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Force fluctuations impact kinetics of biomolecular systems
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A wide array of biological processes occur at rates that vary significantly with force. Instantaneous molecular
forces fluctuate due to thermal noise and active processes, leading to concomitant fluctuations in biomolecular
rate constants. We demonstrate that such fluctuations have a dramatic effect on the transition kinetics of force-
dependent processes. As an illustrative, biologically relevant example, we model the pausing of eukaryotic RNA
polymerase as it transcribes nucleosomal DNA. Incorporating force fluctuations in the model yields qualitatively
different predictions for the pausing time scales when compared to behavior under the average force alone.
We use our model to illustrate the broad range of behaviors that can arise in biomolecular processes that are
susceptible to force fluctuations. The fluctuation time scale, which varies significantly for in vivo biomolecular
processes, yields very different results for overall rates and dramatically alters the force regime of relevance to
the transition. Our results emphasize the importance of transient high-force behavior for determining kinetics in
the fluctuating environment of a living cell.
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I. INTRODUCTION

The internal environment of a living cell is subject
to a constant barrage of forces stemming from Brownian
fluctuations, fluid flows, cytoskeletal deformation, and the
action of molecular motors. Applied force is known to affect
the kinetics of a variety of biologically relevant processes,
ranging in scale from bond rupture [1–4] to motor stepping
rates [5–7], genome structural rearrangements [8–10], and
cell-cell adhesion [11]. Recent advances in single-molecule
micromanipulation techniques have enabled researchers to
directly map out the static force dependence of many such
systems. However, the instantaneous force experienced by
individual molecules in vivo is expected to fluctuate due to
thermal motion and active biological processes. A quantitative
understanding of transition rates within living cells thus
requires consideration of force dynamics.

Previous treatments of kinetics under time-varying tension
have focused primarily on externally imposed deterministic
force trajectories [10,12,13]. Single-molecule studies of RNA
hairpin unfolding have also investigated the roles of force
variation along the reaction coordinate [14,15] and of thermal
fluctuation of the force under a quasiequilibrium assumption
that implies kinetic rates depend entirely on the average
force [16–18]. In our work we employ a widely applicable
method to examine reaction rates under forces that fluctuate
stochastically on arbitrary time scales. We demonstrate that
the fluctuation time scales play a critical role in determining
effective rates and that transient excursions to high forces
can dominate overall behavior. Our calculations underscore
the need to quantify transition rates at high forces for
understanding in vivo kinetics.

While the kinetic model presented here is applicable to a
wide range of biologically relevant processes, we focus on
an example system that illustrates some of the key points.
Specifically, we develop a model for the pausing of eukaryotic
RNA polymerase II (Pol II) as it transcribes nucleosomal
DNA. Nucleosomes, which consist of DNA wrapped around
an octamer of histone proteins, form the lowest level of orga-

nization in the hierarchic structure of eukaryotic chromatin.
Pol II is known to enter into a long-lived pause state while
transcribing through a nucleosome in vitro [19–21], and the
rate of Pol II pausing as a function of force has been previously
measured [22]. We develop a simple mechanical model for the
polymerase and nucleosome system, which we use to estimate
the forces experienced by Pol II at the nucleosome, and to
calculate the expected rate of pausing during nucleosomal
transcription. We show that the kinetics of Pol II pausing in
this system are qualitatively affected by fluctuations in the
force that arise from rapid wrapping and unwrapping of the
nucleosome. This example system thus serves to demonstrate
the importance of force fluctuation effects in a biologically
relevant context.

II. GENERALIZED KINETIC MODEL

In this section we present a generalized model for comput-
ing transition times of a system under fluctuating force. Our
model comprises a set of discrete states (i = 1,2, . . . ,N ), with
the molecular system experiencing a different force in each
state. These states form a discretized landscape over which the
system fluctuates with time distribution Pij (t) for transition
between states i and j . At each state there is also a time distri-
bution Pi∗(t) for a “reaction” to occur, which depends on the
force at that state. For convenience, we define the cumulative
distribution function Qi(t) as the probability that the particle
remains in state i at time t after its arrival to that state,

Qi(t) = 1 −
∫ t

0

⎡
⎣Pi∗(t ′) +

N∑
j=0

Pij (t ′)

⎤
⎦ dt ′. (1)

To calculate the kinetics of the system, we first find the
Green’s function Gij (t), which gives the probability of finding
a particle in state j at time t given it started in state i at
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time 0:

Gij (t) = δijQj (t) +
∞∑

n=0

∑
i

n−→j

∫ t

0
dtn

∫ tn

0
dtn−1 . . .

∫ t1

0
dt0

Pik1 (t0)Pk1k2 (t1 − t0) . . . Pknj (tn − tn−1)Qj (t − tn). (2)

Here the second summation goes over all paths from state i

to state j with n intermediate states (k1, . . . ,kn). The function
Gij assumes a convolution structure that is greatly simplified
by taking a Laplace transform t → s in the time domain. The
transformed function is given by

Ĝij (s) = δij Q̂j +
∞∑

n=0

∑
i

n−→j

P̂ik1 P̂k1k2 . . . P̂kn−1kn
P̂knj Q̂j , (3)

where the P̂ , Q̂, are themselves the Laplace transforms of the
corresponding distribution functions. The above expression is
further simplified by considering the terms P̂ij as elements of
a weighted adjacency matrix [23] P̂ for transitions between
states. The transformed Green’s function is then expressed as

Ĝij (s) =
∞∑

n=0

(̂Pn)ij Q̂j = [(I − P̂)−1]ij Q̂j . (4)

While the numeric inversion of the Laplace transformed
probability Ĝij (s) can be accomplished by equating the Ĝij

to continued fractions and expanding around the poles [24],
we concern ourselves here primarily with finding low-order
moments in the time distribution for the reaction to take place.
The average time for the particle starting in state i to undergo
the reaction and leave the landscape is given by

〈ti〉 =
∫ ∞

0
t

[
− ∂

∂t

N∑
j=0

Gij (t)

]
dt

=
∫ ∞

0

N∑
j=0

Gij (t)dt =
N∑

j=0

Ĝij (s = 0). (5)

The variance in the reaction time can also be calculated by
computing the second moment,

〈
t2
i

〉 = 2
∫ ∞

0

N∑
j=0

tGij (t)dt =
N∑

j=0

∂Ĝij

∂s

∣∣∣∣
s=0

, (6)

where the Laplace space derivatives are found via

∂Ĝij

∂s
=

[
(I − P̂)−1 · ∂P̂

∂s
· (I − P̂)−1

]
ij

Q̂j

+ [(I − P̂)−1]ij
∂Q̂j

∂s
. (7)

For any given starting distribution ρi of the system over the
available states, the overall mean and variance of the reaction
time can be found as 〈t〉 = ∑

i〈ti〉ρi and var(t) = ∑
i(〈t2

i 〉 −
〈ti〉2)ρi , respectively.

In addition to finding the time distribution for reaction
in a fluctuating system, it is also of interest to calculate the
distribution of states at which the reaction occurs. For a particle
that starts in state i, the Laplace transformed time-distribution

function for reaction from state j is

R̂ij (s) = [(I − P̂)−1]ij P̂j∗. (8)

For initial distribution ρi , the overall probability that the
reaction occurs from state j is then given by

χj =
∑

i

ρi

∫ ∞

0
Rij (t)dt =

∑
i

ρiR̂ij (s = 0). (9)

The characteristics of a specific molecular system enter
into this treatment through the time scales of fluctuation
between different force states [Pij (t)], the force at each
state (fi), and the force dependence of the reaction time
distribution [Pi∗(t) = P∗(fi,t)]. In the following sections we
describe a physical model for the pausing of polymerase during
nucleosomal transcription, which serves as an example of
biologically relevant kinetics under fluctuating force.

III. MECHANICAL MODEL FOR POLYMERASE
AND NUCLEOSOME SYSTEM

In order for a polymerase to transcribe through the
nucleosome, downstream DNA must be rendered accessible
by partially peeling off the nucleosome core. The amount
of DNA wrapped on the nucleosome is believed to fluctuate
rapidly [25]. If an insufficient length is unwrapped, the DNA
must bend to accommodate the polymerase, resulting in a
transient hindering force.

We develop a simple mechanical model of the polymerase
and nucleosome system (Fig. 1), with the DNA treated as a
semielastic chain wrapped around the nucleosome in a left-
handed spiral. The parameters of the spiral are fit to the single
nucleosome crystal structure [26]. The histone core of the
nucleosome and the eukaryotic RNA polymerase Pol II are
treated as hard spheres, with radii of 3.2 and 5 nm, respectively.

The “linker” DNA unwrapped from the nucleosome has one
end position and orientation fixed to match up to the bound
spiral. We discretize the linker chain into M = 30 segments
and define the energy function for any given configuration as
a combination of quadratic stretching and bending energies:

Econf

kT
= κs

2�0

M∑
i=1

(|�vi | − �0)2 + �p

�0

M∑
i=1

[
1 − �vi · �vi+1

|�vi ||�vi+1|
]
,

(10)

FIG. 1. (Color) Mechanical model for polymerase transcribing
through a nucleosome. (a) Pol II (blue), histone core (green), and DNA
(gray) are shown superimposed on crystal structures. (b) Optimized
configurations for different lengths of DNA unwrapped ahead of the
polymerase. Linker DNA (brown) is bend for short lengths. Arrow
indicates hindering force on the polymerase.
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where �vi is the vector corresponding to the ith segment,
�0 = L/N is the ground-state segment length, L is the length
of unbound DNA, κs = 268 kT/nm is the stretch modulus,
and �p = 50 nm is the persistence length for double-stranded
DNA.

Numeric optimization is used to find the lowest energy
path for a given length of unpeeled DNA, subject to the
constraint that the free end must remain at least 8.2 nm
from the nucleosome center. This constraint is equivalent
to assuming that the unwrapped DNA passes through the
polymerase center, while modeling the interaction between
polymerase and nucleosome as hard-sphere steric exclusion.
The resulting configurations of the linker are illustrated in
Fig. 1(b). We note that for L > 21 bp, the unbound DNA
can be fully straightened without steric interference of the
nucleosome and the polymerase so that above these lengths,
Econf(L) = 0.

The overall energy for a state where length L of DNA is
unpeeled in front of the polymerase also includes the energy
change associated with straightening the DNA out of the spiral
configuration and the loss of binding energy to the nucleosome:

E(L) = Econf(L) +
(

kT (2π )4�pR2

2L4
T

− φ

)
(Ltot − L), (11)

where LT =
√

(2πR)2 + h2) is the length per spiral turn,
Ltot = 147 bp × 0.34 nm/bp is the total length of nucleosomal
DNA, and φ = 2.17 kT/nm is the estimated binding strength
for DNA on the nucleosome [27].

The force exerted on the polymerase by the nucleosome is
equivalent to the force required to bend the unwrapped DNA
into its optimal configuration. Thus, F (L) = | �∇Econf(L)|
if the optimized structure hits the constraint boundary for
the minimum distance between polymerase and nucleosome
centers, and F (L) = 0 otherwise.

This mechanical model defines an energy landscape for the
system as a function of the unwrapped linker length (Fig. 2).
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FIG. 2. (Color) Energy E(L) (blue) and force F (L) on Pol II
(red) as a function of the length of DNA unwrapped ahead of
the polymerase. Dashed line indicates force averaged over all
linker lengths. Sample configurations for different linker lengths are
illustrated, with red arrows indicating magnitude and direction of
force.

For short linkers, the free DNA chain bends to accommodate
the polymerase, sharply increasing the configuration energy.
In this case, the nucleosome exerts a hindering force on the
polymerase that is just strong enough to bend the DNA.
In contrast, long lengths of linker DNA straighten upon
unbinding. However, the release of mechanical strain is offset
by the energy penalty due to loss of binding interactions. For
purposes of our kinetic calculations, the landscape is broken
up into discrete states corresponding to the number of base
pairs unwrapped from the nucleosome, with energy EL and
force FL associated with each state.

IV. KINETIC MODEL FOR POLYMERASE AND
NUCLEOSOME SYSTEM

The kinetics of our model system consist of fluctuations
in the length of DNA unwrapped ahead of the polymerase,
with the force at different linker lengths modulating the rate
of pausing at that state (Fig. 3). For simplicity, we assume the
waiting times for all transitions to be exponentially distributed.
The Laplace-transformed transition matrix P̂ is tridiagonal,
with

P̂L,L−1 = k
(w)
L + k(s)

s + k
(u)
L + k

(w)
L + k

(p)
L + k(s)

,

(12)

P̂L,L+1 = k
(u)
L

s + k
(u)
L + k

(w)
L + k

(p)
L + k(s)

,

and the transformed distribution of pausing times is

P̂L∗ = k
(p)
L

s + k
(u)
L + k

(w)
L + k

(p)
L + k(s)

, (13)

where the k
(u/w)
L are the rates for unwrapping and rewrapping

of the nucleosomal DNA, k(s) is the forward-stepping rate of
the polymerase, and k

(p)
L is the pausing rate. The rate constants

are estimated from the mechanical model as described below.
The amount of unwrapped DNA is assumed to fluctuate

diffusively over the energy landscape defined in the previous
section. An uphill step should occur at a rate that decreases
exponentially with the energy difference, while the rate of
downhill stepping under fluid drag must exhibit a linear in-
crease down a large energy gradient. Solution of the discretized
Fokker-Planck equation yields the following expression for the
rate of unwrapping and rewrapping a single base pair [28,29]:

k
(u/w)
L = R0(EL±1 − EL)

exp(EL±1 − EL) − 1
, (14)

FIG. 3. (Color online) Schematic of discrete state model for
linker DNA length fluctuations and polymerase pausing. k(s) is the
polymerase stepping rate, k(u/w) are the rates for unwrapping and
rewrapping a single base pair, and k(p) is the pause rate.
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FIG. 4. (Color online) Pol II pausing rate as a function of force,
from fit to experimental data [22] (inset).

where EL is the energy (in units of kBT ) at linker length L,
and R0 is a fundamental fluctuation rate.

As the length of unwrapped DNA fluctuates, the force
experienced by the polymerase changes. To model the depen-
dence of Pol II pausing rates on force, we use single-molecule
force spectroscopy data published by Galburt et al. [22]. We
fit the data for pause rates under hindering load to the fol-
lowing generalized expression for force-dependent transition
rates:

k(p)(F ) = D

kBT

FL − U

2L2

exp[(FL − U )/2kBT ]

sinh[(FL − U )/2kBT ]
. (15)

This expression is derived from coarse-grained solution of the
Fokker-Plank equation on a piece-wise linear approximation
of the potential [29]. Here, D is the local diffusion coefficient,
U is the potential barrier for the transition, and L is the length
of the transition step in the reaction coordinate conjugate to
the force F . The expression P(F ) = 1 − exp[−k(p)(F )
t],
with 
t = 1 s is fit directly to the data of Galburt et al.
for the probability of pausing within a 1-s interval (Fig. 4).
The parameters corresponding to the optimum fit are D =
1.76 nm2/s, L = 1.4 nm, and U = 7.7kBT . Plugging these
parameters into Eq. (15) yields the force dependence of
the pausing rate (Fig. 4) used in our kinetic calculations.
Given the small number of available data points for fitting a
three-parameter model, we also consider the range of possible
parameter values that would be consistent with experimental
data (see Appendix A).

We note that any single-molecule measurement designed
to measure transition rates under force will itself be subject
to thermal force fluctuations, which should be taken into
consideration when interpreting results [30]. When extracting
force-dependent pause rates [k(p)(F )] from optical tweezer
data, it is assumed that fluctuations of the experimental system
from the average reported force are not sufficiently large to
affect the polymerase kinetics. This assumption is validated in
Appendix B by calculating that the force distributions in an
optical trap are much narrower than the distribution of forces
that is experienced by the polymerase while transcribing a
nucleosome.

The transition time distributions given by Eq. (13) fully
describe our kinetic model for the polymerase and nucleosome

system. While the discrete kinetic model is fully solvable ana-
lytically, we employ dynamic Monte Carlo simulations using
the Gillespie algorithm [31] to illustrate system trajectories
in limiting regimes. In the discussion below, the effective
pausing rate for the polymerase in this fluctuating system is
defined as the inverse of the mean first passage time to reaction,
k

(p)
eff = 1/〈t〉, where 〈t〉 is found using Eq. (5).

V. RESULTS AND DISCUSSION

The hindering force experienced by Pol II, averaged over
all Boltzmann-weighted fluctuations in the linker length, is
given by

〈F 〉eq =
∑147

L=0 FL exp(−EL)∑147
L=0 exp(−EL)

≈ 5 pN. (16)

We note that at this force, the average time to enter into the
pause state is 1/k(p)(〈F 〉eq) ≈ 80 s. The pause-free velocity
of Pol II is approximately 12 bp/s [22]. Thus, based on the
average hindering force alone, the polymerase would be able to
transcribe all the way through the 147 bp of the nucleosome
without pausing. A static model incorporating only the average
force is thus insufficient to explain the tendency of Pol II to
pause during nucleosomal transcription [21].

In the fluctuating environment of the cell, the instantaneous
force experienced by the polymerase can be significantly
higher than the 5 pN average. The overall rate of pausing
depends on the time scales for sampling over the instantaneous
forces. Our general kinetic model presented in Sec. II offers a
convenient formalism for calculating the low-order moments
of the reaction time distributions. Here, we calculate the
average time to pausing using Eq. (5) applied to our specific
mechanical model.

Figure 5 illustrates the key role played by the under-
lying fluctuations in determining the overall kinetics of
our polymerase-nucleosome model. We provide results for
a range of fluctuation rates R0 in order to illustrate the
various behaviors at different regimes before specializing
our discussion to the specific experimental parameters of
the nucleosome and polymerase. For rapid fluctuations, the
length of unwrapped DNA remains equilibrated, with the
force experienced by the polymerase sampled over a wide
range of values [Figs. 6(a)–6(c)]. The overall rate of pausing
thus approaches the average rate k

(p)
eff → 〈k(p)〉eq ≈ 0.09 s−1.

This rate is significantly faster than the pausing rate at the
average force, k(p)(〈F 〉eq) ≈ 0.01 s−1. Furthermore, in the fast
fluctuation regime, the polymerase pauses on average while
experiencing a 24–pN hindering force [Fig. 5(b)]. The pausing
behavior of the polymerase in this regime is thus dictated by
forces far above the equilibrium average.

In the extreme of very slow unwrapping fluctuations,
polymerase pausing can occur at much lower rates. Specifi-
cally, in a static system where the polymerase does not step
forward and the linker length remains constant, the time to
pause is averaged over all states, yielding the effective rate
k

(p)
eff → 〈1/k(p)〉−1

eq ≈ 0.006 s−1. In this regime, the average
force at the point of pausing is equal to 〈F 〉eq if the system is
initiated at equilibrium.
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FIG. 5. (Color) (a) Effective polymerase pausing rate [k(p)
eff ] as

a function of nucleosome unwrapping fluctuation rate, plotted for
different stepping velocities. Dashed lines indicate asymptotic results
for slow (cyan) and fast (magenta) fluctuations, as well as the pause
rate at average force (black) for comparison. (b) Average force
experienced by the polymerase at the point of pausing.

The kinetics of polymerase stepping towards the wrapped
portion of the nucleosome also has a defining role to play in
determining pausing behavior. When unwrapping fluctuations
are much faster than the stepping rate k(s), the length of linker
DNA remains equilibrated and the effective pausing rate is
independent of k(s). However, if the polymerase moves forward
quickly enough that the downstream DNA does not have
enough time to equilibrate, then the linker is bent more tightly
with each step [Fig. 6(e)]. The pausing time is then roughly
equal to the time required for the polymerase to progress
towards a high-force barrier. The most frequent pausing is
seen in the regime of rapid polymerase stepping and slow
relaxation of the downstream DNA. The rapid pausing as
the polymerase steps towards higher forces is apparent in
trajectories obtained from dynamic Monte Carlo simulations
of the system [Fig. 6(d)].

Our results emphasize the importance of both fluctuation
rates and the rate of directed stepping over an energy landscape
in determining kinetics of a force-dependent transition. The
regime occupied by a specific biomechanical system must
be determined from independent measurement of the relevant
rates. The fundamental rate R0 for thermal unwrapping of a
single nucleosomal base pair can be extracted from single-
molecule unpeeling experiments [27] and kinetic accessi-

bility [25] data. This rate is estimated as 104–106 s−1 (see
Appendix C). The system of Pol II transcribing through a
nucleosome thus lies in the regime of rapid fluctuations.

Our calculations imply an average time of 11 s for Pol II
to enter a pause state while on the nucleosome. We note that
the paucity of data for Pol II pausing at high forces allows
for a wide range of possible fits for k(p) as a function of force
(Appendix A). The corresponding average times to pause in
the fast fluctuation regime fall in the range of 0.03 to 17 s,
which includes the experimentally measured average time of
4 s [21]. The wide range of possible effective pausing rates
highlights the importance of polymerase behavior at high
forces (F > 10 pN). Regardless of the precise rate, we find
that Pol II has a high chance of pausing during the ∼12 s
required to fully transcribe through a nucleosome. This result is
in agreement with in vitro observations of polymerase pausing
during nucleosomal transcription [19–21].

We emphasize that our simple physical model for nucleoso-
mal transcription by Pol II is not intended to fully encompass
the details of this complicated biomechanical process. For
instance, the effects of DNA twist and electrostatic interactions
between polymerase and nucleosome are not included. The
action of Pol II involves the unzipping of DNA, resulting in the
potential buildup of twist deformation within a topologically
closed supercoiling domain [32]. This effect could result in
additional fluctuating forces and torques felt by the poly-
merase, further modulating the effective processive behavior.
However, our simplified model system serves to illustrate
the impact of force fluctuations on the pausing kinetics, and
additional effects can be incorporated into this framework
in future studies. Overall, a static system incorporating the
average force alone yields very slow rates of pausing, whereas
by considering fluctuation effects we are able to obtain an
approximate estimate of the pausing rate that is consistent
with in vitro results.

VI. CONCLUDING REMARKS

The alteration of kinetics as a result of force fluctuations
is expected to apply far beyond the polymerase-nucleosome
example. Other biomolecular transitions can explore entirely
different regimes of the relevant rates. For instance, large
vesicles carried through the cytoplasm by kinesin molecules
would exert slowly fluctuating forces on the motor. Processes
requiring large-scale DNA rearrangements, such as formation
of loops for assembly of transcription factor complexes, will
be subject to thermal noise on the millisecond time scale [10].
Fluctuations in tension on cell-cell adhesion bonds due to
whole-cell dynamics would lie in an even slower regime. In ad-
dition to thermal fluctuations, relaxation processes following
the action of any biomechanical motor would also yield time-
varying forces that can alter the kinetics of subsequent steps.

Our results reveal a broad range of kinetic behaviors
over the biologically relevant fluctuation-rate spectrum, and
our approach facilitates a rapid calculation of transition
kinetics for arbitrary fluctuation and stepping time scales.
This work highlights the importance of high-tension behavior
in the kinetics of biomolecules in a fluctuating environment.
Force-dependent transitions can be highly sensitive to brief
excursions into the large force regime. For our example
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FIG. 6. (Color) (a) Sample traces from dynamic Monte Carlo simulations of polymerase and nucleosome system, with rapid unwrapping
of nucleosome (R0 = 104 s−1). (b) Illustrated states for single sample trajectory, with all states accessed during a 0.02-s interval overlaid.
Transparency is proportional to the amount of time spent in the state, and color is proportional to force. (c) Force experienced by polymerase over
a sample trajectory. (d)–(f) Corresponding figures for slow nucleosome unwrapping (R0 = 0.1 s−1). Red polymerase color indicates paused state.

system of Pol II transcribing through a nucleosome, entry
into the pause state is predicted to occur at a much higher
force and a much faster rate than expected for a static
system. The spectrum of force fluctuations arises from the
elastic response of the biomolecular system. The considerable
molecular rigidity at the nanoscale level translates to large
force fluctuations that significantly impact kinetics. Our model
of Pol II transcribing through nucleosomal DNA typifies these
general effects. Investigating the time scale and magnitude of
force fluctuations in an in vivo environment, as well as the
response of biomolecules to these fluctuations, is critical to
developing a quantitative picture of kinetics in a living cell.
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APPENDIX A: PARAMETER RANGE FOR FORCE
DEPENDENCE OF PAUSE RATES

To model the dependence of Pol II pausing rates on force,
we fit a three-parameter function [Eq. (15)] to single-molecule
force spectroscopy data published by Galburt et al. [22]. Given
the small number of available data points and large error bars,
we also consider the range of possible parameter values that
would be consistent with the experimental data. Specifically,
we assume that the diffusive sampling rate D relevant to
the transition into the pause state is limited to lie below the
free diffusion coefficient of Pol II (4 × 107 nm2/s for a 5-nm
sphere). With this limitation we find the two extreme sets of
D,L,U parameters that minimize and maximize the effective
pausing rate in the rapid fluctuation limit k

(p)
eff = 〈k(p)〉eq,

under the constraint that the force-dependence curve must fit
within the error bounds of the experimental data [Fig. 7(a)].
These two extreme fits yield values of 〈k(p)〉eq = 0.06 s−1 and
〈k(p)〉eq = 30 s−1. The effective pausing rates for different
fluctuation time scales can thus vary over several orders

FIG. 7. (Color online) Determining Pol II pausing rates as a
function of force. (a) Fits to experimental data. Best fit shown
as solid curve. Dashed curves give fits that fall within error bars
but yield extreme values of the effective pausing rate in the rapid
fluctuation regime. (b) Pausing rates as a function of force, for the
three fitting curves. (c) Effective pausing rates for different values of
the polymerase speed k(s) (top to bottom: 12 bp/s, 1 bp/s, 0.3 bp/s,
0.1 bp/s, and 0 bp/s) for the upper extreme fit part (a). (d) Effective
pausing rates for the lower extreme fit in part (a). The corresponding
plot for the best fit is shown in Fig. 3(b).

011906-6



FORCE FLUCTUATIONS IMPACT KINETICS OF . . . PHYSICAL REVIEW E 86, 011906 (2012)

of magnitude without departing from the experimental data
[Figs. 7(c) and 7(d)].

Since the uncertainty in the experimental measurements
occurs primarily in the high-force regime (F > 10 pN), the
wide range of possible effective pausing rates demonstrates
the importance of obtaining accurate measurements at tensions
well above the in vivo average in order to gain a quantitative
understanding of transition kinetics in the presence of fluctu-
ations.

APPENDIX B: FORCE FLUCTUATIONS IN
SINGLE-MOLECULE RATE MEASUREMENTS

When pausing rates are measured in a single-molecule
experiment, the polymerase is subject to fluctuations in the
force that arise from thermal motion of the bead in the
optical trap. Given the momentous impact of such fluctua-
tions in the biologically relevant case of RNAP transcribing
through a nucleosome, the question arises as to whether
force fluctuations in the trap would significantly alter the
observed rate constants. In such a case, extracting the pausing
kinetics from the experimental measurements would require
a correction for the effect of fluctuations. Prior studies of
biomolecular kinetics in an optical trap have investigated the
role of thermal fluctuation in the force using thermodynamic
quasiequilibrium assumptions [16–18]. Here we address this
question by employing our previously developed model for
the distribution of forces experienced by DNA in an optical
trap [30].

For a DNA handle of length L, which is fixed at one
end and at the other end attached to a bead of radius a, the
partition function corresponding to the end-to-end vector �RD is
given by

G( �RD) =
∫

d �u Gwlc( �RD; L)

× exp

[
− κ

2kbT
( �RD + a�u − �RT )2

]
, (B1)

where Gwlc is the wormlike chain partition function with fixed
end points [24], �RT is the position of the trap center, �u is

the orientation of the bead, and κ is the trap stiffness. In our
calculations, we use the parameters κ = 0.05 pN/nm, L =
9 kbp, and a = 2.1 μm as reported by Galburt et al. [22].
We define the ẑ axis as pointing from the fixed DNA end to
the trap center. Since Gwlc depends only on the DNA end-
to-end distance, Eq. (B1) can be employed to find both PD

(the probability density for the separation distance between
the DNA ends) and Pz (the probability density for the position
of the bead center along the ẑ axis) [30]. Specifically, these
densities can be expressed as

PD(D) = D2

ND

exp(−βκD2/2)Gwlc(D; L)

×
∫ 1

−1
dρD dρu I0

(
βκaD

√
1 − ρ2

D

√
1 − ρ2

u

)
× exp[βκ(a|RT |ρu + D|RT |ρD − aDρDρu)]

(B2)

Pz(z) = 1

Nz

∫ 1

−1
dρu

∫ √
L2−(z−aρu)2

0
dy y I0(βκay

√
1 − ρu)

×Gwlc(
√

y2 + (z − aρu)2; L)

× exp

{
−βκ

2
[(|RT | − z)2 + y2]

}
, (B3)

where β = 1/kBT , I0 is the zeroth-order modified Bessel
function, and ND,Nz are normalization constants.

For each position of the trap �RT , the force reported in
a single-molecule experiment is given by the average trap
force 〈Fz〉 = κ(|RT | − 〈z〉), where the average position of
the bead center 〈z〉 can be calculated using the distribution
given in Eq. (B3). The end-to-end force experienced by
the DNA tether at an extension D is obtained through the
Legendre transform, F = −kbT ∂ log[Gwlc(D; L)]/∂D, and
the distribution of forces can thus be derived from Eq. (B2).

Carrying out the appropriate integrals and derivatives
numerically yields the distributions of forces experienced by
the polymerase at different positions of the trap [Fig. 8(a)]. We
note that by comparison to the force while transcribing through
a nucleosome, the forces experienced in the trap are much more

(a) (b) (c)

FIG. 8. (Color) (a) Colored lines indicate distributions of the force experienced by the DNA tether at different trap positions. The average
trap force corresponding to each position is indicated. The black line indicates distribution of forces experienced by the RNAP while transcribing
through a nucleosome, according to the model described in this work. (b) Rates of polymerase pausing under force. Red, blue, and green curves
correspond to three fits of the experimental data (Fig. 7); black curve plots kbead, the rate constant for the bead in the optical trap to diffuse a
distance corresponding to the width of the distance distribution, at each trap position. (c) Probability of RNAP pausing in a 1-s interval, as
a function of average trap force. Red, blue, and green lines are predictions based on the parameter fits in Fig. 7, taking into account rapid
fluctuations in the force experienced by the DNA in the trap (1 − exp[〈k(p)(F )〉]). For comparison, grey lines show the corresponding curves
based on the average force (1 − exp[k(p)(〈Fz〉)]).
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narrowly distributed, indicating that force fluctuations should
have less of an effect on the rate constants measured in the
single-molecule experiment.

In order to understand the effect of the force fluctuations
on kinetics in the optical trap, we must consider the time
scale associated with the fluctuations. We thus calculate the
fundamental rate kbead(F ) associated with moving the bead
by a distance comparable to the width of the distribution PD;
motion of this magnitude would be required to significantly
affect the force experienced by the RNAP. We use the approx-
imation kbead = 2Dbead/σ

2, where Dbead ≈ 2 × 105 nm2/s is
the bead diffusion constant and σ is the standard deviation
of the distribution in end-to-end distances PD . We find that
the time scale associated with fluctuations of the bead in the
optical trap is at least three orders of magnitude shorter at all
trap positions than the time scale for polymerase pausing, so
that the system falls distinctly in the fast fluctuation regime
[Fig. 8(b)].

In the fast fluctuation limit, the pausing rate should
approach the average rate 〈k(p)(F )〉. We find that this average
rate, which incorporates fluctuation in the force, gives very
similar results for RNAP pausing kinetics in the optical trap
as the rate at the average trap force k(p)(〈Fz〉) [Fig. 8 (c)].
Thus, fluctuations in the force are not expected to have a
significant effect on the optical trap data reported by Galburt
et al. [22]. For this system, force fluctuations in the optical
trap are sufficiently small that force-dependent kinetics can
be extracted directly by assuming only the average force is
experienced by the polymerase.

APPENDIX C: RATES OF NUCLEOSOME UNWRAPPING

We parametrize the time scale for unwrapping fluctuations
of the nucleosome by the fundamental rate of attempting to
unpeel a single base pair [R0 in Eq. (14)]. This rate is equivalent
to the diffusion constant of the underlying motion expressed

in units of bp2/s [28]. We previously developed a mechanical
model for nucleosome unwrapping under tension, which was
fit to single-molecule force-extension measurements of a
mononucleosome [27]. Dynamic simulations with this model
allowed us to extract a rate constant of R0 = 4 × 106 s−1 for
the unpeeling process.

Other experimental results that shed light on the fluctuation
rate include kinetic measurements of protein binding to sites
that are temporarily revealed upon nucleosome unpeeling, as
well as fluorescence correlation spectroscopy (FCS) results
with a fluorophore attached to the bound DNA edge [25]. Our
generalized theory for transition rates of a fluctuating system
can easily be applied to the unpeeling of a free nucleosome
in order to calculate the average time required for a LexA
protein to bind to its target site located 8 to 27 base pairs
from the nucleosome edge, as measured by Li et al. [25]. The
experimentally measured average time is τexpt = 0.25 s. For
this system, the energy of each state is given by

E(L) =
(

kT (2π )4�pR2

2L4
T

− φ

)
(Ltot − L), (C1)

corresponding to the nucleosomal part of the energy defined in
Eq. (11). The rate of individual wrapping and unwrapping steps
is given by Eq. (14) using this energy function. We assume that
in order for the LexA to bind the entire site must be unwrapped
and that the binding process itself is very fast. Thus, we take
Pi∗ = 0 for i < 27, and Pi∗ = ∞ otherwise. Plugging this
system into our general model for fluctuating kinetics allows us
to fit the fundamental rate constant R0 = 4 × 104 s−1 in order
to obtain an average binding time 〈t〉 = 0.25 s comparable
with the experimentally measured value.

Results from these two experiments thus indicate that
the fluctuation rate for nucleosome unwrapping falls in the
R0 = 104–106 s−1 range and so places our polymerase and
nucleosome system in the rapid fluctuation regime.
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