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Numerical computations of faceted pattern formation in snow crystal growth
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Faceted growth of snow crystals leads to a rich diversity of forms with remarkable sixfold symmetry. Snow
crystal structures result from diffusion-limited crystal growth in the presence of anisotropic surface energy and
anisotropic attachment kinetics. It is by now well understood that the morphological stability of ice crystals
strongly depends on supersaturation, crystal size, and temperature. Until very recently it was very difficult to
perform numerical simulations of this highly anisotropic crystal growth. In particular, obtaining facet growth in
combination with dendritic branching is a challenging task. We present numerical simulations of snow crystal
growth in two and three spacial dimensions using a computational method recently introduced by the present
authors. We present both qualitative and quantitative computations. In particular, a linear relationship between
tip velocity and supersaturation is observed. In our computations, surface energy effects, although small, have a
pronounced effect on crystal growth. We compute solid plates, solid prisms, hollow columns, needles, dendrites,
capped columns, and scrolls on plates. Although all these forms appear in nature, it is a significant challenge to
reproduce them with the help of numerical simulations for a continuum model.
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I. INTRODUCTION

Snow crystals grown from a supersaturated vapor lead
to a variety of complex and often very symmetric patterns.
Crystallization from vapor is a fundamental phase transition,
and good understanding of it is crucial for many applications.
Numerous experiments have been performed, and compila-
tions of photographs of artificial and natural snowflakes reveal
their beauty and complexity; see [1] and the review [2].
The precise forms of snow crystals depend in a very subtle
way on temperature and supersaturation. Nakaya [1] analyzed
these dependencies in detail and combined his observations
in his by now famous Nakaya snow crystal morphology
diagram; see Fig. 1. At temperatures just below the freezing
temperature, thick plates grow at lower supersaturations and
platelike dendritic forms appear at higher supersaturations.
At temperatures around −5 ◦C, solid prisms grow at lower
supersaturations and hollow columns and needlelike crystals
grow at higher supersaturations. If the temperature is decreased
below −10 ◦C, one observes thin solid plates at low super-
saturations, whereas dendrites form at high supersaturations.
Below −25 ◦C, again columns form at high supersaturations.
The results from Nakaya [1], which led to the snow crystal
morphology diagram, have been confirmed by many subse-
quent experimental studies. Although the experiments give a
clear picture, the physics behind the snow crystal morphology
diagram are not yet understood.

A continuum mathematical modeling of snow crystal
growth leads to a quasistatic diffusion problem for the diffusion
of the vapor molecules. The diffusion equation has to be solved

*harald.garcke@mathematik.uni-regensburg.de

together with rather complex boundary conditions on the free
boundary between vapor and solid. The conditions on this
interface are given by the continuity equation relating the flux
of vapor molecules onto the interface to the interface velocity
and an equation describing the attachment kinetics, taking
surface energy effects into account. In the latter condition,
which is a modified Gibbs-Thomson law, the hexagonal
anisotropy of snow crystals also is a factor. Altogether, a highly
nonlinear free boundary problem is obtained.

Many of the parameters in snow crystal growth models
are not known with sufficient precision. In particular, the
surface energy density as a function of orientation is not known
in detail. A similar statement applies to the condensation
coefficient, which embodies the attachment kinetics of how
water molecules are incorporated into the ice lattice. For
example, it is not known how the condensation coefficient
depends on the crystal orientation; see [2] and the references
therein for details. Let us discuss the difficulties arising in this
context in more detail. The surface structure of ice is quite
complicated, and phenomena like surface roughening, surface
melting, and kinetic roughening can occur; see, for example,
[2,4]. In particular, whether and how these phenomena occur
depend on the temperature and on the growth velocity. It is
understood that while at low temperatures the equilibrium
structure is close to a flat, faceted surface, above a roughening
temperature the crystal becomes completely rough, and just
below the melting temperature a quasiliquid layer forms on the
solid surface. It is frequently argued that surface melting can
be viewed as a more developed form of surface roughening.
For further information on surface roughening and surface
melting, we refer readers to [2,4–8]. Finally, let us mention
that in [2, §2.6] it is discussed how the surface structure and,
in particular, how surface roughening and kinetic roughening
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FIG. 1. (Color online) The Nakaya diagram illustrates which
snow crystal forms appear at different temperatures and supersat-
urations. This figure is taken from [3]; see also [2].

may affect the condensation coefficient in the Gibbs-Thomson
law, although a precise qualitative description of their influence
remains an open problem. Hence in this paper, for simplicity,
we assume that the attachment coefficient only depends on
the local orientation of the growing crystal. Nevertheless, we
demonstrate that computations for this basic continuum model
manage to produce many realistic snow crystal shapes.

Because it is highly nonlinear and geometrically very
involved, the complete free boundary problem is difficult to an-
alyze theoretically. However, there exists a large body of liter-
ature on numerical computations for diffusion-limited growth
and the formation of dendrites, which we now briefly discuss.

Numerical approaches for crystal growth based on a contin-
uum description usually employ either sharp interface models,
in which the solidification front is tracked explicitly, or phase
field models, in which the solidification front is modeled by a
thin diffusional layer. In sharp interface approaches the front is
described with the help of a parametrization (see [9–14]) or by
using a level set function (see [15]). In a phase field method, a
new order parameter—the phase field—is introduced, which at
the interface rapidly changes its value between two fixed values
that describe the different phases; see [16–20]. A popular
discrete model for the simulation of crystal growth is cellular
automata; see [21–23]. We refer in particular to the pioneering
work of Gravner and Griffeath [23], who were able to compute
three-dimensional evolving patterns which resemble growing
snow crystals. Moreover, molecular dynamics simulations
are used to understand the surface structure and the growth

TABLE I. Values of u∂� = csuper/csat depending on T and �super.

Supersaturation �super (g/m3)

T (◦C) 0.01 0.02 0.05 0.1 0.2 0.3
−1 0.002 0.005 0.011 0.023 0.048 0.069
−2 0.003 0.005 0.012 0.025 0.049 0.074
−5 0.003 0.006 0.016 0.031 0.063 0.094
−10 0.005 0.010 0.024 0.048 0.095 0.143
−15 0.007 0.015 0.037 0.074 0.147 0.221
−30 0.030 0.060 0.150 0.300 0.601 0.901

FIG. 2. Scaled Wulff shape (left) and polar plot (right) in R2 for
Eq. (12) with ε = 0.01 and θ0 = 0.

kinetics of ice [24–26]. Although many computations have
been performed, a quantitative numerical description of facet
growth in combination with dendritic branching is missing.

In recent research a new parametric approach for interface
motion has been developed [27,28]. In this method the
mesh quality of the interface approximation, which is given
by a polyhedral surface mesh, does not deteriorate during
the evolution—most earlier approaches had to deal with
mesh degeneracies, for example, by remeshing the interface
approximation. In addition, the present authors were able to
include anisotropy effects into curvature-driven hypersurface
evolution in a numerically stable way. This allows the
method to compute in situations in which the anisotropy is
faceted; see [14,29–31]. We remark that extending the ideas
from [29,30] on the stable approximation of faceted interface
growth to a phase field approach forms part of the authors’
current research [32].

It is the goal of this paper to demonstrate that with the nu-
merical method introduced in Refs. [14,27,28,30] it is possible
to compute a significant number of different types of snow
crystals, such as solid plates, solid prisms, hollow columns,
needles, dendrites, capped columns, and scrolls on plates.

In our numerical computations the anisotropy in the
surface energy density has a large impact on the resulting
morphologies. Of course, numerical simulations alone cannot
decide whether surface energy effects are important in order
to obtain patterns in snow crystal growth, but a comparison
of numerical computations with experiments might help us
understand this issue better. In addition, it might be possible to
obtain more precise estimates for the size of the condensation
coefficient as a function of orientation. In particular, there is
the possibility that the condensation coefficient depends on the
supersaturation (see, for example, [33]) and the implication
of this fact on pattern formation in crystal growth will be
considered in future research.

We also present some quantitative results, which first of all
show the relative sizes of the quantities entering the surface

FIG. 3. Scaled Wulff shape (left) and polar plot (right) in R3 for
Eq. (13) with ε = 0.01.
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FIG. 4. Scaled Wulff shape in R2 for Eq. (15) with σ = 1 (left)
and σ = 5 (right) with ε = 0.01.

attachment kinetics. In addition, we show that the tip velocity
for a dendrite growing into a supersaturated vapor depends
linearly on the supersaturation. This linear relationship has
been already observed in experiments for growing needles
(see [34]), and our computations might help to relate parame-
ters in the theoretical model to experiments.

II. A CONTINUUM MODEL FOR SNOW
CRYSTAL GROWTH

We consider a continuum model for snow crystal growth,
which consists of an ice crystal growing from water vapor, as
discussed, for example, in Refs. [2,35], and nondimensionalize
it. Let c denote the water vapor number density in the gas phase.
The diffusion equation in the gas phase (see [2, Eq. (2)]) is then

ct − D�c = 0 in �+(t), (1)

where �+(t) is the domain occupied by the gas phase and D
is the corresponding diffusion constant. The mass balance at
the gas-solid interface 	(t) gives rise to

D ∂c

∂�ν = (csolid − c)V on 	(t), (2)

where csolid ≈ 3 × 1028 m−3 is the number density for ice. In
addition, �ν is the unit normal to 	(t) pointing into �+(t) and
V is the velocity of 	(t) in the direction �ν. In Ref. [2, Eq. (3)]
the term c V is neglected since c � csolid. Furthermore, taking
surface tension effects and attachment kinetics into account,

we require (cf. [2, Eq. (23)])

c = csat

(
1 − δ κγ + V

β(�ν) vkin

)
on 	(t) .

Here vkin is the kinetic velocity, δ = γ̂ /(csolid K T ) ≈ 1 nm =
10−3 μm, where γ̂ ≈ 0.1 Jm−2 represents the typical order
of the surface tension of ice, K ≈ 1.4 × 10−23 JK−1 is the
Boltzmann constant, T is the temperature, and csat = csat(T )
is the equilibrium number density above a flat ice surface,
which is dependent on temperature. In addition, κγ is the
anisotropic mean curvature which incorporates the hexagonal
anisotropy of the surface energy density. Moreover, β is the
condensation coefficient, denoted by α in Ref. [2], which
depends on the orientation of the crystal via the normal �ν.
Finally, we complement (1) with the boundary condition

c = c∞ on ∂� = ∂�+(t) \ 	(t), (3)

where c∞ := csat + csuper describes the water vapor number
density far away from the interface. Here, for convenience,
we choose a domain � ⊂ Rd , d = 2,3, with �+(t) ⊂ �, that
is large enough so that boundary effects can be neglected.
Moreover, csuper is related to the supersaturation �super by

�super = mH2O csuper, (4)

with mH2O ≈ 3 × 10−23 g denoting the mass of a water
molecule. We recall that the supersaturation �super appears on
the vertical axis in Fig. 1.

It remains to introduce the anisotropic mean curvature κγ .
Instead of a constant surface energy density, we choose γ to
be dependent on the orientation of the interface. The effect
of the underlying crystal structure is encoded into the surface
energy by allowing γ = γ (�ν), where as stated above �ν is
the unit normal to the solid boundary 	(t) pointing into the
vapor region �+(t). The total surface energy of an interface
	, scaled by the typical order γ̂ ≈ 0.1 Jm−2, is now given by
the surface integral ∫

	

γ (�ν)ds.

FIG. 5. [� = (−4,4)2, u∂� = 0.004, γ = β = γhex] 	h(t) for t = 0, 5, . . . ,50 (left) and for t = 0, 50, . . . ,500 (right). Parameters are
Nf = 256, Nc = 4, K0

	 = 16, and τ = 0.1.
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FIG. 6. [� = (−4,4)2, u∂� = 0.01, γ = β = γhex] 	h(t) for t = 0, 5, . . . ,50 (left), and for t = 0, 50, . . . ,200 (right). Parameters are
Nf = 512, Nc = K0

	 = 16, and τ = 5 × 10−3.

It is convenient to extend γ to be a positively homogeneous
function of degree 1; that is, we define γ̃ ( �p) = | �p| γ ( �p/| �p|)
for all �p �= �0 and refer to γ̃ as γ from now on. The first
variation of the above energy can now be computed as

κγ := −∇s · γ ′(�ν),

that is, d
dt

∫
	(t) γ (�ν)ds = − ∫

	(t) κγ Vds, where ∇s · is the
tangential divergence on 	 and γ ′ is the gradient of γ (see,
e.g., [36–38] and also [14,30]).

We now nondimensionalize the problem. As a length scale
we choose R, which we set to be 100 μm. As a time scale we
choose

t̃ = R2

D
csolid

csat
.

In addition, we nondimensionalize the concentration by
introducing

u = c − csat

csat
. (5)

Then, in terms of the new independent variables �̂x = �x/R and
t̂ = t/t̃ , we obtain (on dropping the ˆ notation for the new
variables for ease of exposition) the equations

csat

csolid
∂tu − �u = 0 in �+(t),

∂u

∂�ν = V on 	(t), (6)

ρ V
β(�ν)

= α κγ + u on 	(t), (7)

FIG. 7. [� = (−4,4)2, u∂� = 0.04, γ = β = γhex] 	h(t) for t = 0, 0.5, . . . ,5 (left), and for t = 0, 5, . . . ,40 (right). Parameters are
Nf = 1024, Nc = K0

	 = 64 and τ = 2.5 × 10−3.
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FIG. 8. [� = (−4,4)2, u∂� = 0.2, γ = β = γhex] 	h(t) for t = 0, 0.04, . . . ,0.4 (left), and for t = 0, 0.4, . . . ,6.4 (right). Parameters are
Nf = 2048, Nc = K0

	 = 128, and τ = 2.5 × 10−4.

where ρ := (D csat)/(R csolid vkin) and α := δ/R. Since csat �
csolid, we simplify the first equation to

�u = 0 in �+(t). (8)

We choose γ and β of order 1, and hence it is important to
specify the order of magnitude of the quantities ρ and α in
Eq. (7). Taking the values of csat/csolid and vkin from the table
in [2, p. 866] into account, we observe that

csat

csolid vkin
≈ 0.71 × 10−8 s (μm)−1

independently of the temperature T . Moreover, for the time
scale t̃ , which depends on csat and hence on T , we obtain
a range from 100 s at −1 ◦C to 1300 s at −30 ◦C. These
time scales seem to be realistic when comparing with the
experiments reported in Refs. [2,39].
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FIG. 9. (Color online) [� = (−8,8)2, u∂� = 0.04, γ = γhex,
β = 1] Approximations of ρ V̂ (black, solid), α κavg

γ (blue, dashed),
and α κmax

γ (red, dashed) plotted over the time interval [0,50]. Here ρ

and α are as in Eq. (9).

For the diffusion constant of water vapor in air we take
D = 2 × 107 (μm)2 s−1 (see [2, p. 866]), which is valid at a
pressure of 1 atm. With the values of δ and R mentioned above
we obtain

ρ ≈ 1.42 × 10−3, α = δ/R ≈ 10−5 . (9)

If not otherwise stated, we always choose these parameters
in all the numerical computations described in Sec. IV. For the
boundary condition we set, recalling Eqs. (3) and (5),

u = u∂� := csuper

csat
on ∂� . (10)

With the help of the table in Ref. [2, p. 866] we compute several
exemplary values for the fraction in Eq. (10) for different
values of the temperature T and the supersaturation �super; see
Table I. In effect, we appear to have reduced the two-parameter
variation of the diagram in Fig. 1 to the single parameter u∂�

in Eq. (10). However, in our numerical simulations of snow
crystal growth we vary both u∂� and the kinetic coefficient
β. Although in reality not much is known about the possible
shapes and dependencies of β, it is known that β strongly
depends on T . Thus varying β in our numerical computations
may be interpreted as simulating different (yet unknown)
temperature regimes.

III. NUMERICAL METHOD AND ANISOTROPIES

For the numerical results in this paper we employ the
finite-element approximation introduced by the authors in
Refs. [14,40] in order to approximate solutions of Eqs. (6)–(8),
and (10). In the method a uniform time step τ > 0 is employed
and the evolution of the crystal surface is tracked with the
help of parametric meshes 	h that are independent from
the bulk meshes T h on which the approximation uh of u is
computed. The scheme uses an adaptive bulk mesh that has a
fine mesh size hf around 	h and a coarse mesh size hc further
away from it. Here hf = 2 H

Nf
and hc = 2 H

Nc
are given by two

integer numbers Nf > Nc, where we assume from now on that
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FIG. 10. [� = (−4,4)2, u∂� = 0.004]. We choose γ = γhex, ρ = 0 with parameters Nf = 256, Nc = 4, K0
	 = 16, and τ = 0.1 and plot

	h(t) for t = 0,50, . . . ,500 on the left, and we choose α = 0, β = γhex with parameters Nf = 2048, Nc = 128, K0
	 = 1024, and τ = 10−3 and

plot 	h(t) for t = 0, 3 on the right.

� = (−H,H )d . The initial parametric mesh 	h(0) consists of
K0

	 vertices, and this mesh is locally refined, where elements
become too large during the evolution.

In order to successfully model the evolution of anisotropic
interface evolution laws the authors introduced a stable
discretization in Refs. [14,30]. We now discuss how γ and β

have to be chosen in order to model situations with a hexagonal
anisotropy. In this paper, we choose surface anisotropies of the
form

γ ( �p) =
L∑

�=1

γ�( �p), γ�( �p) := [ �p · G� �p]
1
2 , (11)

where G� ∈ Rd×d , for � = 1 → L, are symmetric and positive
definite matrices, and �p = (p1, . . . ,pd )T ∈ Rd denotes a
vector in Rd . We remark that anisotropies of the form (11)

admit a formulation of κγ in Eq. (7), which can be discretized
in a simple and stable way; see [14,30]. We now demonstrate
that these forms of γ also allow one to model a hexagonal
surface energy in a simple way. To this end, let lε( �p) :=
[ε2 | �p|2 + p2

1 (1 − ε2)]
1
2 = [p2

1 + ε2 ∑d
i=2 p2

i ]
1
2 for ε > 0.

Then a hexagonal anisotropy in R2 can be modeled with
the choice

γ ( �p) = γhex( �p) :=
3∑

�=1

lε

[
R

(
θ0 + �

π

3

)
�p
]
, (12)

where R(θ ) = ( cos θ sin θ

−sin θ cos θ ) denotes a clockwise rotation
through the angle θ and θ0 ∈ [0, π

3 ) is a parameter that rotates
the orientation of the anisotropy in the plane. The Wulff shape
of Eq. (12) for ε = 0.01 and θ0 = 0 is shown in Fig. 2, together

FIG. 11. [� = (−4,4)2, u∂� = 0.004]. We take γ = γhex, β = 1, Nf = 256, Nc = 4, K0
	 = 16, and τ = 0.1 on the left and plot 	h(t) for

t = 0, 50, . . . ,500. We take γ = γiso, β = γhex, Nf = 512, Nc = 16, K0
	 = 16, and τ = 10−2 on the right and plot 	h(t) for t = 0, 50, . . . ,500.
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FIG. 12. [� = (−4,4)2, u∂� = 0.004, γ as in Eq. (15) with σ = 1 (left) and σ = 5 (right), β = γhex] 	h(t) for t = 0, 50, . . . ,500. Parameters
are Nf = 256, Nc = 4, K0

	 = 16, and τ = 0.1.

with its polar plot P := {γ ( �p) �p : | �p| = 1}. For more details
on Wulff shapes and polar plots we refer to [38,41].

In order to define anisotropies of the form (11) in R3,

we introduce the rotation matrices R1(θ ) := (
cos θ sin θ 0

− sin θ cos θ 0
0 0 1

) and

R2(θ ) := (
cos θ 0 sin θ

0 1 0
− sin θ 0 cos θ

). In this paper, we consider

γ ( �p) = γhex( �p) := lε

[
R2

(
π

2

)
�p
]

+ 1√
3

3∑
�=1

lε

[
R1

(
θ0 + �

π

3

)
�p
]
, (13)

which is relevant for the simulation of snow crystal growth. Its
Wulff shape for ε = 0.01 is shown in Fig. 3, together with its
polar plot.

FIG. 13. [� = (−4,4)2, u∂� = 0.04, γ = γiso, β = βhex,L] 	h(t)
for t = 0, 0.5, . . . ,5. Parameters are Nf = 2048, Nc = K0

	 = 256,
and τ = 10−3.

We note that the Wulff shape of Eq. (13) for ε → 0
approaches a prism, where every face has the same distance
from the origin. In other words, for Eq. (13) the surface energy
densities in the basal and prismal directions are the same. We
remark that if W0 denotes the Wulff shape of Eq. (13) with
ε = 0, then the authors in Ref. [23] used the scaled Wulff shape
1
2 W0 as the building block in their cellular automata algorithm.
In addition, we observe that the choice (13) agrees well with
data reported, for example, in Ref. [42, p. 148], although
there the ratio of basal to prismal energy is computed as
γ B/γ P ≈ 0.92 < 1. In order to be able to model this situation
as well, we generalize the choice (13) to

γ ( �p) = γ TB
hex ( �p)

:= γTB lε

[
R2

(
π

2

)
�p
]

+ 1√
3

3∑
�=1

lε

[
R1

(
θ0 + �

π

3

)
�p
]
,

(14)

so that now γ B/γ P = γTB.

 0
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 0  0.1  0.2  0.3  0.4  0.5

FIG. 14. [� = (−4,4)2, γ = γhex, β = 1]. Best linear fit for the
tip velocity V̂ against the supersaturation u∂�.
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FIG. 15. [� = (−4,4)2, γ = β = γhex] 	h(t) for t = 0,10, . . . ,200 [left, (19)] and for t = 0, 2, . . . ,12, 50, 52, 54, 56 [right, (20)].
Parameters are Nf = 1024, Nc = K0

	 = 64, and τ = 10−3.

A more generalized form of Eqs. (12) and (13), which also
fits into the framework (11), is given by

γ ( �p) = γhex( �p) + σ | �p|, (15)

where σ � 0 is a fixed parameter. For the case d = 2 we show
scaled Wulff shapes of Eq. (15) for σ = 1 and σ = 5 in Fig. 4.
We note that for Eq. (15) with ε = 0 and σ > 0, both in the
case d = 2 and in the case d = 3, the corresponding Wulff
shape still has flat parts but is now smooth with no corners
and, if d = 3, with no edges. Equilibrium crystal shapes with
these characteristics can be found in certain metals [43], and
it is conjectured that they may be relevant for snow crystals as
well [44].

As discussed in Ref. [2], and the references therein, the
precise values of β as a function of the normal �ν are not
known. Hence one issue in our computations is to understand
how different choices of β influence the overall evolution.
First choices for the anisotropy in the kinetic coefficient are
β(�ν) ≡ 1 and β = γ . It was discussed in Ref. [2] that the value
of β is expected to change with temperature and can vary
quite drastically as a function of the orientation. Denoting by
βB the condensation coefficient of the basal directions and
by βP the condensation coefficient in the prismal directions,
it is for example expected that the growth of thin plates at
T = −15 ◦C is only possible if βP/βB is large.

In order to be able to vary the kinetic coefficient β

significantly, in the case d = 3 we define for later use

βflat( �p) = βflat,�( �p) := [
p2

1 + p2
2 + 10−2� p2

3

] 1
2 (16)

and

βtall( �p) = βtall,�( �p) := [
10−2�

(
p2

1 + p2
2

) + p2
3

] 1
2 (17)

with � ∈ N. We note that in practice there is hardly any dif-
ference between the numerical results for a kinetic coefficient
β that is isotropic in the x1-x2 plane, such as βflat and βtall,
and one that is anisotropically aligned to the surface energy
density, such as β = βflat γ . Hence in all our three-dimensional

numerical simulations we always choose coefficients β that are
isotropic in the x1-x2 plane, for example, Eqs. (16) or (17).

In addition, it might be the case that the condensation
coefficient β is considerably lower in the directions normal
to the facets. In order to model this we choose

βhex,L( �p) = (βmax [γhex( �p) − γmin]

+βmin [γmax − γhex( �p)])/(γmax − γmin), (18)

where we fix βmax = 103 and βmin = 1, and where

γmax := max
| �p|=1

γhex( �p) ∈ R�0,

γmin := min
| �p|=1

γhex( �p) ∈ R�0.

We note that for the two-dimensional anisotropy (12) it holds
that γmax = γhex(e−i θ0 ) and γmin = γhex(ei ( π

6 −θ0)). For more
details on the numerical method and the anisotropies we refer
readers to [14,29,30,40].

IV. NUMERICAL COMPUTATIONS

A. Snow crystal simulations in two spacial dimensions

In all computations for Eqs. (6)–(8), and (10) in this
subsection, if not otherwise stated, we use the parameters (9)
and choose the surface energy anisotropy γ = γhex defined
by (12) with ε = 0.01 and θ0 = π

12 . The rotation in the
definition of the anisotropy is used, so that the dominant growth
directions are not exactly aligned with the underlying bulk
meshes T h. Moreover, the radius of the circular initial crystal
seed, 	(0), is always chosen to be 0.05.

First of all we study what influences the curvature and
the velocity terms in Eq. (7) and the supersaturation in
Eq. (10) have on the evolution of the crystal. We choose the
supersaturation u∂� = 0.004 and show the results in Fig. 5.
One observes that the hexagonal structure of the crystal forms
quickly and that the facets become unstable and break after
they reached a certain size—a phenomenon which is observed
in experiments as well; see [2].
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FIG. 16. [� = (−4,4)2, γ = β = γhex] 	h(t) for t = 0,0.2, . . . ,1 (left top), t = 0, 1, . . . ,12 (right top), and t = 0, 1, . . . ,30 (bottom).
Parameters are Nf = 2048, Nc = K0

	 = 128, and τ = 2.5 × 10−4.

In Figures 6–8 we plot computations with larger supersat-
urations, u∂� = 0.01,0.04,0.2. One clearly observes dendritic
growth, which is more enhanced at larger supersaturations. In
addition, the evolution is much faster due to the fact that more
water vapor molecules are available.

It is also of interest to compare the size of the terms
appearing in Eq. (7). To this end, we compare the numerical
approximations of the terms

ρ V̂, α κavg
γ , α κmax

γ

where V̂ denotes the observed tip velocity (i.e., the velocity of
the part of the interface furthest away from the origin), κ

avg
γ is

the average of |κγ | on the interface, and κmax
γ is the maximum of

|κγ |. For a computation with γ = γhex, β = 1, and u∂� = 0.04
we plot these values in Fig. 9. It clearly can be seen that
the curvature contribution is larger than the velocity term. In
our other computations we observed only for supersaturations
around 0.2 and larger that the velocity term ρ V̂ is larger than
the average curvature term α κ

avg
γ .

In Fig. 10 we set the velocity term to zero in the left
computation, ρ = 0, and we set the curvature term to zero

in the right computation, α = 0. We observe that leaving out
the velocity term only has a very minor impact on the crystal
evolution. On the other hand, leaving out the curvature term
has a drastic effect: The front becomes very unstable. This can
be explained as follows. Growth from supersaturated vapor is
unstable and while the velocity term in Eq. (7) without the
curvature term can dampen the unstable modes, they are still
unstable on all wavelengths. The curvature term, on the other
hand, will stabilize the small wavelengths and will select a
fastest growing wavelength, irrespective of the velocity term.

We now study the influence of the anisotropy on the
evolution. On the left of Fig. 11 we present an evolution with
a hexagonal anisotropy for γ and an isotropic β. In the same
figure on the right we take γ as isotropic and β as hexagonal.
One clearly observes that anisotropy in the surface energy
seems to be important to obtain faceted growth.

This is underlined by the next computation, where we
choose Eq. (15) for the anisotropy γ , and let β = γhex. In
Fig. 12 we present evolutions for σ = 1 and σ = 5. These
computations show how important the faceted anisotropy in
the Wulff shape is in order to obtain faceted snow crystals;
recall Fig. 4.
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FIG. 17. (Color online) [� = (−8,8)3, γ = β = γ TB
hex with

γTB = 0.95] 	h(t) for t = 0, 0.1, 0.2; and 	h(0.2) within �. Param-
eters are Nf = 512, Nc = 32, K0

	 = 1538, and τ = 10−4.

It was suggested by Prof. Libbrecht [44] that the difference
of β as a function of �ν might be large with a minimum in the
the directions of the facet normals. We hence take β = βhex,L

and γ = γiso in Fig. 13. One observes that the anisotropy in the
condensation coefficient β is large enough to lead to a sixfold
branching structure, but it is also clear that the anisotropy in β

does not lead to faceted growth.
Next we study how the tip velocity in a growing dendritic

crystal depends on the supersaturation. So far nothing is known
theoretically for this dependence in the case of faceted growth
(see [2, §4]), even though for simpler problems (i.e., in the
absence of faceting) a vast literature exists; see [38] and the
references therein. As can be seen in Fig. 9, the tip velocity after
some time becomes basically time independent. This is true
also for our other computations with different supersaturations.
We observe a linear dependence between the supersaturation
and the tip velocity that the evolution eventually settles on. To
underline this qualitative behavior, we numerically determine
the value for the nearly constant tip velocity V̂ for several
values of u∂�; see Fig. 14 for a plot of these velocities. We
also show the best linear fit to this data, which is given by
a linear function with slope ≈2.35. We remark that a similar
linear relationship between velocity and supersaturation has
been observed experimentally for needles; see [34].

We end this subsection with some computations, where we
use a time-dependent choice for u∂�. This models changing

FIG. 18. (Color online) [� = (−4,4)3, u∂� = 0.004, γ = γhex,
β = 1] 	h(50). Parameters are Nf = 128, Nc = 16, K0

	 = 98, and
τ = 10−1.

FIG. 19. (Color online) [� = (−4,4)3, u∂� = 0.004, γ = γhex,
β = βflat,2] 	h(50). Parameters are Nf = 128, Nc = 16, K0

	 = 98,
and τ = 10−1.

physical conditions. In particular, in the first computation we
set

u∂�(t) =
{

0.004 t ∈ [0,50) ∪ [60,200],

0.08 t ∈ [50,60);
(19)

while in the second computation we set

u∂�(t) =
{

0.08 t ∈ [0,12) ∪ [50,56],

0.004 t ∈ [12,50);
(20)

see Fig. 15 for the results. In the last computation we
use a widely varying u∂�. We set u∂�(t) = 0.2 for t ∈
[0,0.2), then u∂�(t) = 0.4 until t = 0.3, then u∂�(t) =
0.08 until t = 1, then u∂�(t) = 0.004 until t = 10, then
u∂�(t) = 0.08 until t = 12, then u∂�(t) = 0.004 until
t = 20, and then u∂�(t) = 0.08 until the end; see Fig. 16 for
the results.

B. Snow crystal simulations in three spacial dimensions

Also in three spacial dimensions we use the physically
relevant parameters introduced in Sec. II, see in particular
Eq. (9), and choose, if not stated otherwise, the three-
dimensional variant of γhex, see Eq. (13), with ε = 0.01 and
θ0 = π

12 . In all computations with the exception of Fig. 17 the
initial crystal seed was spherical with radius 0.05. Similarly
to our computations in two spacial dimensions, we observe in
our three-dimensional numerical computations that the surface
energy anisotropy is important in order to obtain faceted
growth. If we do not choose the surface energy strongly
faceted, then we do not observe faceted growth of the crystal.

FIG. 20. (Color online) [� = (−8,8)3, u∂� = 0.004, γ = γhex,
β = βflat,3] 	h(t) for t = 50, 100, 150, 200. Parameters are
Nf = 256, Nc = 32, K0

	 = 98, and τ = 10−1.

011604-10



NUMERICAL COMPUTATIONS OF FACETED PATTERN . . . PHYSICAL REVIEW E 86, 011604 (2012)

FIG. 21. (Color online) [� = (−4,4)3, u∂� = 0.002, γ = γhex,
β = βtall,1] 	h(t) for t = 1, 2, 5, 10, 20, 40, 50; and 	h(50) within �.
Parameters are Nf = 128, Nc = 16, K0

	 = 98, and τ = 10−1.

One issue in three dimensions is to understand how the
parameter β leads to either horizontal flat growth or to
columnar vertical growth, which may yield solid prisms or
needles, respectively. First of all, we attempt to compute a
self-similar hexagonal evolution, that is, a crystal where the
basal and prismal facets grow with the same velocity. This
is motivated by a theoretical result in Ref. [45], in which
the existence of self-similar evolutions of crystals, where the
Wulff shape is a cylinder, was shown. We choose ρ = α = 1,
u∂� = 21, γ = β = γ TB

hex as in Eq. (14), vary the ratio
γTB = γ B/γ P, and observe that, upon starting the evolution
with 	(0) being a scaled Wulff shape, for γTB ≈ 0.95 the
evolution is self-similar up to discretization errors. See Fig. 17
for a computation with γTB = 0.95.

For the remainder of the computations we fix γTB = 1; that
is, we choose γ = γhex as in Eq. (13), and use the physically
relevant parameters in Eq. (9). For the first such computation
we set u∂� = 0.004 and β = 1; see Fig. 18. We can clearly see
that the facets of the growing crystal are aligned with the Wulff
shape of γ . We also note that facet breaking occurs in both the
prismal and the basal directions. In this context we refer to [39],
where similar facet breaking was observed in experiments.

It is well known that the condensation coefficient β

varies strongly for different orientations, depending on the
meteorological environment. In particular, the value of β can
differ quite drastically between directions which correspond
to basal facet normals and ones which correspond to prismal
facet normals; see [2]. We hence perform different numerical
computations for the condensation coefficients βflat and βtall

defined in Eqs. (16) and (17).
We begin with a repeat of the simulation in Fig. 18, but now

we choose as kinetic coefficient β = βflat,2 and β = βflat,3; see
Figs. 19 and 20. In comparison to the evolution in Fig. 18
one observes that the smaller condensation coefficient in basal
directions leads to flat crystals. This is related to shapes in the
Nakaya diagram for temperatures between 0 ◦C and −3 ◦C and
between −10 ◦C and −22 ◦C.

A computation with a supersaturation u∂� = 0.002 and
β = βtall,1 can be seen in Fig. 21. In this case the condensation
coefficient is larger in the basal direction and we obtain a
solid prism, which can be found in the Nakaya diagram

FIG. 22. (Color online) [� = (−4,4)3, u∂� = 0.004, γ = γhex,
β = βtall,1] 	h(t) for t = 1, 2, 5, 10, 20, 30, 40, 50; and 	h(50) within
�. Parameters are Nf = 128, Nc = 16, K0

	 = 98, and τ = 10−1.

at temperatures between −5 ◦C and −10 ◦C and at low
supersaturations.

At higher supersaturations u∂� = 0.004 we obtain for
β = βtall,1 the results shown in Fig. 22. We also give some
plots of the rescaled water vapor density in Fig. 23. We
observe Berg’s effect [46], which states that the concentration
is largest at the edges and decreases towards the center of
the facet. It is believed that facet breaking occurs when the
concentration becomes too nonuniform on the facets [47]. In
Fig. 22 we observe facet breaking for the basal and prismal
directions, although the breaking predominantly occurs on the
basal facets.

Choosing the condensation coefficient even larger in the
basal directions leads to Fig. 24. We observe hollow columns
as in the Nakaya diagram between −5 ◦C and −10 ◦C at low,
but not very low, supersaturations. Increasing the condensation
coefficient in the basal directions even further (i.e., choosing
β = βtall,3) leads to the evolution depicted on the left of Fig. 25.
On the right we also display a computation on a coarser grid.

FIG. 23. (Color online) [� = (−4,4)3, u∂� = 0.004, γ = γhex,
β = βtall,1] 	h(t) ∩ {�x : x1 = 0} and uh(t)|x1=0 for t = 15, 20, 50. The
colors for uh vary between red for uh = −1.12 × 10−4 and blue for
uh = 4 × 10−3. Parameters are Nf = 128, Nc = 16, K0

	 = 98, and
τ = 10−1.
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FIG. 24. (Color online) [� = (−4,4)3, u∂� = 0.008, γ = γhex,
β = βtall,2] 	h(t) for t = 1, 2, 5, 10, 20, 30, 40, 50; and 	h(50) within
�. Parameters are Nf = 128, Nc = 16, K0

	 = 98, and τ = 10−1.

Both results in Fig. 25 lead to needle growth, which also
appears in the Nakaya diagram. We remark that the shape on
the right of Fig. 25 is caused by numerical noise and rounding
errors. However, the same effect, on even the most refined
meshes, can be achieved by adding random fluctuations to the
model. In real life such fluctuations and changes in physical
parameters are experienced by the growing snow crystal, as it
moves through the atmosphere toward the earth.

A numerical simulation with supersaturation u∂� = 0.02
with β = βflat,3 is displayed in Fig. 26. In this case capped
columns appear, which can also be observed in nature; see
[2,48].

FIG. 25. (Color online) [� = (−8,8)3, u∂� = 0.004, γ = γhex,
β = βtall,3] 	h(t) for t = 5, 10, 30, 50, 60; and 	h(60) within �.
Parameters are Nf = 512, Nc = 32, K0

	 = 98, and τ = 10−2 (left),
and Nf = 256, Nc = 32, K0

	 = 98, and τ = 10−1 (right).

FIG. 26. (Color online) [� = (−4,4)3, u∂� = 0.02, γ = γhex,
β = βflat,3] 	h(t) for t = 0.05, 0.1, 0.2, 0.3; and 	h(0.3) within �.
Parameters are Nf = 512, Nc = 32, K0

	 = 1538, and τ = 5 × 10−4.

We end this subsection with computations, where we use a
time-dependent choice for u∂�. In particular, we set

u∂�(t) =
{

0.004 t ∈ [0,15) ∪ [18,50],

0.024 t ∈ [15,18).
(21)

See Fig. 27 for the results. First a solid plate forms and then, due
to the fact that the supersaturation increases, the plate becomes
unstable and new platelike shapes grow at the corners of the
plate.

Finally, we perform two simulations, where we vary β in
time. In the first such example, we choose

β( �p) =
{
βflat,3( �p) t ∈ [0,30),

βtall,3( �p) t ∈ [30,50].
(22)

In a second example, we choose

β( �p) =
{
βflat,3( �p) t ∈ [0,20),

βflat,1( �p) t ∈ [20,50].
(23)

Results for these choices of β and for u∂� = 0.004 can be
seen in Fig. 28. We observe scrolls on plates, a shape that is
also called plates with scrolls at ends, which also appear in the

FIG. 27. (Color online) [� = (−8,8)3, u∂� as in Eq. (21),
γ = γhex, β = βflat,3] 	h(t) for t = 15, 20, 30, 50; and 	h(50) within
�. Parameters are Nf = 512, Nc = 32, K0

	 = 98, and τ = 2 × 10−2.
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FIG. 28. (Color online) [� = (−4,4)3, u∂� = 0.004, γ = γhex, β
as in (22) (top), and as in (28) (bottom)] 	h(50). Parameters are
Nf = 128, Nc = 16, K0

	 = 98, and τ = 10−1.

Magono-Lee classification of natural snow crystals [49]; see
also [42, p. 46] and [48].

V. CONCLUSIONS

We have demonstrated that an approach introduced by the
authors in Refs. [14,30,40] provides a powerful computational
tool to investigate pattern formation in crystal growth. The
method makes it possible to simulate faceted and dendritic
growth simultaneously. We also observe the instability of
crystals leading to facet breaking. Many parameters in models
for crystal growth are not known. The presented numerical

method in combination with a comparison to experimental
results can make it possible to estimate the relative sizes
of parameters. In particular, by varying the condensation
coefficient we were able to observe either platelike growth
or columnar growth.

Let us summarize the results:
(1) Surface energy effects taking anisotropy into account

have been included in the model and, despite their small size,
totally change the character of the interfacial dynamics. In
our computations an anisotropic surface energy is required to
produce faceted dendritic growth.

(2) The influence of the anisotropy in the condensation
coefficient, at least at small supersaturations, is not sufficient
for faceted growth.

(3) For small supersaturations the influence of the velocity
term in Eq. (7) is small in comparison with the curvature term.

(4) The velocity at the tip of growing crystals depends in a
linear way on the supersaturation.

(5) Macroscopic models for crystal growth based on a
diffusion equation in the gas phase, a mass balance on the vapor
crystal interface, and a modified Gibbs–Thomson law, taking
attachment kinetics into account, are able to model a variety
of phenomena in crystal growth, such as the appearance of
solid plates, solid prisms, hollow columns, needles, dendrites,
capped columns, and scrolls on plates.

ACKNOWLEDGMENT

The authors express their deep thanks to Prof. K. G.
Libbrecht of the California Institute of Technology for many
fruitful discussions and for providing Fig. 1.

[1] U. Nakaya, Snow Crystals: Natural and Artificial (Cambridge
University Press, Cambridge, 1954).

[2] K. G. Libbrecht, Rep. Prog. Phys. 68, 855 (2005).
[3] http://www.snowcrystals.com.
[4] J. G. Dash, A. W. Rempel, and J. S. Wettlaufer, Rev. Mod. Phys.

78, 695 (2006).
[5] Y. Furukawa, M. Yamamoto, and T. Kuroda, J. Cryst. Growth

82, 665 (1987).
[6] M. Elbaum, Phys. Rev. Lett. 67, 2982 (1991).
[7] M. Elbaum, S. G. Lipson, and J. G. Dash, J. Cryst. Growth 129,

491 (1993).
[8] G. Sazakia, S. Zepedaa, S. Nakatsubo, M. Yokomine, and

Y. Furukawa, Proc. Natl. Acad. Sci. USA 109, 1052 (2006).
[9] A. R. Roosen and J. E. Taylor, Mater. Res. Soc. Symp. Proc.

237, 25 (1991).
[10] E. Yokoyama, J. Cryst. Growth 128, 251 (1993).
[11] E. Yokoyama and R. F. Sekerka, J. Cryst. Growth 125, 389

(1992).
[12] A. Schmidt, J. Comput. Phys. 195, 293 (1996).
[13] A. Schmidt, in Proceedings of the Algoritmy ’97 Conference

on Scientific Computing (Zuberec), edited by J. Kačur and
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