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Migration of adhesive glioma cells: Front propagation and fingering
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We investigate the migration of glioma cells as a front propagation phenomenon both theoretically (by using
both discrete lattice modeling and a continuum approach) and experimentally. For small effective strength of
cell-cell adhesion q, the front velocity does not depend on q. When q exceeds a critical threshold, a fingeringlike
front propagation is observed due to cluster formation in the invasive zone. We show that the experiments
correspond to the transient regime, before the regime of front propagation is established. We performed an
additional experiment on cell migration. A detailed comparison with experimental observations showed that the
theory correctly predicts the maximal migration distance but underestimates the migration of the main mass of
cells.
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I. INTRODUCTION

Glioblastoma multiforme is a highly invasive and malignant
brain tumor [1,2]. Glioma cells not only divide (proliferate)
but are also motile; a cell on a substrate is able to migrate its
own diameter in 5–10 min. Thus, cells detach from the primary
brain tumor and actively move away to the extracellular matrix.
Therefore, even if the tumor core is taken out by a surgery,
many invasive cells remain intact [3]. Here we try to investigate
the collective migration of glioma cells by using both a discrete
stochastic lattice approach and a continuum modeling. We also
performed in vitro experiments to verify some of the theoretical
predictions.

Collective cell migration (such as in wound healing) can
be described in terms of propagating cell fronts. The standard
equation that describes a front propagating from the stable
state (where cells are densely packed, u = 1, where u = ρ/ρc)
to the unstable state (where there are no cells, u = 0) is the
Fisher-Kolmogorov (or FKPP) equation, first formulated to
examine the motion of advantageous genes [4]:

∂u

∂t
= D

∂2u

∂x2
+ α u (1 − u). (1)

Here, D is the diffusion coefficient and α is the proliferation
rate. It is known that sufficiently sharp initial conditions lead
to a front moving with the minimal velocity vFK = 2

√
Dα.

Equation (1) can be derived from the underlying microscopic
lattice model, where a cell on a lattice can proliferate to
an empty neighboring site or jump there with probabilities
proportional to α and D, respectively (see, for example,
Refs. [5,6]). This derivation assumes no correlations between
the neighboring sites, so it is valid only in the limit of
small ε = α/(D/a2), where a is a lattice spacing (a cell
diameter). This is exactly what happens for glioma cells, since
the typical proliferation time is on the order of a day. The
Fisher-Kolmogorov equation proved to be quite powerful in the
context of tumor growth: it described tumor invasion and repro-
duced local tumor recurrence after a surgery [7,8]. However,
the FKPP equation has a serious drawback: it does not take into
account the important process of cell-cell adhesion, which can
lead to qualitatively different patterns of cell migration. For
example, motile glioma cells can form clusters in vitro [9] and

in vivo [10]; these clusters may potentially develop to recurrent
brain tumors. Therefore, the problem of continuum modeling
of cell-cell adhesion has recently attracted much attention [11].
In this study, we investigate front propagation phenomenon in
the framework of the FKPP equation with nonlinear diffusion,
taking into account cell-cell adhesion (Sec. II), and analyze
the structure of front interface (Sec. III). Section IV presents
new experimental observations. Section V includes a brief
discussion and summary of our results.

II. FRONT PROPAGATION FOR SMALL
CELL-CELL ADHESION

Motile glioma cells migrating on a substrate can be
described as agents moving on a two-dimensional square
lattice. Each lattice site can be empty or occupied by a cell, so
the size of a lattice site, a, equals the effective cell diameter
(of the order of 20 μm). The dynamics of the model is the
following. A cell is picked at random and then one of the
four nearest neighboring sites is randomly chosen. If this site
is empty, then a cell can proliferate or migrate there with
a certain probability. The probability for proliferation is ᾱ(n)
(we will discuss possible forms of this function later on), while
the probability for migration is [1 − ᾱ(n)] × (1 − q)n. Here n

is the number of nearest neighbors (which can vary from 0 to 4)
and q is the adhesion parameter (0 � q < 1) that characterizes
the strength of cell-cell adhesion. Indeed, a cell with q > 0
has a smaller probability to detach from its neighbors and
migrate away compared to the case of zero adhesion, q = 0.
Now, one can study front propagation on a lattice, initially
putting cells into the left part of a two-dimensional system
(x < 0), while the right part (x > 0) is initially empty. Then
cells start migrating and proliferating into the right part of
the system. Averaging over many numerical simulations of
the model, one can observe how the density profile u(x)
changes with time. After a transient period, the relatively sharp
initial cell density profile develops into the propagating front
u(ξ = x − vt) [12,13]. In order to analyze the dependence of
the front velocity v on the adhesion parameter q, we need to
derive the macroscopic continuum equation that corresponds
to the microscopic lattice model presented above.
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For small q, this derivation for a two-dimensional system
was recently performed [14]. Consider for simplicity a one-
dimensional system. Considering times much longer than the
diffusion time τ (5–10 min, which is a typical time for a cell to
travel a distance equal to its diameter) and lengths much larger
than the lattice distance a, one can write the master equation
for the probability Pn that the site number n is occupied [the
same equation can be written for the density of particles on
site n, since u = 1 × Pn + 0 × (1 − Pn)]:

τ Ṗn = −Pn(1 − Pn+1)[(1 − ᾱ)(1 − q)Pn−1+Pn+1 ]/2

−Pn(1 − Pn−1)[(1 − ᾱ)(1 − q)Pn−1+Pn+1 ]/2

+Pn−1(1 − Pn)[(1 − ᾱ)(1 − q)Pn−2+Pn ]/2

+Pn+1(1 − Pn)[(1 − ᾱ)(1 − q)Pn+Pn+2 ]/2

+Pn−1(1 − Pn)[ᾱ/2] + Pn+1(1 − Pn)[ᾱ/2]. (2)

The first four terms represent jumps from site n to sites
n − 1 and n + 1, and vice versa; the last two terms describe
proliferation into site n. Let us discuss the first term. For a cell
to jump from site n to site n + 1, the site n should be occupied
and the site n + 1 should be empty. To write this as a product
Pn(1 − Pn+1), we need to neglect correlations between Pn and
Pn+1; this assumption is reasonable when both q and ᾱ are
small parameters. The product Pn(1 − Pn+1) is multiplied by
the probability of a jump. Note that one can add Pn+1 to the
power of 1 − q since the entire term is not zero only when
Pn+1 = 0. The next step is expanding Pn−1 and Pn+1 in a
Taylor series up to the second order terms. For example,

(1 − q)Pn−1+Pn+1 � (1 − q)2P+a2 ∂2P/∂x2

� (1 − q)2P

(
1 + a2 ln(1 − q)

∂2P

∂x2

)
,

where x = an will be a continuum coordinate. After some
algebra, one arrives at the Fisher-Kolmogorov-like reaction-
diffusion equation with a nonlinear diffusion coefficient:

∂P

∂t
= ∂

∂x

[
D̄(P )

∂P

∂x

]
+ ᾱ

τ
P (1 − P ) + a2ᾱ(1 − P )

2τ

∂2P

∂x2
,

(3)

where D̄(P ) = [(a2/τ )(1−ᾱ)/2]×(1 − q)2P [1 + 2P (1−P )
ln(1 − q)]. One can safely neglect the contribution to the
diffusion term [the last term in Eq. (3)] that comes from
proliferation to the neighboring sites, since ᾱ � 1; in addition,
one can neglect ᾱ in the expression for D̄. Measuring the
distance in units of a and time in units of τ , one can write
the equation for the normalized cell density u (now, in two
dimensions) as

∂u

∂t
= ∂

∂x

[
D̄(u)

∂u

∂x

]
+ ᾱu (1 − u), (4)

where D̄(u) = (1 − q)4u [1 + 4u(1 − u)ln(1 − q)]/4 [14].
We would like to add a comment related to the speed of

front propagation in continuum and discrete lattice models.
Fronts in the FKPP equation cannot propagate with velocity
smaller than vFK = 2

√
Dα. On the other hand, front velocity

should be much smaller than the microscopic velocity, defined
as the ratio between the lattice distance and the diffusion
time: vmicr = a/(4τ ), where vmicr corresponds to a random

cell jump to one of the four neighboring sites. To make
the continuum model consistent with the underlying lattice
model, one needs to demand vFK � a/(4τ ); see Ref. [15]
for a detailed discussion of front propagation with diffusion
with a finite velocity and the FKPP local dynamics. This
leads to the following strong inequality tprolif = τ/α � 16τ ,
so the typical proliferation time should be much larger than
the typical diffusion time. Note that we used this assumption,
when deriving Eq. (3) from the discrete lattice model. Also, this
strong inequality is consistent with experimental observations
for glioma cells.

We look for the solution of Eq. (4) in the form of a
propagating front, u(x,t) = u(ξ = x − vt). Similarly to the
Fisher-Kolmogorov equation, linearization in the tail region
(near u = 0) yields the minimal front velocity. Therefore,
nonlinear diffusion has no effect on the minimal velocity.
Knowing the velocity of front propagation, we can substitute
u(x,t) = u(ξ = x − vt) into Eq. (4) and solve the resulting
ordinary differential equation in MATLAB. The resulting front
profiles are shown in Fig. 1. Interestingly, the profiles almost do
not depend on the adhesion parameter q. Consider now sharp
initial conditions u(x < 0) = 1, u(x > 0) = 0. How much
time does it take to develop the front, shown in Fig. 1? In
particular, how does the front velocity v approach the limiting
front speed vFK? In case of the standard FKPP equation, the
answer to this question is known [16]. To the leading order,
the velocity difference δv is inversely proportional to time,

δv ≡ vFK − v = 3

2λt
, (5)
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FIG. 1. (Color online) Cell density profiles for q = 0.1 (solid
line) and q = 0.6 (dashed line) as obtained from analysis of Eq. (4)
by looking for a solution in the form of a propagating front u(x,t) =
u(ξ = x − vt). The two curves are very close to each other and almost
indistinguishable from the cell density profile obtained from the
solution of the full time-dependent Eq. (4) at large times (dash-dotted
line). Symbols denote the density profiles obtained from simulations
of the discrete stochastic lattice model. Circles correspond to q = 0.6;
squares correspond to q = 0.1; the results were averaged over 100
simulations in each case. ᾱ � 0.0006.
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FIG. 2. (Color online) Velocity of front propagation (δv=vFK−v)
as a function of inverse time. For large time, the front speed v reaches
the minimal front speed in the Fisher-Kolmogorov equation, vFK ,
independently of the adhesion parameter q. The dashed curve shows
the universal long-time asymptotics given by Eq. (5); symbols are
computed by solving Eq. (4) numerically. The parameters are ᾱ �
0.0006, q = 0.1 (pluses), and q = 0.6 (rhombi).

where λ is the exponent governing the decay of front profile:
the tail of u(ξ ) decays as exp(−λξ ). We checked that the
same universal behavior occurs for the nonlinear diffusion;
see Fig. 2. Interestingly, the large time asymptotics does not
depend on the adhesion parameter q, although the subleading
terms seem to depend on q: the front velocity v approaches
vFK faster for smaller values of q. We have also checked that
the density profile at large times agrees with the one obtained
from the front propagation analysis, as in Fig. 1.

To test the theoretical results, we performed long-time
simulations of the underlying discrete lattice model for various
adhesion parameters. The cell density profiles obtained in
simulations are in a good agreement with theoretical results;
see Fig. 1. We have also measured the velocity of propagating
fronts, averaging over 100 runs for every time point. Our
observations showed that the discrete velocity first increases
with time and then saturates at large times, as expected. The
values of the obtained velocities are, however, by 5–10%
smaller than vFK ; see Fig. 3. This discrepancy was observed
earlier in the case of zero adhesion [17] due to correlations
caused by nonzero proliferation. Nonzero adhesion also
induces correlations between the neighboring sites. Although
the theoretical front velocity does not depend on adhesion, the
velocity obtained in simulations of the lattice model slightly
decreases as a function of the adhesion parameter q.

III. THE STRUCTURE OF FRONT INTERFACE

For a sufficiently wide system, patterns can develop along
the front interface, perpendicular to the direction of front
propagation. This usually occurs when the plane propagating
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FIG. 3. (Color online) Velocity of front propagation as a function
of time as obtained in simulations of the discrete lattice model for
q = 0.1 (squares) and q = 0.6 (circles). The theoretical front speed
vFK is shown by the dashed line. ᾱ � 0.0006.

front is unstable to the lateral perturbations, which leads to
fingering [18]. Such fingering patterns were also investigated
in the context of cell migration and tumor growth [19]. Here
we examine the effect of adhesion on a possible formation of
fingerlike structures in the lateral direction. It is reasonable to
assume that cell-cell adhesion prevents fingering. Indeed, from
the macroscopic point of view, it acts as a surface tension [20]
and prefers shorter interfaces. From the microscopic point
of view, a cell on a tip of a finger has a smaller number of
neighbors and therefore easily detaches; this leads again to the
planar interfaces.

However, this description is not complete. Consider for
a moment the initially uniform system of cells on a two-
dimensional lattice (cells on a substrate). It has been recently
shown [9] that the system remains uniform only if the cell
adhesion parameter q is below a certain threshold qc, given by

u = 1

2
± 1

2

[
1 − 16(1 − qc)2

q4
c

]1/8

, (6)

where u is the (average) cell density. For q > qc, the uniform
state becomes unstable [21], and phase separation and cluster-
ing occur, resembling phase transition in the Ising model [22].
How does this phenomenon affect front propagation?

The upper panel of Fig. 4 shows the results of simulations of
a discrete lattice model for a relatively large (but subcritical,
q < qc) value of adhesion parameter. The front interface is
rough [23], but no patterns in the lateral (vertical) direction are
observed. However, the situation for supercritical adhesion,
q > qc, is qualitatively different. Here, cells detaching from
the interface and migrating to the invasive region form clusters
ahead of the main front. Then the main front propagates and
merges with these clusters, but new clusters far from the front
are constantly formed; see the lower panel of Fig. 4. The
clusters have typical sizes in the lateral direction; the size
depends on the interplay between the characteristic time for
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FIG. 4. Front interface for different values of adhesion parameter:
q = 0.6 (upper panel) and q = 0.9 (lower panel). Shown are the
simulations of a discrete stochastic lattice model; every black dot
represents a cell, and every white dot corresponds to an empty site.
The system size is 400 × 400 (in units of cell diameter), and the
proliferation parameter is ᾱ = 0.0014.

cluster formation and growth and the characteristic time for
the propagation of the main front. We performed agent-based
simulation of the lattice model for various adhesion parame-
ters; the lateral system size (perpendicular to front propaga-
tion) was increased up to H = 3000 in units of lattice site a. To
estimate the typical cluster size, we computed the two-point
correlation function C(x,y) = (1/H )

∑
i[n(x,i)n(x,i + y)],

where n(x,y) is the occupancy of site (x,y), and the index i

runs from 0 to H . The correlation function was computed
at the front interface, at such values of x = x̄ where the
cell density u(x̄) = C(x̄,y = 0) = 0.5. Figure 5 shows the
results for various adhesion parameters; one can estimate
the lateral cluster size from the characteristic decay length
of C(y) ≡ C(x̄,y). The typical decay length for q < qc is a
few lattice sites; for q > qc macroscopic clusters form. We
would like to emphasize that although patterns for q > qc

may resemble fingering, the mechanism for pattern formation
is completely different.
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FIG. 5. (Color online) Lateral two-point correlation functions
for various adhesion parameters: q = 0.1 (dotted line), q = 0.6
(dash-dotted line), q = 0.85 (dashed line), and q = 0.9 (solid line).
The proliferation parameter is ᾱ = 0.0026; the simulation time is
t = 3000 × tdiff .

The upper panel of Fig. 4 resembles the experimental
snapshot shown in Fig. 7 (see below). This is consistent
with the subcritical value of the adhesion parameter in these
experiments (q < qc). In order to observe clustering in the
invasive region (as shown in the lower panel of Fig. 4), one
needs to increase cell-cell adhesion above a certain threshold.
Although we do not have quantitative experimental data, the
experiments with glioma cells transfected to both overexpress
and underexpress N-cadherins are planned in the near future.
This will allow us to compare cell front propagation for small
(subcritical) and large (supercritical) values of the adhesion
parameter.

The phenomenon of front propagation in a cell population
described above can be related to the highly important
process of wound healing. In in vitro experiments [24], the
healing characteristics of scratch wounds made to urothelial
cell cultures were investigated in low and in physiological
calcium environments. The strength of cell-cell adhesion in
experiments was controlled by the concentration of [Ca2+]:
lower concentrations of calcium suppressed adhesion, while
higher concentrations promoted it. It was observed that cells in
the low-[Ca2+] environment freely and individually migrated
into the wounded area, whereas in the case of the high
(physiological) calcium concentration, the wound edge moved
as a contiguous sheet [24] (see also [25]). It is not clear
whether the latter case can be described by our model, since
we consider only individual cell migration; in any case, this
situation corresponds to q � 1. Judging by the structure of the
wound edge [24], the case of a low concentration of [Ca2+]
(weaker cell-cell adhesion) seems to correspond to q < qc.

IV. COMPARISON WITH EXPERIMENTS

We have recently performed experiments to investigate
the migration of glioma cells on a substrate [6]. Cells
were placed on a plastic substrate and a 2 mm scratch
was made. Then cells migrated and proliferated into the
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FIG. 6. (Color online) Migration of glioma cells on a substrate.
Upper panel: Experimental snapshot at time zero, a view from above.
A 2 mm scratch was done at the beginning of experiment. Lower
panel: Cell density profiles at different time points after the beginning
of the experiment: t = 0 (solid line), t = 24 h (dash-dotted line), and
t = 120 h (dashed line). The curves are computed by solving Eq. (4)
numerically (in MATLAB) with τ = 7.5 minutes and ᾱ = 0.0024 ×
(1 + u)β , β = 1.73 [6].

gap, and the experiments lasted for 24 hours. To clarify
the geometry of the experiment, we present the snapshot
of the system (view from above) at the beginning of the
experiment; see the upper panel of Fig. 6. Every green dot
here is a cell [cells were stained with CellTracker Green
(Molecular Probes, OR) to simplify the visualization]. Using
experimental observations and simulations of the lattice model,
we estimated the parameters for cells both under normoxic
and hypoxic conditions [6]. For example, for hypoxic cells,
the diffusion time was τ � 7.5 min, the proliferation time
was tprolif � 53 h, and the estimated adhesion parameter was
q = 0.1.

Using these parameters, we numerically computed the
density profiles at different times, solving Eq. (4); see the
lower panel of Fig. 6. Since the length of experiment
(24 h) is comparable to the typical proliferation time
(53 h), one cannot expect to observe the established profile of
front propagation. Indeed, the profile after 24 h (dash-dotted

FIG. 7. (Color online) Migration of glioma cells on a substrate,
view from above; 72 h from the beginning of the experiment. The
approximate initial position of the front edge is shown by the solid
line. The system is divided into bins (dashed lines), and the width of
every bin is about 110 μm.

line) is in a transient regime; for comparison, the dashed line
(lower panel) shows the density profile after 5 days. A similar
transient was observed in a three-dimensional system, where
a tumor spheroid was grown in collagen [26].

To make a quantitative comparison between theoretical
and experimental results, we performed a new experiment
in the same geometry: Migration was measured using a
modified scratch-wound healing assay; U87–MG cells [27]
were plated in 24-well plates at confluence and incubated
overnight. Using a 1 mL pipette tip, a scratch was made
bisecting the culture well, and one half of the cell monolayer
was removed. Remaining cells were imaged at 4x objective
after the scratch was made, and each 24 h thereafter for 72 h
of incubation. We were able to observe cell migration for
72 h, analyze experimental images, and measure two quantities
that characterize the overall distance cells migrated, rmax and
rcm. To measure rmax and rcm, we divided the image into
many bins; see Fig. 7. Here, rmax is the distance to the most
distant bin, averaged over three sets of experiments, while
rcm is the distance to the center of mass of the migrating
cells: rcm = (1/N)

∑
i(niri), where ni is the number of cells

in bin i. Again, the results were averaged over three sets
of experiments. We have also performed simulations of the
stochastic lattice model, using the phenotypic parameters for
U87–MG glioma cells obtained in [6]. Employing the same
procedure, we measured rmax and rcm in simulations; the upper
panel of Fig. 8 shows rmax and rcm at three time points: 24, 48,
and 72 h. We have also computed rmax and rcm theoretically,
by numerically solving Eq. (4) with a modified proliferation
term (see the Appendix).

One can see that there is an excellent agreement between
the theoretical results, simulations of the stochastic model,
and experimental observations for rmax(t). However, both the
theoretical approach and the stochastic model systematically
underestimate rcm(t). The same conclusion follows from the
analysis of cell density profiles. The lower panel of Fig. 8
shows the number of cells in a bin as a function of distance
72 h after the beginning of the experiment. One can see that
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FIG. 8. (Color online) Cell migration: theory and experiments.
(a) The distances rmax (upper branch) and rcm (lower branch) vs time
from experiments (circles), simulations of stochastic lattice model
(squares), and solution of Eq. (4) with a modified proliferation term;,
see the Appendix (the dashed line corresponds to rmax; the solid line
corresponds to rcm). (b) Number of invasive cells as a function of
distance 72 h after the beginning of the experiment. The solid line
shows the solution of Eq. (4); the symbols show the results of three
sets of experiments. The parameters are ᾱ = 0.002 (α0 = 1/29 1/h;
tdiff = 3.5 min), q = 0.6.

while the maximal migration distance agrees with the theory,
the main mass of cells actually moved much more compared to
the predictions of the theory. Therefore, it is likely that there is
another important process that affects cell migration and is not
taken into account by our modeling. One possible candidate is
the phenomenon of chemotaxis: the gradient of chemicals can
be small at the tail of the cell density profile (so, the migration
of the most advanced cells is only weakly affected), but it can
be substantial at the front region, pushing forward the main
mass of cells. Investigating this effect is a promising avenue
of future research.

V. SUMMARY AND DISCUSSION

In this study, we analyzed the role of cell-cell adhesion in
front propagation and the structure of the invasive zone using
both the continuum approach and discrete lattice stochastic
modeling. We showed that for low adhesion, the asymptotic
value of the front velocity, computed from the model with

nonlinear diffusion, is exactly the same as in the FKPP
model. Notice, however, that simulations of the discrete
lattice model show a slight decrease in the front velocity
as cell-cell adhesion is increased. This discrepancy occurs
since the correlations were neglected when deriving the
nonlinear FKPP equation from the lattice model. Taking into
account these correlations is a promising direction of future
research.

When the width of a system is large enough, an interesting
dynamics can occur in a lateral direction. For supercritical
adhesion, the resulting patterns resemble fingering [19], but
the mechanisms of pattern formation are completely different.
The observed pattern is not related to linear instability of a
plane front, but to formation of immobile clusters ahead of
the front and subsequent coalescence between the front and
the clusters. We plan to investigate this phenomenon in detail
using the modified Cahn-Hilliard equation [13]. In order to
observe clustering in the invasive region in experiments, one
needs to increase cell-cell adhesion above a certain threshold.
One way of doing this is transfecting cells to overexpress
N-cadherins; these experiments are planned for the near
future.

We also experimentally investigated the propagation of
fronts of glioma cells on a substrate. Both the theoretical
results and the results of discrete lattice model simulations
successfully reproduced the maximal distance of migration.
However, the migration of the main mass of cells was
systematically underestimated. This may be an indication
of the presence of chemotaxis in the system; we plan to
investigate this effect in the future.
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APPENDIX : PROLIFERATION

The simplest form of the proliferation term is the usual
logistic growth: α0 u (1 − u). This assumes that the prolifera-
tion rate α0 (1 − u) is a decreasing function of local density u.
However, the proliferation rate was found to be more or less
constant at small and intermediate densities [6]; it decreases
at high densities due to the contact inhibition effect [28].
There are many ways to model this behavior by introducing an
additional parameter; for example, the generalized (Richards)
logistic growth α0 u (1 − uν) was employed in [29]. It is,
however, not clear how this term can be derived from the
stochastic lattice model. It is convenient to have a discrete
microscopic analog of the proliferation term; here we construct
such an analog. Assuming a two-dimensional square lattice,
we consider the most general case: let α0 be the probability
of proliferation in case a cell does not have neighbors, α1

be the probability of proliferation in case a cell has one
neighbor, α2 be the probability of proliferation in case a cell
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has two neighbors, and α3 be the probability of proliferation
in case a cell has three neighbors. This leads to the following
macroscopic equation:

du

dt
= u(1 − u)[α0(1 − u)3 + 3α1u(1 − u)2

+ 3α2u
2(1 − u) + α3u

3].

Since it is sufficient to have just one additional parameter
to fit the experimental results (besides the basic proliferation
rate α0), one can choose the probabilities of proliferation in
the discrete model to be α1 = γα0, α2 = γ 2α0, and α3 =
γ 3α0. γ = 1 corresponds to the usual logistic growth; certain
values of γ > 1 are consistent with the observation that
the proliferation rate is more or less constant at small and
intermediate densities and decreases at high densities. In this
case, we have

du

dt
= α0u(1 − u)[(1 − u)3 + 3γ u(1 − u)2

+ 3γ 2u2(1 − u) + γ 3u3]. (A1)

In a recent experiment, U87 glioma cell were placed uniformly
on a substrate and their number was measured as a function
of time. Figure 9 shows both experimental results [6], the
density u(t) computed from Eq. (A1), and the results from
simulations of the discrete lattice model for γ = 1.52. An
excellent agreement between the two theoretical approaches
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FIG. 9. (Color online) U87 glioma cell proliferation on a sub-
strate: cell number as a function of time. Circles show experimental
results for cell proliferation [6]; solid curve shows a theoretical fit
given by Eq. (A1); dashed curve shows the results of discrete lattice
modeling. The parameters are u0 = 0.14, α0 = 1/29 h−1, γ = 1.52.

and the experimental results is observed. The same values of
α0 and γ were used in Fig. 8.
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