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Exact partition function zeros of a polymer on a simple cubic lattice
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We study conformational transitions of a polymer on a simple-cubic lattice by calculating the zeros of the exact
partition function, up to chain length 24. In the complex temperature plane, two loci of the partition function
zeros are found for longer chains, suggesting the existence of both the coil-globule collapse transition and the
melting-freezing transition. The locus corresponding to coil-globule transition clearly approaches the real axis
as the chain length increases, and the transition temperature could be estimated by finite-size scaling. The form
of the logarithmic correction to the scaling of the partition function zeros could also be obtained. The other locus
does not show clear scaling behavior, but a supplementary analysis of the specific heat reveals a first-order-like
pseudotransition.

DOI: 10.1103/PhysRevE.86.011802 PACS number(s): 82.35.Lr, 64.60.F−, 87.15.A−, 87.15.Cc

I. INTRODUCTION

Conformational transitions of a polymer have been a subject
of interest for many years [1–34]. The coil-globule transition of
a homopolymer, also called the collapse transition, has been
most widely studied. A polymer chain in a dilute solution
is influenced by both hydrophobic interactions between the
monomers and the excluded volume effect, which cancel each
other at a special temperature T = Tθ . The polymer chain
adopts expanded and compact conformations for T > Tθ and
T < Tθ , respectively, with T = Tθ being the temperature of
coil-globule collapse transition. T > Tθ region of the polymer
system can be mapped into a magnetic system where the num-
ber of components is formally set to zero, with the infinite chain
length corresponding to the critical temperature1 [4,5]. Then
T = Tθ is a tricritical point where both of the quadratic and
the quartic terms in the corresponding field theory vanish [5].

The radius of gyration (or the end-to-end distance) R of a
polymer chain with N monomers, near T = Tθ , is generally
expressed by the scaling theory [5],

〈R2〉 ∼ N2νt f (τNφ), (1)

where the exponent νt represents the geometrical properties of
a polymer at the tricritical point, and the exponent φ, called the
crossover exponent [35,36], measures how rapidly the system
undergoes the transition as the temperature T approaches the
tricritical temperature Tθ . The reduced temperature is defined
as τ ≡ |T − Tθ |/Tθ , scaling as τ ∼ N−φ as T → Tθ . The
scaling function f (x) behaves as follows [16]:

f (x) =
⎧⎨
⎩

x[6/(d+2)−2νt ]/φ if x → ∞,

const if x → 0,

|x|(2/d−2νt )/φ if x → −∞.

(2)

Since the upper tricritical dimension is three [37], the tricritical
exponent can be obtained from the mean-field theory as
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1The temperature of the magnetic system is conjugate of the polymer

chain length N , and it has nothing to do with the temperature T of
the polymer model.

φ = 1/2 and νt = 1/2, but the scaling form (1) is expected
to have logarithmic corrections [6].

In addition to the coil-globule collapse transition which is
of second order in three dimensions [3], a first-order transition
from liquidlike globule to a solidlike phase is expected at a
temperature lower than Tθ [26–31], which has been the subject
of active research recently but less well understood than the
coil-globule collapse transition.

In this work, we enumerate the number of all possible
conformations on a simple-cubic lattice up to chain length
24. In particular, we study the zeros of the exact partition
function, which are much more sensitive indicators of phase
transition than the real-valued quantities such as specific heat.
We observe that for chain length longer than 16 there are
two distinct loci of zeros, suggesting the existence of both
the coil-globule collapse transition and liquid-solid melting-
freezing transition. The exact partition function zeros of three-
dimensional lattice polymer have been studied for simple [12]
and face-centered [9] cubic lattices for chain lengths up to 13
and 10, respectively, but these lengths were too short to reveal
two distinct loci, and the results for longer chains up to 31 [12]
were based on Monte Carlo sampling with limited accuracy.

Although the chains whose conformations are exhaustively
enumerated in this work are still much shorter than those
studied with Monte Carlo samplings, the exactness of the
calculation enables us to extrapolate the finite N data to
obtain the result in the limit of infinite chain length with
a reasonable accuracy. The chains were still too short to
extract the large N behavior of the inner locus corresponding
to the melting-freezing transition, but the tricritical collapse
temperature Tθ could be obtained from the scaling behavior
of the outer locus. The form of the logarithmic correction
to the scaling of the partition function zeros could also be
obtained. Additional analysis was performed on the exact
specific heat, which shows the first-order-like pseudotransition
near the inner locus, in accordance with the previous result
based on a chain-growth sampling [26].

II. NUMBER OF CONFORMATIONS

Conformations of a polymer chain with N monomers are
modeled by self-avoiding walks with N − 1 steps on a simple-
cubic lattice. The position of a monomer i is expressed as
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ri = (a,b,c) with integer values of the coordinates a, b,
and c. The coordinates satisfy the constraints |ri − ri+1| = 1
and ri �= rj for i �= j due to the chain connectivity and the
excluded volume effect.

We consider the Hamiltonian with the nearest-neighbor
interaction:

H = −ε
∑
i<j

�(ri ,rj ), (3)

where

�(ri ,rj ) =
{

1 if |i − j | > 1 and |ri − rj | = 1,

0 otherwise, (4)

and ε is set to a positive value to incorporate the attractive
interaction between the monomers.

Assuming that the polymer chain has an intrinsic direction,
the conformations with reverse labels i ↔ N − i + 1 for
all (i = 1,2, . . . ,N ) are considered distinct. For a generic
conformation, the rigid rotations and reflections form an
48-fold symmetries in three dimensions. Exceptions are the
cases of lower-dimensional conformations embedded in higher
dimensional spaces. In three dimensions, 24-fold and 6-fold
symmetries exist for the planar and linear conformations, since
they are invariant under transformation perpendicular to the
underlying plane and straight line. Therefore reduced numbers
of conformations, where conformations related by symmetry
are counted only once, are computed in order to prevent the
waste of computational resources [38]. Since the energy (3)
depends only on the number of intermonomer contacts K , we
classify the conformations according to the value of K . The
number of conformations �(d)(K) for a given contact K in d

dimensions, with discrete rotations and reflections considered
distinct, is obtained from the reduced number of conformations
ω(d)(K) as [38]

�(1)(K) = 2ω(1)(K) = 2δK,0,

�(2)(K) = 8ω(2)(K) + 4ω(1)(K),
�(3)(K) = 48ω(3) + 24ω(2)(K) + 6ω(1)(K).

(5)

From here on, we drop the dimension index and use �(K)
to denote �(3)(K). The number of conformations �(K) for
N = 24 is presented in Table I.

III. PARTITION FUNCTION ZEROS IN THE COMPLEX
TEMPERATURE PLANE

Partition function zeros have been the subject of interest
as a sensitive indicator of a phase transition [32–34,39–45].
Partition function zeros were introduced by Yang and Lee in
the complex fugacity plane of a fluid system and the complex
magnetic-field plane of the nearest-neighbor Ising ferromagnet
(Yang-Lee zeros), to study the phase transition driven by the
fugacity or the magnetic field [39]. Later, Fisher [40] used
the partition function zeros in the complex temperature plane
(Fisher zeros) of the square-lattice Ising model, to study the
temperature driven transition. In the thermodynamic limit, the
locus of zeros forms a continuous curve which crosses the real
axis if a transition exists. Thus the theory of partition function
zeros provides the explanation on how the partition function,
which is an analytic function of thermodynamic parameters at
a finite size, acquires the singularities necessary for a phase

TABLE I. Number of conformations �(K) as a function of the
number of contacts K for N = 24.

K �(K)

0 238306751550942
1 601441550088000
2 856234452257592
3 919771036344192
4 821203501326936
5 642255091228800
6 455089815998760
7 298905402843360
8 184343422767744
9 107615281912368

10 59739246931968
11 31649589839232
12 16004806431576
13 7677745597008
14 3470790178464
15 1454509923624
16 559820945808
17 190765562640
18 57066241104
19 13933700784

20 3113368896
21 477160080
22 30437280
23 12554256

Total 5245988215191414

transition in the thermodynamic limit. In the case of Fisher
zeros, the transition temperature in the thermodynamic limit
is the intersection point of the locus of zeros with the real
temperature axis. Therefore, the conjugate pair of zeros closest
to the positive real axis, called the first zeros, determine the
leading singular behavior of the partition function. Since the
behavior of the first zeros can be analyzed separately from
the other zeros, the phase transition can be analyzed more
accurately by computing the partition function zeros than
studying real-valued quantities such as the specific heat which
includes the effect from all the zeros.

In the case of the lattice polymer of our interest, the partition
function is written in terms of �(K) as

Z(y) =
∑
{σ }

e−βH =
∑
K

�(K)y−K, (6)

where {σ } denotes a sum over all possible conformations,
β = 1/kBT , and y ≡ exp(−βε) which ranges between 0 and
1 for positive T ; y = 0 when T = 0 and y = 1 when T → ∞.
Since the maximum number of contacts KM is finite for a
given chain length N , yKM Z(y) is a polynomial of order KM

in y. Therefore, the partition function zeros in the complex
y plane can be obtained by solving the polynomial equation
yKM Z(y) = 0 with MATHEMATICA.

Figure 1 shows the partition function zeros in the complex
temperature plane for several values of chain lengths. The
result for N = 13 [Fig. 1(a)] agrees with the previous result
obtained by Finsy et al. [12] by exact enumeration after a
change of variable, but the chain length is too short to reveal
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FIG. 1. Distribution of the partition function zeros in the complex temperature (y = e−βε) plane for (a) N = 13, (b) N = 16, and
(c) N = 24.

two distinct loci of zeros. The partition function zeros for
14 � N � 31 were studied in the same reference by Monte
Carlo sampling, but again two distinct loci were not visible.
One of the reasons is that the zeros in the complex temperature
plane of z = eβε were investigated there instead of y = e−βε =
1/z as in the current work. In the former case, the temperature
range of interest T > 0 corresponds to the real line with z > 1,
with T = 0 corresponding to z = +∞. Therefore, features
relevant to low temperature behavior of the system may be
easily missed if only a finite region near origin is considered.
In contrast, T > 0 corresponds to the segment 0 < y < 1 in
the y plane, and consequently all of the physical regions can
be examined with ease.

The exact zeros plotted in the y plane clearly exhibit the
splitting of the locus into two distinct branches already for
N � 16 [Figs. 1(b) and 1(c)]. Since there are two visually
distinct loci of zeros, we will select the first zeros for each
locus and analyze them separately in the following sections.

IV. OUTER LOCUS AND THE COIL-GLOBULE
COLLAPSE TRANSITION

The first zeros of the outer locus approach the real axis
suggesting a nontrivial transition in the thermodynamic limit
[Fig. 2(a) (open circles)]. From the scaling of the partition
function whose form is similar to Eq. (1), the first zeros y1 are
expected to scale as [33,41]

y1(N ) − yθ ∼ N−φ, (7)

where yθ ≡ exp(−ε/kBTθ ). In three dimensions correspond-
ing to the upper tricritical dimension, the scaling form (1)
is modified by logarithmic corrections [6,7,46], and conse-
quently Eq. (7) is expected to be modified to be of the form

y1(N ) − yθ ∼ N−φ(log N )−λ. (8)
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FIG. 2. (a) First zeros of outer locus in Fig. 1 for N = 10,11,12, . . . ,24 are plotted as open circles, and those of inner locus for N =
16,17,18, . . . ,24 as open squares. Since the distribution of zeros is symmetric with respect to the real axis, only the first quadrant of the
complex plane is shown. (b) Values of the real part of the first zeros of the outer locus are shown as a function of N−1/2 (solid circles) and
N−1/2(ln N )−7/11 (solid triangles) for even N with 14 � N � 24. From the extrapolation to N → ∞ (1/N = 0), the collapse temperature is
obtained as yθ = 0.7185(94) without a logarithmic correction (the open circle with an error bar), and yθ = 0.7653(173) with the correction
factor of N−1/2(ln N )−7/11 (the open triangle with an error bar). On the other hand, those of the inner locus for N = 16,17,18, . . . ,24 (open
squares, plotted as the function of N−1/2) show irregular behavior and cannot be extrapolated.
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The power of logarithmic correction λ can be estimated from
the imaginary part of Eq. (8):

Im[y1(N )] ∼ N−φ(log N )−λ, (9)

which is rewritten as

Im[y1(N )]Nφ ∼ (log N )−λ. (10)

Taking the logarithm, we get

log(Im[y1(N )]Nφ) 
 −λ log log N + const. (11)

In order to remove the constant term, the difference of Eq. (11)
for neighboring chain lengths is taken:

log

(
Im[y1(N + 2)](N + 2)φ

Im[y1(N )]Nφ

)

 −λ log

(
log(N + 2)

log N

)
,

(12)

where we used N + 2 instead of N + 1 because even and odd
number of chain lengths are expected to exhibit distinct scaling
behaviors [33]. From Eq. (12) the finite-size estimation of λ is
obtained as

λ(N ) 
 − log{Im[y1(N + 2)](N + 2)φ/Im[y1(N )]Nφ}
log ( log(N + 2)/ log N )

,

(13)

with φ = 1/2. We applied Bulirsch-Stoer (BST) method [47]
for the data of even N with 12 � N � 24 to estimate the value
in the limit N → ∞. We obtained

λ = 0.642(28), (14)

where the error is estimated by examining the robustness of
the extrapolated value with respect to perturbations of the
data points [33]. The data points are chosen to maximize
this robustness. The estimated value (14) exhibits remarkable
agreement with

λ = 7
11 = 0.636 346, (15)

appearing in the scaling of the Boyle temperature TB where
the second virial coefficient vanishes [6,18,26]:

TB(N ) − Tθ ∼ N−1/2(log N )−7/11. (16)

We then estimate the collapse temperature Tθ by taking
the real parts of the scaling relations (7) or (8). Apply-
ing the BST extrapolation for the data of even N with
14 � N � 24, the collapse temperature is obtained as yθ =
0.7185(94)[kBTθ/ε = 3.03(12)] without the logarithmic cor-
rection, and yθ = 0.7653(174)[kBTθ/ε = 3.76(32)] with the
correction factor of (log N )−7/11 [Fig. 2(b)]. As shown in
Table II, the agreement with previous results is better when
the logarithmic correction is included. It is to be noted that
although the maximum length of chain 24 considered here is
much less than those in Monte Carlo studies which is as long
as 32 000 [26], the exactness of our data enables us to perform
extrapolation to large N with reasonable accuracy.

We also note that the intersection of the locus of zeros
with the real axis is estimated to be at a temperature higher
than kBTθ/ε = 1.81(2) obtained by fitting the Monte Carlo
data of partition function zeros to a polynomial curve [12]. It
was conjectured in the same reference that the corresponding
transition is of first order, which was later conjectured to be a

TABLE II. Values of the coil-globule collapse temperature
kBTθ/ε of a lattice polymer on a simple cubic lattice with nearest
neighbor interaction, obtained in the current work (first two lines),
are compared with previous results on the same model. (PFZ: partition
function zeros; RCG: Rosenbluth chain growth; MC: Monte Carlo;
SS: scanning simulation; CBV: configurational bias vaporization;
PERM: pruned-enriched Rosenbluth method; BGY: Born-Green-
Yvon integral equation.)

Method Nmax kBTθ/ε

Exact PFZ [without (log N )−7/11 correction] 24 3.03(12)
Exact PFZ [with (log N )−7/11 correction] 24 3.76(32)
RCG [11] 2000 3.64–4.13
MC PFZ [12] 31 1.81(2)
MC [13] 40 3.714(11)
MC [14] 299 4
MC [15] 1024 3.713(7)
SS [16] 250 3.65(8)
MC [17] 100 2.972(6)
MC [18] 5000 3.721(6)
CBV [19] 200 3.45
MC [20] 1200 3.598(54)
PERM [21] 10000 3.724
PERM [22] 2048 3.717(2)
MC [23] 1000 3.71(1)
BGY [24] 600 3.745
MC [25] 16000 3.71(1)
Improved PERM [26] 32000 3.72(1)

low temperature melting-freezing transition [3]. However, we
found no evidence that the transition is of the first order. Since
there is a separate inner locus corresponding to a transition at a
lower temperature, and the intersection of the outer locus with
the real axis in the thermodynamic limit is now estimated to
be at 3.76 rather than 1.81, the outer locus seems to be the one
corresponding to the coil-globule collapse transition, which is
well established to be a second-order transition [1–3].

V. INNER LOCUS AND THE MELTING-FREEZING
TRANSITION

The scaling of inner locus is much worse than that of the
outer locus in this range of chain lengths. The distribution
of the first zeros for various chain lengths is rather irregular
[Fig. 2(a)], and the real part shows oscillatory behavior as
a function of N−1/2 [Fig. 2(b)]. Therefore, no reasonable
estimate of the transition temperature in the thermodynamics
limit could be made. This irregular behavior of the melting-
freezing transition point is also in agreement with the previous
result obtained by computing the specific heat with chain-
growth sampling for N up to 125 [26]. This irregularity is
understandable, as explained in the same reference. The effect
of melting-freezing transition which is expected to survive
in the limit of large N limit, and that of the excitation
pseudotransition which appears only near a special value of N

called magic numbers, are intermixed to give a rather complex
behavior.

To complement the result from the partition function zeros,
we performed additional analyses by computing the exact
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FIG. 3. (a) Curves of the specific heat per monomer as a function of y, for N near the magic number 18 = 2 × 32. The peak rises sharply as
N is increased from 17 to 18, but becomes flat again as it is increased to 19, due to effect of the excitation pseudotransition at N = 18. (b) Peak
temperatures of the specific heat for 8 � N � 24 as a function of chain length N , showing an irregular pattern within 0.10 < ypeak < 0.25.

specific heat per monomer,

CV (T ,N )

NkB

= 1

NkB

∂E

∂T
= β2

N

∂2 ln Z

∂β2

= (ln y)2

N
(〈K2〉 − 〈K〉2), (17)

which is plotted in Fig. 3(a) as a function of y for several
values of N . The effect of the melting-freezing and excitation
transitions are mixed to manifest themselves as one prominent
peak. In accordance with the previous result from a chain
growth sampling [26], we find that due to the effect of the
excitation transition at the magic numbers Nc = 8,12,18, . . .

satisfying Nc = L3 or Nc = L2(L ± 1), the peak becomes
sharper as N is increased from Nc − 1 to Nc and becomes
flat again at N = Nc + 1 [Fig. 3(a)]. As to be expected, the
positions and the values of the peak exhibit irregular behavior
as functions of the chain length [Fig. 3(b)], similar to the
result from the chain growth sampling [26]. The peak positions
are in the range 0.10 < ypeak < 0.25, much lower than the
coil-globule collapse transition temperature yc = 0.765 3(174)
obtained from the analysis of the outer locus of the partition
function zeros, but much closer to the inner locus of zeros,
whose real values are distributed mostly in the range 0.0 �
y < 0.1 [Fig. 2(a)].

In the microcanonical formalism, the first-order phase
transition is signaled by the existence of a region of energy
with ∂2S

∂E2 > 0 where S(E) = log �(E),2 which is invisible in
the canonical formalism [48,49]. For the system with discrete
values of energy, this condition translates into the condition
that there exists i with

S(Ei+1) − 2S(Ei) + S(Ei−1) > 0, (18)

where i labels the energy values in the ascending order.
These conditions are equivalent to the existence of β0 near

2This corresponds to a negative value of microcanonical specific
heat Cmicro ≡ −β2( ∂2S(E)

∂E2 )−1 < 0.

the transition temperature such that

e−β0E�(E) (19)

has at least two peaks corresponding to distinct phases. We see
that the chains with N � 16 as well as even value of N � 8
satisfy these properties. We plot the two peaks of e−β0E�(E)
in Fig. 4 for the largest magic number (N = 18) and the
largest number (N = 24) among the chain lengths we studied,
where the values of β0 were adjusted for each chain so that
the heights of the peaks are the same. These features clearly
show the first-order-like nature of the pseudotransition, and
are also consistent with similar results from the chain-growth
sampling [26].

In contrast to melting-freezing and excitation transition,
the effect of the coil-globule collapse transition is not readily
visible in the specific heat (Fig. 3). This is due to the fact that
the collapse transition is of the second order, where the specific
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FIG. 4. Density of states multiplied by Boltzmann factor
e−β0E�(E) as a function of E, with β0 near the transition temperature,
for N = 18 and 24. The values of β0 are adjusted for each N to make
the heights of the two peaks equal. The double peaks show a clear
sign of first-order-like transition.
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heat is continuous and only its derivative is discontinuous or
divergent.

VI. DISCUSSIONS

We studied conformational transitions of a polymer by
exhaustively enumerating the number of all possible self-
avoiding walks on a simple-cubic lattice up to chain length
24. Although the lengths of the chain are much smaller
than those studied by Monte Carlo samplings, the strength
of our result is that they are obtained from exact enumer-
ation and hence contain no errors, enabling us to make
extrapolation to infinite chain length with a reasonable
accuracy.

Furthermore, by studying partition function zeros in the
complex temperature plane, we could obtain information
which is not readily available in the real-valued quantities
such as specific heat. We observed two distinct loci of
partition function zeros in the complex temperature plane,
suggesting the existence of coil-globule collapse transition
and liquid-solid melting-freezing transition.

From the finite-size scaling of the first zeros of the outer
locus with mean-field crossover exponent φ = 1/2, the scaling
form of the first zero with logarithmic correction factor was
conjectured to be y − yθ ∼ N−1/2(log N )−7/11 as in the case
of the scaling of the Boyle temperature. The collapse transition
temperature was estimated to be kBTθ/ε = 3.03(12) and
kBTθ/ε = 3.76(32) with and without logarithmic correction,
respectively. The result shows better agreement with previous
results in the presence of the logarithmic correction, suggesting
that the conjectured form of the logarithmic correction to the
scaling of the first zeros is indeed correct.

The results for the collapse transition indicate an additional
advantage of studying the partition function zeros. Being a
second-order transition where the specific heat is finite and
continuous, the signal for the transition cannot be easily
detected by examining the peak of the specific heat [Fig. 3(a)].

On the other hand, since the partition function zeros is due
to the singularities of the partition function regardless of the
order of the transition, the signal for the transition is clearly
visible as a locus of zeros approaching the real axis as the chain
length increases (Figs. 1 and 2), making them an indispensable
tool for studying phase transitions.

The behavior of the inner locus was not regular enough
for the current chain lengths to estimate the melting-freezing
temperature in the limit of infinite chain lengths, due to mixture
of the effect from the finite-size excitation pseudotransition.
The existence of the energy region with the negative value of
microcanonical specific heat, which manifests itself as double
peaks in the density of states multiplied by Boltzmann factor
near transition temperature, shows a clear sign of first-order-
like nature of the pseudotransition.

The excitation transition is analogous to the folding
transition of HP protein, which appears only for a particular
sequence [50–52]. It would be interesting to compare the
transition behaviors of designable proteins, random het-
eropolymers, and homopolymers, all on the same lattice.

It is to be noted that although partition function zeros can
be used to investigate the existence and the property of the
phase transition, the information on the nature of the phases
themselves cannot be obtained. Various geometric parameters
of conformations contributing the phases of interest should be
analyzed in order to confirm that the transitions we observe
are indeed the coil-globule collapse and solid-liquid melting-
freezing transitions.
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