with
a phase model. Figures 3(a) and 3(c) are waves generated in the
full model with nonperiodic and nonreflecting boundary con-
ditions, respectively. Figures 3(b) and 3(d) are the equivalent
phase models.

D. Obtaining different wave solutions from
random initial conditions

In order to see the variety of antiwaves, we will start chains
of oscillators with random initial phases to estimate the basins
of attraction [28]. The interaction function we use (11) allows
any number of shocks or kinks in the antiwave, constrained
only by the length of the chain. However, if we start the
equations from random initial conditions, the probability of
getting a certain number of shocks varies as we change the size
of the Fourier components. The main point is that even if the
odd portion of the interaction function allows for a multiple
shock solution, the probability of the system converging to
this solution from random initial conditions may be extremely
low and is determined by the magnitude of both the even
and first odd Fourier modes. Figure 4 shows the probability
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FIG. 3. (Color online) Four examples of antiwaves in both rings and chains of oscillators computed with η = 6.0. (a) is a wave in a chain
of Wang-Buszaki neurons with periodic boundary conditions. (b) is a wave in a chain of phase oscillators with periodic boundary conditions.
(c) is a wave in a ring of Wang-Buszaki neurons with nonreflecting boundary conditions (full model). (d) is the phase model reduction of (c):
It is a wave in a chain of phase oscillators with nonreflecting boundary conditions.

distributions of obtaining various antiwave and traveling wave
solutions as a function of the magnitudes of both the even
and odd Fourier terms of the interaction function. Figure 4(a)
is a plot of the probability of obtaining either an N -shock
antiwave solution or a traveling wave (0-shock) solution as
a function of a1. From the plot, we see that the probability
of obtaining a traveling wave solution approaches zero as
a1 → 0 and the probability distribution shifts towards N = 6.
As a1 increases towards 1, the probability of obtaining the
traveling wave solution increases until it is the most probable
state. Figure 4(b) is a plot of the probability distribution as
a function of b1 with a1 = 1. Figure 4(b) shows a trend
similar to Fig. 4(a). For b1 = 0 the probability of obtaining
a traveling wave solution from random initial conditions
is close to 0. The solution with the maximal probability
corresponds to an antiwave with N = 9 shocks or kinks. As b1

is increased towards 1 or decreased towards −1, the probability
distribution shifts towards N = 0. That is, solutions with
fewer kinks become more probable. Figures 4(c) and 4(d)
demonstrate the effect of higher order even terms. Figure 4(d)
demonstrates that using the interaction function with two even
terms [H (φ) = cos(φ) + b1 sin(φ) − 3

4 sin(2φ)] results in a
probability distribution in which the traveling wave solution
is the most probable solution for b1 → 1 and the one-kink
antiwave solution is the most probable for b1 → −1. If we do
not include this second order term, as demonstrated in Fig. 4(c),
the most probable solution corresponds to an (N = 4 shocks)
antiwave. The main point of this is that, even though only the
odd Fourier modes determine the solutions to Eqs. (13) and

(15), the even Fourier modes can drastically affect the basin of
attraction of those solutions.

E. Moving the shock position with impulses

Electric fish have been observed to produce complex
antiwave type patterns [27]. What is more, the lead oscillator or
(kink) in these antiwaves has been observed to be able to shift
position. We present a mechanism which shifts the position
of the shock in the antiwave without changing its shape. Over
the past 15 years, Pikovsky and Rosenau have written several
papers studying waves in oscillator lattices with purely even
coupling. They showed that such interaction functions can
be derived from networks of Josephson junctions and Van
der Pol oscillators [36–38]. Waves in these networks take the
form of solitary pulses which retain their shape. Pikovsky
and Rosenau have coined these waves “compactons” [36–38].
Collisions between different compactons have been studied
in detail. Nothing, however, has written about compactons
colliding with a phase boundary (as the phase shock in the
antiwave). Compactonlike pulses are possible not only in
systems with a purely even interaction function, but they
can be observed in systems with odd terms, provided the
even component is large enough [38]. The odd portion of
the interaction function acts to dissipate the initial pulse,
but a compactonlike wave may still travel large distances
even with a substantial odd term. Compactons are possible in
systems in which the interaction function generates antiwaves.
For instance, we consider a system of 200 phase-difference

011907-6



FORMATION OF ANTIWAVES IN GAP-JUNCTION- . . . PHYSICAL REVIEW E 86, 011907 (2012)

N

a 1

 

 

0 5 10 15

−1

−0.5

0

0.5

N

b
1

 

 

0 5 10 15

−1

−0.5

0

0.5

N

b
1

 

 

0 5 10 15

−0.5

0

0.5

1

N
b

1
 

 

0 5 10 15

−0.5

0

0.5

1

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0

0.1

0.2

0.3

0.4

0.5

0.6

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
(a) (b)

(c) (d)

FIG. 4. Probability of obtaining different solutions of Eq. (15) for 20 oscillators as a function of the Fourier coefficients of the interaction
function. N designates the number of shocks in an antiwave. N = 0 corresponds to a traveling wave. (a) The probability distribution with
H (φ) = a1 cos(φ) + b1 sin(φ) + 0.75 sin(2φ) as a function of a1 with b1 = 1. (b) The probability distribution with a1 = 1 and varying b1.
(c) The probability distribution calculated with an interaction function H (φ) = −3 cos(φ) − 0.92 cos(2φ) + b1 sin(φ) − 0.75 sin(2φ). (d) The
probability distribution calculated using the interaction function H (φ) = −3 cos(φ) + b1 sin(φ) − 0.75 sin(2φ). For each parameter value the
equations were solved from 10 000 random initial conditions.

equations with nonreflecting boundary conditions. The interac-
tion function used is H (φ) = cos(φ) + sin(φ) − 0.75 sin(2φ).
The initial conditions are the one-kink antiwave solution with
an extra pulse stimulus applied at the end. Thus we have the
one shock solution

φj (0) = k, j <
N

2
,

(20)

φj (0) = −k, j � N

2
,

with the addition of a pulse

φj (0) = k + A

2

(
1 + cos

(
(j − x0)π/σ

))
, |j − x0| < σ.

(21)

Here A is the amplitude, x0 is the position of the pulse, and
σ is the width of the pulse. In Fig. 5 the pulse width used
is σ = 10 and |k| = 0.841 06. This pulse is the form used
by Pikovsky et al. to generate compactons, but other initial
conditions may work as well [38]. Figure 5(c) shows multiple
compactons traveling on top of an antiwave and colliding with
the shock located at N = 100. The antiwave is composed of
the stationary white and gray regions. The gray region of the
plot corresponds to the solution φ = 0.841 whereas the white
region corresponds to φ = 5.44. Upon collision, the shock
shifts but retains its shape. In this manner, multiple pulses
initiated at the ends of the chain may be used to shift the shock
back and forth. Figure 5(b) is a plot of the shift in the kink as a

function of the initial compacton amplitude. The maximum
shift obtained is approximately nine sites. If A > 1.5 rad,
larger amplitude pulses do not necessarily provide larger
position shifts. If the pulse is too large, it will destroy the
“perfect kink” solution. Thus, near the supercritical pitchfork
bifurcation, not only can the shock of an antiwave form
anywhere along the the chain, but precisely because of this
property, it can be shifted around by an impulse (compacton).
In this way, the additional even and odd Fourier terms produce
a central pattern generator which is malleable. Perhaps this
is a mechanism by which the hindbrain of a fish could send
impulses to the rest of its spinal cord to modify the fish’s
swimming pattern.

IV. STABILITY ANALYSIS

In analyzing the stability of antiwave solutions, one of
the main questions we want to address is how the relative
contributions of each Fourier mode contribute to the stability of
the solution. Additionally, we want to examine the importance
of other parameters in the model, such as the length of the
chain and the position of the kink. In these chain models there
are four basic wave solutions which are of interest. Two of
the solutions correspond to a traveling wave in either direction
(left to right or right to left) and two correspond to antiwaves.
The first antiwave solution describes a wave emanating from
the center of the chain and propagating in both directions
outward. The second antiwave solution corresponds to two
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FIG. 5. (a) Compactons initiated from either side of the chain can shift the phase shock in the antiwave back and forth. The interaction
function used was H (φ) = cos(φ) + sin(φ) − 0.75 sin(2φ). (b) The shift in the kink for varying initial compacton amplitudes.

waves emanating from the edges and colliding in the center of
the chain. Using our simplified interaction function we begin
by analyzing the simplest (shortest) chain possible, the three-
neuron system. The three phase equations (22) describing the
neurons can be condensed to two by a change of variables.
Linearizing these equations (23) about the antiwave solution
results in a 2 × 2 Jacobian. Thus, the problem is simple enough
so that we can solve for the eigenvalues as a function of a1

and subsequently show where and how the antiwave solution
loses stability. Once we have proved stability for this simple
case, we discuss longer chains and, specifically, we analyze
the effects of the magnitude of the even component on the
stability of various antiwave solutions.

A. Stability analysis of the three-oscillator system

Our equations for the system with nonreflecting boundary
conditions are

θ̇1 = 2H (θ2 − θ1),

θ̇2 = H (θ3 − θ2) + H (θ1 − θ2), (22)

θ̇3 = 2H (θ2 − θ3).

We then write them in terms of their phase differences:

φ̇1 = 2H (−φ2) − H (−φ1) − H (φ2),
(23)

φ̇2 = H (−φ1) + H (φ2) − 2H (φ1).

Note that these equations are invariant under a reflection: φ1 →
−φ2, φ2 → −φ1.

Figure 6 is a plot of the nullclines of the system (23) for
various values of a1 using b1 = 1 and b2 = −0.75. There
are two antiwave solutions indicated by the boxes and two
traveling wave solutions which are circled. One can see

that when there is no even component the solutions to the
system possess perfect reflection symmetry. As soon as a1 is
nonzero, the system loses this symmetry. We want to analyze
analytically the stability of the antiwave. Choosing φ1 = k

and φ2 = −k, we linearize our equations about this system
and write down the Jacobian as follows:

M0 =
(

H ′(−k) −2H ′(k) − H ′(−k)

−H ′(−k) − 2H ′(k) H ′(−k)

)
. (24)

Solving for the eigenvalues of this expression, we have

λ1,2 = −2H ′(k), − 2H ′(−k) − 2H ′(k). (25)

As long as the derivative of these H functions evaluated
at this solution is positive, then the solution will be stable.
Substituting the simplified interaction function (26) and its
derivative into Eq. (25) results in the eigenvalue expressions,
Eqs. (27):

H (φ) = b1 sin(φ) + b2 sin(2φ) + a1 cos(φ),
(26)

H ′(φ) = b1 cos(φ) + 2b2 cos(2φ) − a1 sin(φ),

λ1 = −2(b1 cos(k) + 2b2 cos(2k) − a1 sin(x)),
(27)

λ2 = −4(b1 cos(k) + 2b2 cos(2k)).

At the critical value of the parameter acritical = 1.1, the first
eigenvalue vanishes. For larger values of a1, the fixed point
becomes unstable. The mirror symmetry of the equations,
along with the bifurcation diagram in Fig. 6, suggest that this is
a subcritcal pitchfork bifurcation. This is verified in Ref. [39],
where we explicitly calculate the normal form equations.
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B. Stability analysis for the traveling wave

Proving the stability of the traveling wave (with no kinks)
is relatively straightforward. We begin by writing down the
equations for the “j th” oscillator. Since the system employs
nearest-neighbor coupling, the general expression is

φ̇j = H (φj+1) + H (−φj ) − H (−φj−1) − H (φj ). (28)

Defining a = H ′(φ∗), b = H ′(−φ∗), and linearizing the equa-
tions about the wave solution, the equations for the phase are
simply a discretized version of Laplace’s equation

aφj+1 − (a + b)φj + bφj−1 = λφj . (29)

We may solve for the equations by assuming a general solution

φj = Ax
j

1 + Bx
j

2 , (30)

and invoking the boundary conditions φ0 = φ1 and φN−1 =
φN . Plugging our solution (30) into (29), we may solve for the
eigenvalues of the system:

Re λ = 2
√

ba cos
πm

N − 1
− (a + b). (31)

Therefore the wave solution will always be stable provided
that

2
√

ba � a + b, (32)

or alternately that a,b > 0. Stability is lost for a,b < 0.

C. Stability for the antiwave under more general conditions

Stability analysis of the antiwave solutions may be proven
using a combination of the Gershgorin circle theorem and
numerically computing the eigenvalues of the linearized
equations. In these examples, we use nonreflecting boundary
conditions. The argument will be identical for periodic
boundary conditions. One starts by assuming a one-shock

solution and linearizing the phase the equations about this
solution. The Jacobian will have matrix elements of the form

ai,i = −[H ′(φj ) + H ′(φj )], ai,i+1 = H ′(φj+1),
(33)

ai,i−1 = H ′(φj−1).

All other matrix elements are zero. Once more, define a =
H ′(φ∗), b = H ′(−φ∗). If l denotes the location of the kink,
then the matrix elements corresponding to the kink are

al,l = −(a + b), al,l+1 = b, al,l−1 = b, (34)

or

al,l = −(a + b), al,l+1 = a, al,l−1 = a, (35)

depending on the orientation of the shock. The Gershgorin
circle theorem [40] tells us that all of the eigenvalues of
the matrix lie in the union of disks centered at the diagonal
elements of the matrix with radii less than the absolute value
of the sum of the row entries not including the diagonal terms.
If the Jacobian of the antiwave is described by Eq. (34), all
eigenvalues will lie in the union of three disks: one centered
at −(a + b) with radius a + b, one centered at −2a + b

(corresponding to the ends of the chain) with radius a, and
one centered at −(a + b) with radius 2b. If we assume that the
even term a1 is positive and increasing, then H ′(−φ) � H ′(φ),

|b| � |a|,
(36)

|2b| > |a + b|.
Thus the disks will extend beyond the origin, and we will not
be able to say anything about stability using this theorem. On
the other hand, if the solution is a shock oriented in the opposite
direction, such as in Eq. (35), the disk corresponding to the
equation at the shock is centered at −(a + b) and extends
out with radius |2a|. The disk will always lie in the left
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FIG. 7. (Color online) (a) Critical value of a1 as a function of shock position. (b) Eigenvalue with the maximal real part as a function of a1

for different shock positions. N denotes the location of the shock. (c) An interaction function with a more negative b2 can also possess a larger
a1 before the solution becomes unstable.

half of the imaginary plane for a1 positive. Therefore, this
solution will always be stable. In the former case, in which
the fractured wave is not necessarily stable, one must apply
numerical methods to explicitly calculate the eigenvalues of
the Jacobian. We are interested in how variables such as the
position of the shock and the length of the chain affect the
stability of the solution as we vary the magnitude of the first
even Fourier mode. Again, we use the interaction function
H (φ) = b1 sin(φ) + b2 sin(2φ) + a1 cos(φ), where b1 = 1 and
b2 = −0.75. We start by examining a 51-oscillator chain
(described by 50 equations) in which we move the position of
the shock. Figure 7(a) shows the critical value of a1 at which the
shock solution loses stability as a function of shock position
where the position varies between site 4 and site 46. The
parameter acritical is determined by calculating the eigenvalues
of the Jacobian for various values of a1 and determining
when the eigenvalue with the maximal real part becomes
positive. Figure 7(b) plots the real part of the eigenvalue with
a maximal real part as a function of a1: As the position shifts,
the eigenvalues lose stability at different values of a1. The
type of bifurcation by which they lose stability changes as
well. For shocks located at even numbered sites, the system
loses stability in a Hopf bifurcation as a complex conjugate
pair of eigenvalues crosses the origin simultaneously. For
shocks located at odd sites the system apparently loses
stability in a subcritical pitchfork bifurcation (this has not
been rigorously proven). Figure 7(c) is a plot of acritical for
the eigenvalues of the 51-oscillator Jacobian linearized about
solutions corresponding to varying values of b2. The plot
clearly demonstrates that shock solutions corresponding to a
larger value of b2 can support a larger even component before

becoming unstable. Figure 8 is a plot of acritical versus the
number of phase-difference equations (number of oscillators
in a chain). The shock is always located centrally, e.g., for 101
oscillators, the shock is located at N = 50. For an odd number
of phase-difference equations, the shock position is obtained
by dividing the number of equations in half and rounding up.
Figure 8 shows phenomena similar to Fig. 10(a). That is, a
solution will lose stability for different a1 dependent on the
position of the shock in the solution as well as the number of
oscillators in the chain. In the case that the shock is perfectly
centered, we expect the solution to lose stability in a subcritical
pitchfork. Regardless of the position of the shock, even for
relatively short chains the antiwave solution will be stable for
a relatively large even component, whose magnitude is at least
as large as the first odd Fourier mode. The manner in which
the solution loses stability and the size of the even component
it can support depend on both the position of the shock and the
length of the chain. The Gershgorin circle theorem tells us that
one of the antiwave solutions will always be stable, no matter
how long the chain.

V. PATTERN FORMATION IN
TWO-DIMENSIONAL ARRAYS

Antiwave patterns can be observed in two-dimensional
networks as well. Using nearest-neighbor coupling, the dif-
ferential equation for a single oscillator is

dθx,y

dt
= H (θx+1,y − θx,y) + H (θx,y+1 − θx,y)

+H (θx,y−1 − θx,y) + H (θx−1,y − θx,y), (37)
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where x,y are discrete indices describing the location of an
oscillator. These indices run from 1 to N , where N2 is the
number of differential equations in the array. As in the one-
dimensional case, we use nonreflecting boundary conditions.

Examples of these patterns and the interaction functions used
to generate them are illustrated in Fig. 9. Figures 9(b)–9(d)
are stationary and numerically stable. Figure 9(b) is generated
from random initial conditions. Figures 9(c) and 9(d) are stable
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FIG. 9. (Color online) Examples of two-dimensional patterns. The horizontal and vertical axes are the oscillator indices. (a) Snapshot of
a slowly varying wave pattern obtained from compactonlike initial conditions: A two-dimensional pulse is initiated in the upper left-hand
corner of the array on a synchronous background. The interaction function used is H (φ) = sin(φ) − cos(φ) − 0.75 sin(2φ). (b) Stable stationary
fractured pattern obtained from random initial conditions and interaction function −2 cos(φ) − 0.518 sin(φ) − 1.31 sin(2φ) − 0.933 sin(3φ). (c)
Stationary antiwave generated with H (φ) = cos(φ) + sin(φ) − 0.75 sin(2φ). (d) Stationary traveling wave generated with the same interaction
function as (c).
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but have a very small basin of attraction. The initial conditions
must be almost identical to the actual antiwave or traveling
wave solution.

Analogous to the one-dimensional case, a plane wave may
be represented by the solution

θxy = kxx + kyy + ωt, (38)

whereas the shock solution may be written

θxy = kxx + kyy, x � x∗,
(39)

θxy = −kxx + kyy, x > x∗.

In these equations x∗ is the location of the shock. A shock may
be thought of as a discontinuous boundary between the two
traveling waves. The fractured pattern in Fig. 9(b) is composed
of many small waves of varying kx and ky which form shocks.
Fractured patterns are generated with random initial conditions
where the phases are chosen between 0 and 2π [41,42].

VI. CONCLUSION

Intermediate stable phase-locked states occur in a variety
of neuron models and are capable of producing a pattern of
wavelike activity known as an antiwave. This type of activity
was first observed in the dogfish spinal cord by Grillner [32]
and it may occur in other networks as well [12,33]. The
mechanism we use for generating these waves may have an
experimental basis: Peinado et al. have shown that modulating
the potassium conductance of gap-junction-coupled neurons
in the neonatal mouse neocortex leads to wave behavior [13].
The mechanism for generating traveling waves and antiwaves
is more flexible than past models, because it allows one to
modulate the wavelength of the wave by adjusting properties
such as the potassium conductance or temperature-dependent
time constant. It allows for a huge variety of phase-locked
patterns in a chain or array of neurons. In the case of antiwave
generation, it does not require distal connections and the shock

can form anywhere along the chain. The shock position can
also be moved by colliding phase compactons. This may
provide a mechanism by which an animal such as the dogfish
could switch between different swimming patterns. More
generally, near the bifurcation from in-phase synchrony, the
interaction functions of the phase model have large higher
order Fourier modes. This is in contrast to many oscillator
models that were used in the past, which only include the
lowest odd Fourier mode. The odd modes determine the value
of the stable-phase locked solution but the even modes affect
the stability of the antiwave solution. Varying the relative
even component affects the basin of attraction of a particular
solution, or the probability that the phases will converge to
a particular antiwave solution from random initial conditions.
Finally, we note that this behavior is not only relevant to chains
but to two-dimensional arrays as well.

APPENDIX: THE WANG-BUSZAKI MODEL

The parameters used in the Wang-Buszaki model are vsyn =
−60.5 mV, gL = 0.1 mS, vL = −65 mV, gNa = 35 mS/cm2,
VNa = 55 mV, gK = 9 mS/cm2, VK = −90 mV, ai0 = 4, τi =
15 ms, and i0 = 0.63 nA/cm2. The nonlinearites mentioned in
Sec. II A are given by the following expressions:

αm(V ) = 0.1(V + 35.0)/(1.0 − exp ( − (V + 35.0)/10.0)),

βm(V ) = 4.0 exp ( − (V + 60.0)/18.0),

M∞(V ) = αm(V )/(αm(V ) + βm(V )),

αh(V ) = 0.07 exp ( − (V + 58.0)/20.0),

βh(V ) = 1.0/(1.0 + exp ( − (V + 28.0)/10.0)),

H∞(V ) = αh(V )/(αh(V ) + βh(V )),

αn(V ) = 0.01(V + 34.0)/(1.0 − exp ( − (V + 34.0)/10.00)),

βn(V ) = 0.125 exp ( − (V + 44.0)/80.0),

N∞(V ) = αn(V )/(αn(V ) + βn(V )). (A1)
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