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Director fluctuations in nematic liquid crystals induced by an ultrasonic wave
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The director-density coupling theory was formulated with two parameters (u1 and u2) to explain the acousto-
optic effect in nematic liquid crystals. The assumption that the director is not able to accompany rapid oscillations
of the sound wave, so that it actually couples to the time-averaged interaction, renders it effectively a u1-
independent theory. In this paper, we investigate a route in which the time average is postponed to the end of the
calculation. This approach allows us to derive measurable quantities that depend on both u1 and u2.
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I. INTRODUCTION

A few years ago, a theory with two parameters (u1 and u2) of
the acousto-optic effect in nematic liquid crystals [1–4] based
on direct coupling between the director and density oscillations
(director-density coupling theory) has been proposed by a
number of authors [5–11]. From a theoretical point of view,
the theory has a clear advantage over the early model by Dion
and Jacob [12] in the prediction of acoustic torque density [5].
Besides, there is good agreement between the calculated and
the experimentally verified results, such as optical intensity
versus (a) applied acoustic intensity [5,6], (b) the incident
angle of the acoustic wave [6,7], (c) the thickness of the liquid
crystal layer [7], and (d) the time after an ultrasonic wave is
turned on and turned off [8]. At the same time, the model has
been successfully used to explain ultrasound-induced changes
of the spin-lattice relaxation time [9–11].

Quite recently, we have explored the interesting possibility
of observing phase transitions driven by acoustic intensity
within the framework of the director-density coupling theory
[13]. In fact, we have predicted a Fréedericksz-type transition
when the wave vector of the incident ultrasonic wave k is
parallel to the z direction. In addition, we have also shown
that for a small angle ϕ between k and the z direction and for
acoustic intensity above a critical value (that depends on ϕ)
the equilibrium state of the director is not obtained by solving
the Euler-Lagrange equation associated with the Oseen-Frank
elastic energy [14].

The director-density coupling theory has assumed that the
director is not able to accompany rapid oscillations of the local
density and, therefore, one shall average the interaction Vint at
the start [5]. At first sight, this assertion seems plausible but, as
pointed out in Ref. [11], it deserves further investigation. The
final result is, however, that the subsequent analysis is able to
derive quantities that depend only on u2, and thus the original
proposal [5] reduces to a theory with one parameter only [9].
In this context, a variant of the above assumption has been
developed in which liquid crystals are treated as anisotropic
Korteweg fluids at time and length scales over which changes
occur in the density [15–17]. To appreciate the whole theory
[5], it is desirable to obtain measurable quantities that also
make clear the presence of the u1 term in Vint. It is possible to
accomplish this task by exploring an alternative route in which
the time average is taken at the end of the calculation, letting
the experiment decide about the stage of the calculation in

which the time average should be carried out. In fact, the two
methods of taking into account the interaction predict different
results. In particular, the optical contrast ratio scales asR ∝ I 2

at low acoustic intensity I , as shown in this paper, which
differs from R ∝ I 4 reported in Ref. [5] in the same regime
of acoustic intensity. In principle, this discrepancy could be
used to invalidate our approach. As pointed out recently [15],
however, the controversy between different theories for the
acousto-optic effect is far from concluded and some criticism
[4,18,19] requires a response. The rest of our paper is as
follows. In Sec. II, the theory is presented, together with the
equation that governs the dynamics of the director and whose
perturbative treatment is studied in Sec. III. In the following, in
Sec. IV, we calculate some measurable quantities in terms of
the parameters u1 and u2 at low acoustic intensity and, finally,
concluding remarks are made in Sec. V.

II. DYNAMIC OF THE DIRECTOR

Consider a nematic liquid crystal of local density ρ(r) and
director n̂(r) = ŷ sin θ + ẑ cos θ making an angle θ with the z

direction in a cell of thickness a, as shown in Fig. 1. Let us
assume that the action of a monochromatic ultrasonic plane
wave of wave vector k and frequency ω incident into the cell
causes a rapid fluctuation in the local density in the following
form:

ρ(r,t) = ρ0 + �ρ sin(k · r − ωt), (1)

where ρ0 is the average density. The acoustic intensity is given
by

I = v3(�ρ)2

2ρ0
, (2)

where v is the sound velocity. Inhomogeneities in density
couple to n̂ and give rise to an interaction energy which
reads [5]

Vint =
∑
i,j

[
u1

(
∂2ρ

∂xi∂xj

)
+ u2

(
∂ρ

∂xi

)(
∂ρ

∂xj

)]
ninj , (3)

where x1 ≡ y, x2 ≡ z. After inserting Eq. (1) into Eq. (3), one
obtains

Vint = −u1(�ρ)(n̂ · k)2 sin(k · r − ωt)

+u2(�ρ)2(n̂ · k)2 cos2(k · r − ωt). (4)
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FIG. 1. (Color online) Cell of thickness a containing a nematic
liquid crystal in the presence of an incident ultrasonic wave of wave
vector k. On the right, the coordinate system defines the angles θ for
the director, and ϕ for the wave vector of the ultrasonic wave. The
alignment of the molecules on the left is consistent with θ (z) � 0.

Note that the u2 term can be cast in the suggestive form
u2(n̂ · E)2, where E ≡ k(�ρ) cos(k · r − ωt) plays the role of
an effective electric field [14]. However, the presence of u1

endows the theory with a richer structure.
As pointed out in the Introduction, we shall work with Vint

as it stands in Eq. (4), postponing the averaging procedure
to the end of the calculation. Moreover, in order to avoid
complications associated with phase transitions [13], we
shall assume oblique incidence. To reduce θ = θ (y,z,t) to a
function of a single spatial variable z, we make the assumption
that

|k · r| � 1. (5)

In reality, this condition can be satisfied in real experiments
with a ≈ 10−6 m and |k| ≈ 104 m−1 (ω ≈ 106 Hz). As a
consequence, the following approximations shall be used in
Eq. (4):

sin(k · r − ωt) = − sin(ωt) + O(k · r), (6)

cos2(k · r − ωt) = cos2(ωt) + O(k · r). (7)

The total energy per unit area is [5]

F =
∫ a

0
f (θ,∂θ/∂z,z,t)dz, (8)

where

f = 1
2 (K1 sin2 θ + K3 cos2 θ )(∂θ/∂z)2 + Vint, (9)

and K1 and K3 are, respectively, the Frank constants for splay
and bend [14]. The dynamics of the liquid crystal director is
determined by the equation [14]

γ
∂θ

∂t
= −δf

δθ
, (10)

where γ is the rotational viscosity coefficient and

δf

δθ
≡ ∂f

∂θ
− ∂

∂z

[
∂f

∂(∂θ/∂z)

]

= −(K1 sin2 θ + K3 cos2 θ )

(
∂2θ

∂z2

)

− 1

2
(K1 − K3)(∂θ/∂z)2 sin(2θ )

+u1(�ρ)k2 sin 2(ϕ − θ ) sin(ωt)

+u2(�ρ)2k2 sin 2(ϕ − θ ) cos2(ωt). (11)

When the ultrasonic is turned on, the initial condition reads

θ (z,t = 0) = f (z), (12)

and strong-anchoring boundary conditions are imposed at the
borders:

θ (0,t) = θ (a,t) = 0. (13)

III. PERTURBATIVE SOLUTION

Let us assume that the solution of Eq. (10) can be expressed
as a power series of the independent variable �ρ:

θ (z,t) = θ (0)(z,t) + (�ρ)θ (1)(z,t) + (�ρ)2θ (2)(z,t) + · · · .
(14)

If we insert (14) into (12) and (13), we get, respectively,

θ (0)(z,0) = f (z), θ (1)(z,0) = θ (2)(z,0) = 0, (15)

and

θ (i)(0,t) = θ (i)(a,t) = 0, i = 0,1,2. (16)

We now proceed by substituting Eq. (14) into Eq. (10) and,
after matching coefficients in powers of �ρ, we obtain the
differential equations that the functions θ (0), θ (1), and θ (2) must
satisfy. As expected, in zero order we arrive at

γ
∂θ (0)

∂t
= (K1 sin2 θ (0) + K3 cos2 θ (0))

(
∂2θ (0)

∂z2

)

+ 1

2
(K1 − K3)

(
∂θ (0)

∂z

)2

sin(2θ (0)). (17)

Whatever the initial condition f (z) is, after a short transient
period one expects that θ (0) goes exponentially to zero, since
this is the director configuration that minimizes the energy
(8) in the absence of Vint and, at the same time, satisfies
the constraint (13). This asymptotic behavior for θ (0) is made
apparent, for instance, by setting K1 = K3, given that Eq. (17)
reduces to the well known diffusion equation. This exponential
decay of θ (0) is particularly important, because our main
interest is to calculate the steady state of θ (z,t). In what
follows, therefore, we shall neglect θ (0), as well its derivatives,
from the differential equations satisfied by θ (1) and θ (2) (by
virtue of the fact that they are lengthy and not illuminating, we
do not write them). The stationary state of θ (1) is obtained by
solving the simplified equation

K3
∂2θ (1)

∂z2
− u1k

2 sin(2ϕ) sin(ωt) = γ
∂θ (1)

∂t
. (18)

The standard procedure to calculate the steady state of θ (1) is
to employ the Fourier series

1 =
∞∑

n=1

2[1 − cos(nπ )]

nπ
sin

(
nπz

a

)
, 0 < z < a, (19)
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in Eq. (18):

K3
∂2θ (1)

∂z2
− u1k

2 sin(2ϕ) sin(ωt)

×
∞∑

n=1

2[1 − cos(nπ )]

nπ
sin

(
nπz

a

)
= γ

∂θ (1)

∂t
. (20)

The advantage is that the stationary solution we are going to
obtain, i.e.,

θ (1)(z,t) =
∞∑

n=1

[Cn cos(ωt) + Dn sin(ωt)] sin

(
nπz

a

)
, (21)

automatically satisfies the boundary condition (16), although
the sign of equality in Eq. (19) is not valid for z = 0 and z = a.

After inserting Eq. (21) into Eq. (20), one obtains

Cn = 2u1γωk2 sin(2ϕ)[1 − cos(nπ )]

nπ
[
K2

3

(
nπ
a

)4 + (γω)2
] , (22)

Dn = −2u1K3k
2 sin(2ϕ)[1 − cos(nπ )](nπ )

a2
[
K2

3

(
nπ
a

)4 + (γω)2
] . (23)

Finally, the stationary state of θ (2) is obtained by solving

K3
∂2θ (2)

∂z2
+ 2u1k

2θ (1) cos(2ϕ) sin(ωt)

−u2k
2 sin(2ϕ) cos2(ωt) = γ

∂θ (2)

∂t
. (24)

In the following, we insert Eq. (21) into Eq. (24) to obtain

K3
∂2θ (2)

∂z2
+ u1k

2 cos(2ϕ)[1 − cos(2ωt)]
∞∑

n=1

Dn sin

(
nπz

a

)
− u2k

2 sin(2ϕ)[1 + cos(2ωt)]
∞∑

n=1

[1 − cos(nπ )]

nπ
sin

(
nπz

a

)

+u1k
2 cos(2ϕ) sin(2ωt)

∞∑
n=1

Cn sin

(
nπz

a

)
= γ

∂θ (2)

∂t
, (25)

with the use of Eq. (19) again. We now assume that θ (2) in the stationary state is written in the form

θ (2)(z,t) =
∞∑

n=1

[En + Fn cos(2ωt) + Gn sin(2ωt)] sin

(
nπz

a

)
, (26)

which, after being inserted into Eq. (25), yields

En = −u2k
2a2 sin(2ϕ)[1 − cos(nπ )]

K3(nπ )3
− u2

1k
4 sin(4ϕ)[1 − cos(nπ )]

nπ
[
K2

3

(
nπ
a

)4 + (γω)2
] , (27)

Fn = −u2
1k

4 sin(4ϕ)[1 − cos(nπ )]
[
2(γω)2 − K2

3

(
nπ
a

)4]
nπ

[
K2

3

(
nπ
a

)4 + (γω)2
][

K2
3

(
nπ
a

)4 + 4(γω)2
] − u2nπk2K3 sin(2ϕ)[1 − cos(nπ )]

a2
[
K2

3

(
nπ
a

)4 + 4(γω)2
] , (28)

Gn = 3u2
1k

4K3γω sin(4ϕ)[1 − cos(nπ )]nπ

a2
[
K2

3

(
nπ
a

)4 + (γω)2
][

K2
3

(
nπ
a

)4 + 4(γω)2
] − 2u2γωk2 sin(2ϕ)[1 − cos(nπ )]

nπ
[
K2

3

(
nπ
a

)4 + 4(γω)2
] . (29)

IV. MEASURABLE QUANTITIES

We now proceed by calculating the time average of θ (1) and θ (2). It follows from Eq. (21) that

〈θ (1)(z,t)〉 = lim
T →∞

1

T

∫ T

0
θ (1)(z,t)dt = 0, (30)

and from Eq. (26) we obtain

〈θ (2)(z,t)〉 =
∞∑

n=1

En sin

(
nπz

a

)
. (31)

When these average values are inserted into Eq. (14), the result is

〈θ (z,t)〉 = (I/I0)

{
sin(2ϕ)

2a2
z(z − a) + 2u2

1k
2K3 sin(4ϕ)

u2a2

∞∑
n=1

[cos(nπ ) − 1] sin
(

nπz
a

)
nπ

[
K2

3

(
nπ
a

)4 + (γω)2
]
}

+ · · · , I → 0, (32)

where

I0 ≡ v3K3

u2ρ0k2a2
(33)
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defines the scale for the acoustic intensity and we have used the Fourier series

z(z − a) = 4a2
∞∑

n=1

[cos(nπ ) − 1] sin
(

nπz
a

)
(nπ )3

, 0 � z � a. (34)

Nicely, the first term in braces is exactly the same of Eq. (8) of Ref. [13]. In addition note that this check ensures the validity
of the substitution (19) in Eqs. (18) and (24). The presence of a u1-dependent term in 〈θ (z,t)〉 is unexpected and it introduces
additional dependence on γ and ω.

Let us now calculate the local fluctuations of the director at lower order in the parameter �ρ:

�θ (z) ≡
√

〈[θ (z,t)]2〉 − 〈θ (z,t)〉2. (35)

From Eq. (14), one obtains

[θ (z,t)]2 = (�ρ)2[θ (1)(z,t)]2 + · · · = O(I/I0), (36)

and since 〈θ (z,t)〉2 = O(I/I0)2, it follows that the local fluctuations are dominated by the time average of [θ (1)(z,t)]2:

[�θ (z)]2 =
(

K3

u2k2a2

){ ∞∑
n=1

∞∑
l=1

(CnCl + DnDl) sin

(
nπz

a

)
sin

(
lπz

a

)}
(I/I0) + · · · , I → 0. (37)

Note that �θ ∝ √
I/I0, and due to the cancellation of u2 by the quantity I0 previously defined in Eq. (33), it depends only on u1

through Cn and Dn [see Eqs. (22) and (23)].
Consider now the experiment on optical transmission performed in Ref. [5]. The relevant quantity is the retardation [14]

� = 2π

λ

∫ a

0
(�neff)dz, (38)

where

�neff = none√
n2

o sin2 θ + n2
e cos2 θ

− no = no

(
n2

e − n2
o

)
2n2

e

sin2 θ + · · · , I → 0, (39)

is the effective birefringence and λ is the wavelength of the light. In the steady state, one has

sin2 θ = (�ρ)2[θ (1)(z,t)]2 + · · · , I → 0, (40)

so that

�(t) = πno

(
n2

e − n2
o

)
K3

λn2
eu2k2a

{
cos2(ωt)

∞∑
n=1

C2
n + sin(2ωt)

∞∑
n=1

CnDn + sin2(ωt)
∞∑

n=1

D2
n

}
(I/I0) + · · · , I → 0. (41)

In the limit of low I , the optical contrast ratio is

R(t) = sin2(�/2) = 1

4
�2 + · · · = 4π2u4

1n
2
o

(
n2

e − n2
o

)2
(γω)4k4K2

3 sin4(2ϕ)

u2
2a

2λ2n4
eA

2

×
[
S2

1 cos4(ωt) +
(

K3

a2γω

)2

S2
3 sin2(2ωt) +

(
K3

a2γω

)4

S2
2 sin4(ωt) − 2 cos2(ωt) sin(2ωt)

(
K3

a2γω

)
S1S3

+ 2 cos2(ωt) sin2(ωt)

(
K3

a2γω

)2

S1S2 − 2 sin(2ωt) sin2(ωt)

(
K3

a2γω

)3

S2S3

]
(I/I0)2, I → 0. (42)

At this point, we take the time average to obtain

〈R〉 = π2u4
1n

2
o

(
n2

e − n2
o

)2
(γω)4k4K2

3 sin4(2ϕ)

4u2
2a

2λ2n4
eA

2

[
6S2

1 + 4
(
S1S2 + 2S2

3

)( K3

a2γω

)2

+ 6S2
2

(
K3

a2γω

)4]
(I/I0)2 + · · · , I → 0,

(43)

where

S1 ≡ A

∞∑
n=1

[1 − cos(nπ )]2

(nπ )2
[
K2

3

(
nπ
a

)4 + (γω)2
]2 , (44)

S2 ≡ A

∞∑
n=1

[1 − cos(nπ )]2(nπ )2[
K2

3

(
nπ
a

)4 + (γω)2
]2 , (45)
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S3 ≡ A

∞∑
n=1

[1 − cos(nπ )]2[
K2

3

(
nπ
a

)4 + (γω)2
]2 , (46)

and A = [(K3/a
2)4 + (γω)4]. It should be noticed that 〈R〉

depends only on u1 [see the comment below Eq. (37)] and
that the prediction 〈R〉 ∝ I 2,I → 0 differs from that reported
in Ref. [5] (namely, 〈R〉 ∝ I 4,I → 0). We expect that this
discrepancy can be used to decide about the correctness of
each approach.

V. SUMMARY AND DISCUSSION

It has been assumed in the director-density coupling theory
that the director is unable to respond rapidly to the oscillations
of the sound wave and, therefore, we shall average the
interaction Vint at the start. This assumption is not obvious
[11] and the measurable quantities derived along this line of
reasoning [5,13] should be compared with the corresponding
ones obtained by different approaches. With this motivation,
in this paper we have studied the consequences of postponing
the time average to the stage of calculating the measurable

quantities. Remarkably, in this case the parameter u1 plays
an important role in all quantities we have calculated. In the
first place, the inclusion of u1 gives 〈θ (z,t)〉 an additional
dependence on γ and ω, although it does not affect its
linear dependence on I , as stated elsewhere [5]. We have
also calculated the local fluctuations of the director at lower
order in �ρ and have found that it depends on u1 only. This
feature dependence is also shared with 〈R〉 and suggests that
fluctuations are ignored when working with 〈Vint〉. In summary,
the main result of our paper is to show that high-frequency
oscillations of the director can be connected with measurable
quantities. In particular, we have shown that when fluctuations
are properly taken into account, one has 〈R〉 ∝ I 2.
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