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The contact angle of a fluid droplet on an heterogeneous surface is analyzed using the statistical dynamics of the
spreading contact line. The statistical properties of the final droplet radius and contact angle are obtained through
applications of depinning transitions of contact lines with nonlocal elasticity and features of pinning-depinning
dynamics. Such properties not only depend on disorder strength and surface details, but also on the droplet volume
and disorder correlation length. Deviations from Wenzel or Cassie-Baxter behavior are particularly apparent in
the case of small droplet volumes and small contact angles.
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I. INTRODUCTION

Liquid droplets on solid surfaces pose several interesting
theoretical and experimental challenges and have a direct
importance in several industrial processes. In general, the
interaction of the liquid with the surface is characterized
through the contact angle that a droplet, with known volume,
makes with the surface. For a flat, chemically homogeneous
surface, the equilibrium contact angle is easily obtained from
an energy minimization procedure. The result, known as
Young’s law, includes the three surface energies (solid-liquid,
solid-vapor, liquid-vapor, γsl , γsv , γ , respectively) with a
“weight factor” for the last one, the cosine of the contact
angle, cos θ . The dynamical approach to equilibrium is also
well understood, both for complete [1] and partial [2] wetting.
In reality, the static contact angle, as well as its dynamics, is
obviously influenced by the variations in the physicochemical
or geometrical properties of the substrate on which the droplet
spreads [1,3–5]. Such surfaces are present in an enormous
variety of industrial processes. Typical examples range from
printing and coating to painting, as well as the creation of
tailored superhydrophobic surfaces [6].

The static contact angles for surfaces with local variation
can be obtained from variants of the original energy min-
imization. The classic Cassie-Baxter treatment for spatially
varying surface energies considers a simple spatial average,
i.e., 〈γ (r)〉 [7]. Likewise, Wenzel law for surfaces with height
variations introduces the ratio—always larger than unity—of
the total surface to the projected surface as a correction
factor [8]. Clearly both Cassie-Baxter and Wenzel treatments
may not apply in practice, since a droplet spreading towards
equilibrium will encounter several pinning states in which
it can be trapped, thereby never reaching the theoretical
result [9,10]. This is a much-studied issue both experimentally
and theoretically, particularly for engineered surfaces [11–14].
Approaches that have been tried range from hydrodynamic
simulations of spreading to quasistatic considerations [15,16].
In all cases, a crucial concept is the spreading power, or
the difference of the actual contact angle from the static or
equilibrium one.

Here we analyze the consequences of surface heterogeneity
on the spreading and final static state of liquid droplets. Our
approach centers on the evolution of the droplet radius, as

defined by the contact line that separates the wetted and
nonwetted parts of the substrate. The radii are then easily
related to values of contact angle through volume conservation.
The droplet radius evolves under the influence of three factors:
(i) the imbalance in surface tension, directly related to the
spreading power, (ii) the quenched noise, induced by the
locally varying surface properties, that introduces angular
deformation in the radius, and (iii) contact line elasticity that
tends to smoothen radius angular variations.

We use contact line pinning and depinning dynamics to
follow the evolution of the droplet radius. In the initial
stages of spreading, surface tension imbalance controls the
dynamics. However, as the droplet spreads, disorder effects
start to dominate and the contact line comes to a halt before
an equilibrium state can be reached. Disorder, elasticity, and
spreading thus predict a pinning transition for the contact line,
and thus a droplet pinning radius that is sample-dependent.
We show how this depends on the the independent parameters
of the theory: disorder strength, disorder length-scale, droplet
radius and volume, and the fluid properties such as surface
energy and contact angle.

We further obtain the statistical distributions of the pinning
radius. Small droplets are strongly effected by disorder,
leading to results that are markedly different from what could
be expected within a Wenzel or Cassie-Baxter framework.
Disorder effects are apparent in the case of droplets with a
small contact angle and disorder variations that are correlated
on a short length scale with respect to the droplet radius.
The pinning predictions for the contact angle have simple
experimental consequences: they can be tested by varying for
a given type of surface the nominal contact angle (by changing
liquid for instance) and by varying the droplet size.

The rest of this paper is structured as follows. In Sec. II we
outline the basic spreading phenomena as well as the approach
to the pinning phase. Droplet spreading in the pinning phase
is analyzed in detail in Sec. III, and Sec. IV finishes with
conclusions.

II. DROPLET SPREADING AND APPROACH TO PINNING

We consider a liquid droplet with air-liquid interfacial
tension γ , density ρ, and viscosity η deposited on a
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macroscopically flat surface. When the size of the droplet
is smaller than the capillary length (γ /ρg)1/2 ∼ 1 mm, the
droplet has the overall shape of a spherical cap with basal
radius R, the air-liquid interface joining the solid surface with
contact angle θ . For a perfectly homogeneous surface, the
equilibrium contact angle θeq can be obtained from Young’s
law:

γ cos θeq = γsv − γsl, (1)

related to the equilibrium radius Req via the drop volume �:

� = π

3

R3

sin3 θ
(2 − 3 cos θ + cos3 θ ). (2)

This relation reduces to � = πR3θ/4 for small contact angles
θ � 1.

Equation (1) has to be supplemented by a correction term
involving the line tension τ , related to κ , the curvature of the
contact line [17,18]

cos θ = cos θeq + τ

γ
κ. (3)

The actual value of the line tension remains a difficult quantity
to measure, due to chemical or topographical heterogeneity of
the substrate and the difficulty to perform experimental work
with sub-micron-sized droplets. In general, the value of the line
tension can be estimated to be τ ∼ 10−10N , thus representing
a relevant correction only for droplets with nanometer range
dimensions.

Substrate disorder induces variations in the contact line
and hence in the local values of the contact angle and radius
of the droplet. If x is the local coordinate along the contact
line, the local droplet radius is R(t) + h(x,t), where R(t) is
the spatially averaged radius. Variations along the contact line
are connected to variations of the local contact angle θ (x,t),
since the overall volume of the drop is conserved. To first
order in the radius variations, the variations in the contact
angle are [1,19]

θ (x,t) = θ (t)

(
1 +

∫
dx ′ h(x ′,t)

(x − x ′)2

)
. (4)

Correction terms coming from the overall curvature of the
droplet can be neglected for small variations of the contact line.

Upon deposition on a surface, a droplet will tend to its
equilibrium shape through hydrodynamical spreading, under
the influence of uncompensated Young’s force Sy(θ (x,t)) and
disorder variations Sd (θ (x,t)) [1],

3ηl

γ

(
dR(t)

dt
+ dh(x,t)

dt

)
= Sy(θ (x,t)) + Sd (θ (x,t)), (5)

where l is a numerical factor arising from finite slip at the
contact line [1].

For small values of the contact angle θ � 1 and to first order
in contact line deviations [using Eq. (4)], the uncompensated
Young force, corrected with a term arising from the dissipation
at the contact line [1],

Sy(θ (x,t)) = tan (θ (x,t))[cos(θeq) − cos (θ (x,t))], (6)

is decomposed into an overall term independent of contact line
variations and a nonlocal term,

Sy(θ (x,t)) = S(θ (t)) + Sel(θ (t),h(x,t)), (7)

where the spreading power,

S(θ ) = θ
(
θ2 − θ2

eq

)
, (8)

is balanced by the elastic restoring force,

Sel(θ,h(x,t)) = θ
(
3θ2 − θ2

eq

) ∫
dx ′ h(x ′,t)

(x − x ′)2
. (9)

For simplicity, we consider a chemically disordered sub-
strate, which contributes a quenched random force. Again, in
the limit θ � 1 and to first order in the contact line variations,

Sd (θ ) = θ

γ
δγ (h(x,t)), (10)

where

δγ (x,h(x)) = δγsv(x,h(x)) − δγsl(x,h(x)). (11)

The noise is generally delta-correlated over two microscopic
scales ξ‖, ξ⊥, parallel and perpendicular to the direction of
spreading, dependent on the nature of the substrate. It includes
the chemical contrast (via the variation of the surface energies,
γsv and γsl , where the indices denote the solid-vapor and
solid-liquid cases, respectively) and may also include surface
roughness through local surface tilts [1,20]. In what follows,
we consider the slowly evolving dynamics of the drop. This
can be achieved experimentally by slowly depositing a droplet
on the substrate, thereby avoiding initial impaction effects.
After that, the viscous contact line dynamics dictates the (slow)
evolution of the droplet [21]. The analysis does not apply to
volatile liquids and the Ohnesorge number Oh = η/(ρRγ ) is
an appropriate parameter to estimate how viscous the liquid
must be in order to prevent inertial as well as front instability
(coming from evaporation) effects to occur [22]. We only
consider microscopic disorder such that the length scales ξ‖
and ξ⊥ are the smallest length scales of the problem. The
droplet then globally keeps a spherical shape, with disorder
inducing variations in the contact line itself.

On a disordered surface, the equilibrium contact angle of
a droplet may be markedly different from the prediction of
Eq. (1), depending on the type or disorder. For example,
bimodal chemical disorder, where a fraction f of the surface
has surface tension γ + �γ , is usually analyzed in terms of
Cassie-Baxter equation,

cos θ[CB] = cos θeq − f
�γ

γ
, (12)

which is essentially a weighted average of the equilibrium
contact angle on each surface. On the other hand, topographical
disorder (surface roughness) is encompassed within Wenzel’s
result,

cos θW = Ar cos θeq, (13)

where the relative area Ar > 1 is the ratio of the total
surface to the projected surface under the drop (see [23,24]
for recent similar analyses). It is interesting to note that,
through Wenzel’s analysis, roughness increases the wetting or
nonwetting tendencies originally present in the problem, i.e.,
if θeq < π/2, θW < θeq until cos θeq = 1/Ar at which point a
wetting film should be formed.

Both approaches however neglect that spreading is a
dynamical phenomenon and that a droplet may become pinned
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in several configurations before reaching equilibrium. Spatial
scales and correlations of the disorder are also not included.

During spreading, the contact line roughens due to the
quenched disorder of the substrate, a phenomenon analyzed
extensively in the literature [20,25–27], also in the context of
the hysteresis for advancing and receding contact lines [28].
When disorder becomes relevant the interface dynamics enters
a critical regime where pinning occurs, and the interface
propagates through avalanches. This regime is characterized
by a force Fc, at which an interface becomes pinned. Around
Fc, the contact line develops local self-affine fluctuations
(roughness) w ∼ rζ where r is the length of the interface
and ζ ∼ 0.38 the roughness exponent specific to contact line
motion [29–31].

The propagation of the interface by avalanche is character-
ized by a series a correlation lengths and critical exponents.
During the avalanche, a portion of the avalanche, with lateral
size ξ , moves by a distance w ∼ ξ ζ . The duration τ ∼ ξz of
the interface is characterized by the dynamical exponent z.
The lateral extent of the avalanches is a correlation length
related to the driving force F and the pinning force Fc by
the critical exponent ν: ξ ∼ (F − Fc)−ν . Finally, the velocity
of the interface scales as v ∼ (F − Fc)β . Critical scaling
implies that β = ν(z − ζ ) and, for nonlocal elastic interface,
ν = (1 − ζ )−1. Again, for the specific case of contact line
motion β ∼ 0.625 [32].

For any finite system, Fc and thus the corresponding
critical angle θc have a finite-size correction and in particular
a sample (and disorder) -dependent actual critical value,
with an universal probability distribution. This distribution is
characterized by its width which decays with the interfacial
length and depends only on the strength of the disorder,
measured by the prefactor of the disorder two-point correlation
function [33].

Although a complete solution of roughening requires
additional nonlinear terms, Eq. (5), together with typical scal-
ing arguments [20,26], already provides much information.
Balancing the elastic restoring force [Eq. (9)] against disorder
[Eq. (10)] yields a length scale lc = ξ⊥(3θ2 − θ2

eq)2γ /�,
where � = (δγ )2/γ describes the pinning strength of disorder.
For length scales l � lc, the elastic restoring force dominates
while disorder dominates for l 	 lc. The contact angle θp

at which pinning first becomes relevant is then obtained by
balancing the spreading power [Eq. (8)] against either the
elastic or pinning force at the length scale lc. To first order
in (θp − θeq)/θeq,

θp = θeq + 1

θ3
eq

�

γ
. (14)

Through volume conservation (using � = πR3θ/4), this
translates to a pinning radius

1

R3
p

= 1

R3
eq

+ 1

θ3
eq

�

γ

π

4�
. (15)

The volume of the droplet thus plays a crucial role. Large
droplets will enter the pinning regime already close to
equilibrium while, for smaller droplets, the ratio Rp/Req can be
much smaller than 1, even more so for strong wetting θeq � 1.

III. SPREADING IN THE PINNED PHASE

We now consider spreading on a disordered substrate. The
case of a contracting droplet (for equilibrium contact angles
in excess of π/2) is an easy extension not reported here.
The droplet has initial basal radius R0 � Req and increases
its radius through hydrodynamical spreading until Rp. Then,
disorder becomes relevant and spreading continues if the
spreading power [cf. Eq. (8)] at position R, S(R > RP ), can
overcome the combined pinning potential coming from the
disordered substrate and the elastic restoring force, denoted
Sc. At the first pinning radius, the spreading power

Sp ≡ S(Rp) =
(

4�

π

)3 1

R3
p

(
1

R6
p

− 1

R6
eq

)
∼ S0(Req − Rp),

(16)

where the last form is in the limit (Req − Rp)/Req � 1 with
S0 = 6θ3

eq/Req. Sp corresponds to a contact angle value θp. In
the similar limit, the elastic and disorder-induced forces can
be written

Sel + Sd = 2θ3
eq

∫
dx ′ h(x ′,t)

(x − x ′)2
+ θeq

γ
δγ (h(x,t)). (17)

An analysis of spreading to a radius past Rp necessitates
the knowledge of the pinning force distribution resulting from
Eq. (7). Extensive numerical simulations of a driven interface
subjected to the combined elastic-disorder force [Eq. (17)]
have shown that the probability F (S(r)) of propagating past
a radius r derives from a distribution of pinning forces for an
interface of length r , f (sc,r) [34,35],

F (S(r)) =
∫ S

0
dscf (sc,r) = 1 −

∫ Sp

S

f (sc,r)dsc. (18)

The distribution follows a scaling form

f (sc,r) ∼
(

r

ξ‖

)1−ζ

ψ

[(
Sp − sc

Sp

) (
r

ξ‖

)1−ζ
]

, (19)

with a scaling function ψ(f ) independent of the details of
the disorder [35]. Close to pinning, (Sp − sc)/Sp � 1, the
scaling function has a power law behavior, ψ(f ) ∼ f γ with
γ = ζ/(1 − ζ ).

In this critical regime, the likelihood P (R) that the droplet
radius will at least be R is obtained from a probabilistic
argument, an approach also used for indentation crack prop-
agation [34]. The motion of the droplet (see Fig. 1) consists
of a succession of steps over independent configurations of
the pinning disorder—i.e., the distance covered is divided into
uncorrelated increments. The size of the steps can be inferred
from the critical dynamics of the contact line motion. After
step i, during the sequence of jumps, the pinned contact line
explores the combined potential (elastic plus disorder) over a
distance w(R), finding a configuration that tend to minimize
its energy. Upon depinning (i.e., step i + 1), the contact line
moves, by a distance w(R) [25,26], into a new configuration.
At this point, both the contact line configuration as well as
the combined potential are completely uncorrelated with the
previous one. The appropriate step size during the sequence
of events is thus w(R), the roughness of the contact line. A
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: drop pins
eq )  (R−RS(R) =  R)cf(s  ,

FIG. 1. (Color online) Schematic of the motion through jumps
over independent pinning shells of a size (roughness) w ∼ Rζ . At
each shell, the local critical force follows the distribution of Eq. (19).
The global driving force decreases as the spreading proceeds.

droplet will thus reach a given R(t) if it has passed through
all the previous pinning zones without being stopped. The
probability of such a chain of events is

P (R) =
∏

i

F (S(Rp + i/λ) > Sc), (20)

where F (S(r) > Sc) is the probability that the spreading power
at radius r is larger than the pinning spreading power Sc. Time
is not explicitly included in this argument. In the continuous
limit, Eq. (20) can be rewritten

P (R) ≈ exp

[∫ R

Rp

ln [F (S(r))] λ(r)dr

]
, (21)

where the zone size 1/λ is related to the droplet radius and the
correlation lengths of the disorder, 1

λ(R) ∝ ξ⊥( R
ξ‖

)ζ .
For a droplet size large as compared to the scale of

heterogeneities, effective contact angle values will always
remain in the immediate vicinity of θp and the power-law
behavior of ψ at the origin can be used to approximate
ln[F (S(r))] ∝ − r

ξ‖
( Sp−S

Sp
)

1
1−ζ , which leads to

P (R) ≈ exp

{
−AR2−ζ

p

∫ R

Rp

(
r

Rp

)1−ζ (
Sp − S(r)

Sp

) 1
1−ζ dr

Rp

}
,

(22)

where the prefactor A ∝ ξ
ζ−1
‖
ξ⊥

depends only on the material
parameters through the correlation lengths of the disorder ξ‖
and ξ⊥. The use of the linearized form for the spreading power,
Eq. (16), and a change of variable x = R/Rp finally yields

P (xRp) ≈ exp

{
−AB

− 1
1−ζ R2−ζ

p

∫ x

1
du u1−ζ (u − 1)1/(1−ζ )

}
,

(23)

with B = Req/Rp − 1. The integral in Eq. (23) exhibits a
universal form which only depends on A, a disorder scale
parameter, and Rp, related to Req and the strength of the
disorder through Eq. (15). The size of the droplet is thus
implicitly present in Eq. (23).

To analyze the results, it is convenient to set ξ⊥ = ξ‖ ≡ ξ .
The relevant dimensionless ratios are then Rp/Req, a measure
of the influence of disorder strength, droplet volume, and
equilibrium wetting properties, and Req/ξ , which relates the
droplet typical size to the spatial structure of the disorder.
These ratios are made apparent from the limit x 	 1 of
Eq. (23) which reads

ln[P (R 	 Rp)] ∼ −
(

Req

ξ

)2−ζ (
Req/Rp

(Req/Rp) − 1

) 1
1−ζ

×
(

R

Req

)2−ζ+ 1
1−ζ

. (24)

The probability for the droplet to reach a given R thus decays
quickly close to Rp. This decay is sharper for drops that are
large compared to the disorder scale (Rp 	 ξ ) than for smaller
drops. This tendency to cluster around Rp drastically increases
as the ratio Req/Rp → 1, which occurs for weak disorder or
very large drops.

The importance of the ratio Rp/ξ is clearly shown in
Fig. 2, where the probability to reach a radius R as calculated
from Eq. (23) is shown for various ratios Rp/ξ and Rp/Req.
For values Rp/ξ 	 1, this probability drops sharply and the
drop remains essentially pinned at a radius Rp. It is only for
relatively small values of this ratio that the probability to reach
a radius larger than Rp increases significantly. In other words,
occasionally for small droplets the spreading can get closer to
the equilibrium radius.

The effect of disorder on the values of contact angles at
pinning can then be elaborated by comparing the predicted
value to θeq using volume conservation, Eq. (2). Figure 3 shows
the average contact angles calculated from the theory for two
values of θeq. At large values of the ratio Req/ξ , the final value
of the contact angle is essentially determined by the value of
Rp, i.e., strong disorder, characterized by a small ratio Rp/Req

leads to a larger apparent contact angle. In such a case, it is

0.8 0.85 0.9 0.95 1
x = R/R

eq

0

0.2

0.4

0.6

0.8

1

P
(R

 >
 x

)

FIG. 2. (Color online) Probability for the droplet to reach a given
radius R. The probability P (R) = 1 until R = Rp after which it
decays depending on the values of the ratios RP /Req and Req/ξ . Solid,
dotted, and dashed lines respectively correspond to Req/ξ = 25, 100,
and 400, while two values, Rp/Req = 0.8 (left set of curves) and
Rp/Req = 0.9 (on the right) are used.
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FIG. 3. (Color online) Average values of the contact angle at
pinning for (a) θeq = 75◦ and (b) θeq = 30◦. The contact angle is
shown as a function of Req/ξ for three ratios Rp/Req = 0.8,0.9, and
0.95.

only for a small value of the ratio Req/ξ that the apparent
contact angle can be quantitatively close to the expected θeq.

In Fig. 4 we show for three different disorder (�) values
how Rp/Req itself scales for various contact angles and a fixed
ξ taken to be 10 micrometers. The values of � are taken to
have representative values; note that the parameter measures
the relative variation of the surface energy due to chemical
disorder or due to roughness. Out of a variety of cases, we
depict nine representative ones to show the trends. Figure 4(a)
shows the actual droplet volumes at hand for each contact
angle and disorder, while Fig. 4(b) shows the ratios of the
pinning radius to the equilibrium one. The trends themselves
are obvious (larger contact angles lessen the effect of pinning,
while stronger disorder works to the other direction), and the

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
θ

eq

0.1

1

10

Ω
(θ

eq
) 

[n
l] 0.001

0.005
0.01

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
θ

eq

0

0.2

0.4

0.6

0.8

1

R
p / 

R
eq

0.01
0.005
0.001

(b)

(a)

FIG. 4. (Color online) Volumes of droplets in nanoliters as a
function of contact angle (in degrees, the values are from 5.7◦ to
18.1◦) and disorder strength � (a). (b) The resulting values of Rp/Req.
The disorder scale ξ is set to 10 μm.

final prediction is then to be computed similarly to Fig. 3 for
all the cases, separately.

It is thus interesting to note that the wetting properties of the
surface, present through θeq, also enter explicitly the problem
through the values of Rp and Req. This is in contrast with Wen-
zel law or Cassie law which relate the apparent contact angles
to the equilibrium contact angle through a set of constants
independent of the nature of the surface or of the liquid. For
naturally wetting surfaces (cos θeq > 0), Wenzel law predicts
that the apparent contact angle is larger than the equilibrium
contact angle. This however neglects the fact that spreading
is a dynamical process and that pinning of the contact line
impedes the droplet from reaching an equilibrium state.

The temporal aspects of the radial pinning process can
be obtained from the relation between the interface velocity
and the driving force in the critical regime. Hydrodynamical
spreading of the droplet occurs until the droplet reaches the
radius Rp, at time Tp ∼ (Rp/Req)9(Rpη/γ )/θ3

eq. At this point,
the spreading velocity Vp ≡ V (Rp) = γ θp(θ2

p − θeq)/rηl.
After this point, motion proceeds by avalanches, with a

velocity

V (R) = V (Rp)

(
Req − R

Req − R

)β

, (25)

where again β ∼ 0.62. The time needed to move across a given
shell of thickness λ−1(r) is simply �T (r) = λ−1(r)/V (r)
and the total time to pinning is obtained from summing the
successive contributions of each shells. In the continuous limit,
T (R) = Tp + (Req−R)β

Vp

∫ R

Rp

1
(Req−r)β dr , which is calculated to

T (R) = Tp + 1

1 − β

Req

Vp

(
1 − Rp

Req

)β
[(

1 − Rp

Req

)1−β

−
(

1 − R

Req

)1−β
]

(26)

and can be reduced to T (R) − Tp ∼ (R − Rp)/Vp in the limit
of strong pinning (Rp/Req � 1). This result, averaged over
the distribution of pinning radius P (R), is illustrated in Fig. 5

0.5 0.6 0.7 0.8 0.9 1
R /R

eq

0

0.5

1

1.5

T
(R

/R
eq

) 
- T

p

R
p
/R

e
 = 0.5

R
p
/R

e
 = 0.75

FIG. 5. (Color online) Additional time needed for a spreading
droplet to reach the radius R > Rp after reaching Rp [Eq. (26)] for
two different values of the ratio Rp/Req = 0.5 and 0.75.
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and shows that the time to reach a given R > Rp increases as
a function of Rp/Req, particularly for R close to Req.

IV. CONCLUSIONS

To summarize, we have presented a statistical physics
theory of droplet asymptotic contact angles on heterogeneous
surfaces. This allows us to identify the important quantities,
such as the first pinning radius Rp and the ratios to the disorder
scale and the equilibrium radius, Rp/Req and Rp/ξ . The
theory presented here applies to droplets with typical lengths
above the nanometer scale, such that line tension effects
are irrelevant. It is also important that radius variations are
smaller than the radius of the droplet, for it to keep a compact
circular shape on average. This last requirement implies that
the disorder length scale ξ < Req. The contact line dynamics
model loses its validity in certain cases—one example is when
long-range microscopic forces make it invalid, or when the
presence of features such as corrugations make it so that
the coarse-grained surface tension indirectly assumed is not
present.

Our results predict a dependence of the average contact
angle on the volume of the droplet. At constant disorder
strength, we expect small droplets to exhibit a markedly larger
contact angle at pinning than larger droplets, even more so
when the droplet is large with respect to the spatial scale
of the disorder. The predictions of the theory can be easily

tested through repeated spreading experiments using droplets
of different volumes on the same substrate, so that the first
pinning radius Rp [cf. Eq. (15)] only depends on the drop
volume. It is also possible to test the theory using different
liquids on a given surface. Large variations of the apparent
contact angle due to the final stage of spreading are expected
for small droplets. Many of the consequences of the theory of
elastic manifolds are in contrast to static, energy-minimization
based results as the Wenzel or Cassie-Baxter laws.

Further theoretical developments include extending the
theory presented in this paper to receding radii on hydrophobic
surfaces and to develop similar arguments for a structured
surface on which gas phase pockets can develop. It is also
clear that the theory can be tested through large scale nu-
merical simulations of the relevant hydrodynamics equations.
Extending the probabilistic argument to the finite-temperature
very-long time creep motion regime, relevant for contact lines
as elastic manifolds, is also possible.
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