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Wenzel and Cassie-Baxter states of an electrolytic drop on charged surfaces
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In this paper, we provide a theory for the Wenzel and the Cassie-Baxter states of an electrolyte drop on charged
surfaces. An electric double layer (EDL) develops when the electrolyte drop comes in contact with the charged
surface. Therefore, the EDL free energy affects these states by triggering a hydrophilicity-inducing tendency.
Consequently, an originally hydrophilic condition leads to a superhydrophilic Wenzel state, and an originally
hydrophobic condition leads to a less hydrophobic Wenzel state. For the Cassie-Baxter state, this gives rise to
the most remarkable situation of a hydrophilic (as compared to the original) Cassie-Baxter state.
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I. INTRODUCTION

Marble-like water drops on lotus leaves [1] or the water
walking of the water striders without wetting their legs [2]
or the repelling of water by the pigeon feathers [3] are
examples where nature exhibits spectacular evidence of su-
perhydrophobicity. All these natural phenomena are triggered
due to intricate microscopic structures on the surfaces of
such natural substances [4]. Mimicking such natural examples,
researchers, over the past couple of decades, have attempted
to engineer microtextured or nanostructured surfaces that can
behave as superhydrophobic surfaces, [5–27] with a plethora
of application potentials. The fundamental idea of varying
the wettability by introducing surface heterogeneity, however,
dates back several decades. Wenzel [28] demonstrated that ge-
ometric heterogeneity can make a drop attain what is known as
the Wenzel state, in which the liquid drop is in complete contact
with the surface (referred to as the wetted contact). On the other
hand, Cassie and Baxter [29] demonstrated that on chemically
heterogeneous substrates, in particular on substrates which are
too rugged to allow complete conformation of the liquid to
the solid substrate, the liquid drop attains the Cassie-Baxter or
Fakir state. In this state, there are air (or vapor) pockets below
the liquid, provided the energy penalty for the creation of the
corresponding liquid-air (or liquid-vapor) interfaces is smaller
than that associated with the event of liquid conforming to
the solid. The extent of heterogeneity dictates which among
these two states is the more favorable one, and depending
on the operating conditions, one can induce a transition from
one phase to another [13,16,24,25,27,30]. There have been
a large number of studies on different fundamental aspects,
application possibilities, and natural examples of these two
distinct states and their mutual transition [1–3,31–48]; several
of those investigations are nicely summarized in a few recent
review articles [4,31–34].

The key reason for interest in studying the Wenzel and
Cassie-Baxter states stems from the fact that they induce mas-
sive alteration of the wettability of the substrates. For example,
when the drop is in the Wenzel state, an increase in roughness
increases the hydrophilicity of a hydrophilic substrate and
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the hydrophobicity of a hydrophobic substrate [32]. On the
other hand, a drop in the Cassie-Baxter state is always more
hydrophobic than the original state (henceforth by the “original
state” we shall refer to the state expressed by the equilibrium
Young’s angle θY , corresponding to the given solid-liquid-
vapor combination) [32]. Motivated by their importance, there
have been studies that investigate the effect of the variation
of different parameters, such as substrate geometry [16,20,26,
30,49–54], evaporation [3,27,55–59], electrowetting [60–65],
drop characteristics [49,50,54,66–70], etc., on the existence
and the mutual transition of the Cassie-Baxter and the Wenzel
states. However, quite remarkably, to the best of our knowledge
there has been no study that investigates the Wenzel and
Cassie-Baxter states for an electrolytic drop on a charged
substrate. In other words, there is no investigation on the effect
of the formation of an electric double layer (EDL), which
develops spontaneously when the electrolytic drop comes
in contact with a charged substrate, on the Wenzel and the
Cassie-Baxter states. Microfabrication processes employed to
design the pillar structures (used to trigger the formation of
these states) often impart a charge on the substrates, just as
there will be intrinsic surface charges on natural surfaces
that demonstrate superhydrophobicity. Also the liquids in
experimental or natural circumstances are bound to contain
some dissolved ions. Under these circumstances, it is quite
astonishing to realize that there are virtually no studies that
discuss the effect of system-induced charges (or EDL) on the
characteristics of these two states. This is even more surprising
in light of the existence of a plethora of studies on charged
superhydrophobic substrates [71–74].

In this paper, we study the formation of the Wenzel and
Cassie-Baxter states by an electrolyte drop on a charged sur-
face (or the effect of the EDL on the Wenzel and Cassie-Baxter
states). There are important assumptions on the basis of which
our theory has been developed. The most important assumption
is the existence of a hierarchy of length scales. This means
that we assume that the characteristic dimension of the drop is
much larger than the surface roughness or surface features (this
condition ensures that the average picture represented by the
Wenzel and the Cassie-Baxter models remains valid [75–78])
and the surface roughness length scale is much larger than
the characteristic EDL thickness (so that the ions forming
the EDL effectively “see” the surface heterogeneity as a
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smooth flat surface). The second assumption, which will be
evident from our theoretical model, is that we describe the
EDL effects through the classical Poisson-Boltzmann model;
therefore issues such as finite Stern layer consideration [79],
finite ion size effect [80,81], effect of ion-ion interactions [82],
etc., will be neglected. Third, we neglect the nontrivialities in
the EDL formation and the resulting electrostatic potential at
the perimeter of the drop, i.e., at the location of the three-phase
contact line (TPCL). There are only a handful of studies on the
EDL at the TPCL [83–88], and they too present a very sketchy
approximate picture; therefore, in our analysis we shall neglect
the contribution of the EDL at the TPCL.

The key idea of our problem is that the EDL effect
contributes additional free energy for the Wenzel and Cassie-
Baxter states. This triggers a hydrophilicity-inducing tendency
to either of these states, with the effect showing a larger magni-
tude for larger ionic concentrations. We demonstrate that this is
exactly analogous to the classical electrowetting scenario [89],
where the electrowetting effects induce a more pronounced
wetting behavior, although, in principle, the present effect
is totally different from electrowetting. There are two key
findings of our study. First, we find that due to the EDL effects,
an originally hydrophilic state leads to a superhydrophilic
Wenzel state, whereas an originally hydrophobic state leads to
a hydrophilic Wenzel state. For an originally hydrophilic state,
this behavior is qualitatively similar to the classical Wenzel
picture (where hydrophilic becomes more hydrophilic [32],
although the extent variation is much larger with the EDL
effects), but for an originally hydrophobic state this behavior
is the complete reverse of the classical Wenzel state (where
hydrophobic becomes more hydrophobic [32]). Second, we
observe that the EDL effects reduce the hydrophobic influence
of the Cassie-Baxter state. This is in sharp contrast to the
classical EDL-independent scenario, where the Cassie-Baxter
state always leads to a more hydrophobic state as compared
to the original state. In fact, for certain system conditions,
at substantially large values of original contact angles θY ,
we find that the consideration of EDL effects leads to
a Cassie-Baxter state which is more hydrophilic than the
original state. Therefore with EDL effects we hypothesize
the most remarkable case of a hydrophilic (as compared to
the original) Cassie-Baxter state. Therefore, in this paper
we demonstrate the existence of yet unknown forms of the
Wenzel and the Cassie-Baxter states (for electrolyte drops
on charged surfaces) which exhibit characteristics substan-
tially different from the classical Wenzel and Cassie-Baxter
states.

II. THEORY

A. Effect of EDL on the Wenzel wetting state

We consider an electrolyte drop on a rough substrate (r is
the substrate roughness, defined as the ratio between the real
surface and the projected one, so that r > 1), i.e., the drop
is in a Wenzel state [see Figs. 1(a) and 1(b)]. The substrate
is charged: therefore there will be a formation of the EDL
at the interface between the surface and the electrolytic
drop. We intend to obtain the equilibrium condition that
dictates the Wenzel state of the drop in the presence of the

(a)

(b)

(c)

FIG. 1. (Color online) Schematic for calculating the Wenzel state.
The contact line moves on a rough surface from an initial position by
a distance dx to reach the final position (depicted as a dashed line). In
(a) we show the top view, whereas in (b) we show the front view. We
magnify one location of the newly wetted area to show the EDL in
(c). The length scale characterizing the EDL is the EDL thickness
λ, which is substantially smaller than the surface heterogeneity
(using the hierarchy of length scales assumption); therefore the EDL
electrostatic potential distribution can be considered to be strictly
one-dimensional.

EDL interactions. For that purpose, we shall first calculate
the change in free energy as the droplet is displaced by
an infinitesimal distance dx [see Figs. 1(a) and 1(b)]. The
movement of the contact line by dx is considered in a manner
such that it leads to an increase in the solid-liquid surface area
by an amount rwdx (or an equivalent decrease in the solid-
vapor surface area by an amount rwdx; here w is the width of
the contact line). This causes an increase in the surface energy
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by γSLrwdx (where γSL is the solid-liquid surface tension)
and a decrease in the surface energy by γSV rwdx (where
γSV is the solid-vapor surface tension). Additionally, it leads
to an increase in the liquid-vapor surface area by an amount
cos θ∗

Wn,λwdx (where θ∗
Wn,λ is the modified contact angle of

the drop in the Wenzel state with the EDL effects) and an
increase in the surface energy by γLV cos θ∗

Wn,λwdx (where
γLV is the liquid-vapor surface tension). The analysis up to
this point is well documented in classical literature [32]. In
this study we propose that the creation of the new solid-liquid
surface area will imply an instantaneous formation of the EDL
[at the solid-liquid interface in this newly wetted solid; see
Figs. 1(a) and 1(b)], thereby leading to a net contribution of
the EDL interaction energy, WEDLrwdx (here WEDL is the per
unit area free energy of the EDL), in the overall energy picture.
We can hypothesize this instantaneous creation of the EDL in
the wetted solid by noting that the time scale for the creation
of the EDL τEDL ∼ λ2/D ∼ 10 ns to 1 μs (here λ ∼ 1–10 nm
is the EDL thickness and D ∼ 10−10 m2/s is the diffusivity
of the electrolyte ions). Please note that in WEDL we do not
account for the contribution of the EDL at the TPCL at the
periphery of the drop. Considering the above physical picture,
the net change in the free energy dE (per unit width w) can be
expressed as

dE = r (γSL − γSV + WEDL) dx + γLV cos θ∗
Wn,λdx. (1)

For the equilibrium condition, we need dE = 0, so that from
Eq. (1), we shall get

cos θ∗
Wn,λ = r cos θY − r

WEDL

γLV

, (2)

where cos θY = γSV −γSL

γLV
is the equilibrium Young’s contact

angle.
Therefore, Eq. (2) is the modified version of the equation of

state for the Wenzel state, considering contributions of the EDL
effect. It is easy to see that in the absence of the EDL effects
(i.e., when WEDL = 0), Eq. (2) yields the classical Wenzel
equation [32], i.e.,

cos θ∗
Wn,0 = r cos θY , (3)

where θ∗
Wn,0 is the modified contact angle of the drop in the

Wenzel state, without the EDL effects.
Also, we can find a close resemblance of Eq. (2) to the clas-

sical Young-Lippmann equation describing the electrowetting
behavior (with r = 1) [89], with the contribution of the energy
of the EDL interactions [in Eq. (2)] being replaced by the
energy contributions originating from the applied voltage (for
the electrowetting case). More details of this analogy will be
discussed later.

Using Eq. (2), we can define an effective roughness reff ,
which will ensure that that we can rewrite Eq. (2) in the
framework of the classical (EDL-independent) Wenzel picture
[i.e., Eq. (3), with r being replaced by reff]. Physically, reff

is the solid roughness that leads to the same contact angle
(as that obtained with EDL effects) for a scenario that does
not involve any EDL interactions. This reff can therefore be

expressed as

reff

r
= | cos θY − WEDL/γLV |

| cos θY | . (4)

The extent to which this reff is modified in the presence of the
EDL effects signifies the alteration of the surface roughness
(in terms of the wettability of the drop) induced by the EDL
effects.

B. Effect of EDL on the Cassie-Baxter wetting state

We next consider an electrolyte drop on a charged periodic
array with entrapped air or vapor] (here φs is the fraction
of the total surface area where there is solid-liquid contact),
i.e., the liquid drop is in the Cassie-Baxter state (see Fig. 2).
With the drop being electrolytic and the solid being charged,
an EDL will form at the solid-liquid interface. Similar to the
Wenzel problem, we first obtain the net free energy change
by considering a movement of the contact line by dx in a
manner such that there is an increase in the solid-liquid contact
area. Following an exactly similar physical argument as in the
previous case, we can express the change in free energy dE

(per unit width of the contact line) in the Cassie-Baxter state
as

dE = φsγSLdx + (1 − φs + cos θ∗
CB,λ) γLV dx

−φsγSV dx + φsWEDLdx, (5)

(a)

(b)

FIG. 2. (Color online) Schematic for calculating the Cassie-
Baxter state. The contact line moves on pillars with entrapped air
cavities from an initial position by a distance dx to reach the final
position (depicted as a dashed line). In (a) we show the top view,
whereas in (b) we show the front view. Similar to Fig. 1, an EDL
will form on the wetted solid (not shown here), which will be strictly
one-dimensional due to the hierarchy of length scales.
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where θ∗
CB,λ is the modified contact angle in the Cassie-Baxter

state with finite EDL effects. In Eq. (5), the first term on the
right hand side denotes the increase in the surface energy due
to the creation of an additional solid-liquid surface area, the
second term represents the increase in the surface energy due
to the creation of additional liquid-vapor surface area, the third
term represents the decrease in the surface energy due to the
destruction of an existing solid-vapor surface area, and the final
term denotes the increase in free energy due to the formation
of an EDL at the solid-liquid interface in the newly wetted
solid. For the equilibrium condition, we need dE = 0, which
yields

cos θ∗
CB,λ = φs cos θY − (1 − φs) − φs

WEDL

γLV

. (6)

Therefore, Eq. (6) is the modified version of the equation
of state for the Cassie-Baxter state with finite contributions
of the EDL effect. Please note that without the EDL effects
(i.e., WEDL = 0), Eq. (6) leads to the classical Cassie-Baxter
equation [32]:

cos θ∗
CB,0 = −1 + φs(1 + cos θY ), (7)

where θ∗
CB,0 is the modified contact angle of the drop in the

Cassie-Baxter state, without the EDL effects.
Similar to the previous case, we can define an effective

value of φs , which we will call φs,eff , such that we can use it to
express the EDL effect in the classical Cassie-Baxter picture
[i.e., Eq. (7), with φs being replaced by φs,eff]. Physically, φs,eff

is an effective fraction of the solid-liquid surface area that leads
to the same contact angle (as that obtained with EDL effects)
for a scenario that does not involve any EDL interactions. This
φs,eff can therefore be expressed as

φs,eff

φs

= | cos θY − WEDL/γLV + 1|
| cos θY + 1| . (8)

The extent to which this φs,eff is modified in the presence of the
EDL effects signifies the alteration of the solid-liquid surface
area (in terms of the wettability of the drop) induced by the
EDL effects.

C. Estimation of the EDL free energy

From Eqs. (2) and (6), it is clear that one needs to
obtain WEDL (or the per unit area free energy associated
with the formation of the EDL) in order to calculate the
EDL-effect-modified Wenzel and the Cassie-Baxter states.
Over the years there have been a plethora of investigations on
the analytical quantification of the free energy associated with
the formation of the EDL [90–92]. In this paper, we shall follow
the calculations proposed by Manciu and Ruckenstein [92],
who attributed three different components to the EDL free
energy, i.e.,

WEDL = WEDL,el + WEDL,ent + WEDL,ch, (9)

where WEDL,el is the electrostatic contribution, WEDL,ent is the
entropic contribution, and WEDL,ch is the chemical contribution
to the EDL free energy (per unit area). All three components
depend on the EDL electrostatic potential ψ , which on the
basis of the assumption of the hierarchy of the length scale is
strictly one-dimensional [i.e., ψ = ψ(y)] and describable by

the Poisson-Boltzmann equation over a flat surface (discussed
later). Under this condition, one can write [92]

WEDL,el = 1

2
εrε0

∫ d

0

(
dψ

dy

)2

dy (10)

and

WEDL,ent = 2n∞kBT

∫ d

0

[
eψ

kBT
sinh

(
eψ

kBT

)

+ 1 − cosh

(
eψ

kBT

)]
dy. (11)

In the above equations, n∞ is the bulk ionic number density
(i.e., the number density of the ions far away from the EDL),
e is the electronic charge, kBT is the thermal energy, ε0 is the
permittivity of the free space, and εr is the relative permittivity
of water. Also d is the distance from the substrate beyond
which the effect of the EDL is negligible, i.e., either of the
components WEDL,el or WEDL,ent is zero [here we take d = kλ,
where λ =

√
2εrε0kBT /n∞e2 is the EDL thickness and k � 1

(we take k = 10)]. Last, Eq. (11) and the expression for the
EDL thickness λ are valid for a symmetric 1 : 1 electrolyte,
although we can obtain expressions for multivalent asymmetric
electrolytes.

The above two contributions to the free energy of the double
layer, expressed in Eqs. (10) and (11), are both positive.
However, it is well known that the overall free energy of
the EDL must be negative, affirming the spontaneity in its
formation [92]. Therefore, the third component of the free
energy, WEDL,ch, which represents the chemical free energy
associated with the spontaneous formation of the EDL, must be
negative and larger than the sum of the other two components.
In their study, Manciu and Ruckenstein [92] demonstrated
that the expression for WEDL,ch is strongly dictated by the
physical condition in the presence of which the EDL is formed
spontaneously. For example, depending on whether the EDL
formation occurs under the conditions when the substrate ζ

potential is constant (with charge density σ varying) or σ

is constant (with ζ varying) or both ζ and σ are varying,
the expression of WEDL,ch changes. In the present study,
we consider the simplest possible condition where the EDL
develops in the presence of constant wall ζ potential. Hence
WEDL,ch can be expressed as [92]

WEDL,ch = −σζ =
[
ε0εr

(
dψ

dy

)
y=0

]
ζ, (12)

where σ = −ε0εr ( dψ

dy
)y=0 is the substrate wall charge density.

It may be noted here that to evaluate the free energy
components, we need the exact expression for the EDL
potential ψ (which is one-dimensional in our analysis) and its
first-order spatial derivative. For the solution of ψ , one needs
to invoke the nonlinear Poisson-Boltzmann equation [93]:

d2ψ

dy2
= 2n∞e

ε0εr

sinh

(
eψ

kBT

)
. (13)

The above equation can be solved analytically (under the
condition ψ = ζ at y = 0 and ψ = dψ

dy
= 0 at y � λ) [93]
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to obtain a closed form solution of ψ as

ψ(y) = 4kBT

e
tanh−1

[
tanh

(
eζ

4kBT

)
exp

(
−y

λ

)]
. (14)

Therefore

dψ

dy
= 4kBT

eλ
tanh

(
eζ

4kBT

)
exp

( − y

λ

)
1 − tanh2

(
eψ

4kBT

) . (15)

Once we have the explicit expressions for the different
components of the EDL free energy, it is easy to observe
that WEDL ∼ εrε0ζ

2/λ. Therefore the additional term in the
equation of state of the Wenzel and Cassie-Baxter states,
owing to the consideration of the EDL effects, will scale
as WEDL/γLV ∼ εr ε0ζ

2

λγLV
[see Eqs. (2) and (6)]. Hence, the

EDL contribution is exactly analogous to the electrowetting
contribution (in that case one has applied an external voltage
V across a drop sitting on a dielectric), with the ζ potential
replacing the external potential V , the EDL thickness λ

replacing the thickness of the dielectric, and the permittivity of
the liquid replacing the permittivity of the dielectric. A similar
analogy was proposed in one of our earlier investigations
studying the contribution of the EDL in the dynamics of surface
nanobubbles [88].

III. RESULTS AND DISCUSSION

A. Variation of the different components of the EDL free energy

In Fig. 3, we plot the three individual components of the
EDL free energy (per unit area) and their resultant, which is
the net EDL free energy. The magnitude of all components
increases with the ionic concentration. This can be explained
by the fact that the increase in ionic concentration lowers the
EDL thickness, thereby enhancing the EDL potential gradient
dψ/dy. It can be clearly seen that both WEDL,el and WEDL,ent

are positive, but WEDL,ch is negative and larger than the sum of
the other two components. Therefore, the net EDL free energy
WEDL is always negative, confirming the spontaneity in the
formation of the EDL. Also, quite intuitively, an enhancement
in the wall ζ potential enhances the overall EDL free energy,
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FIG. 3. (Color online) Variation of the different components of
the per unit area EDL free energy WEDL, nondimensionalized with
γLV , with ionic concentration for different values of wall ζ potential.
In the simulations, ε0 = 8.8 × 10−12 C/V m, εr = 79.8, kB = 1.38 ×
10−23 J/K, T = 298 K, and γLV = 0.072 N/m.

indicating that at a larger wall potential the propensity for the
spontaneous formation of the EDL is enhanced.

B. Wenzel state in the presence of EDL effects

In Figs. 4(a) and 4(b) we demonstrate the variation of
modified contact angle (on account of the consideration of
the EDL effects) as a function of three parameters, namely,
the roughness parameter r (here we take two arbitrary values
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FIG. 4. (Color online) (a) Variation of θ∗
Wn,λ with ionic concen-

tration for different values of r and θY . (b) Variation of cos θ∗
Wn,λ and

cos θ∗
Wn,0 with cos θY for different values of r with (c∞ = 1M) and

without the EDL effects. (c) Variation of the dimensionless effective
roughness [defined in eq.(4)] with θY for different values of ionic
concentration c∞. Here we use ζ = −100 mV. All other parameters
are identical to that of Fig. 3.
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of r that are greater than unity), bulk ionic concentration (or
the EDL thickness), and the original (roughness-independent)
equilibrium contact angle θY . These two plots provide the
central result of the paper regarding the EDL effect on the
Wenzel state. We first study the variation of the actual EDL-
induced contact angle as a function of the ionic concentration
at selected values of the roughness parameter and original
wettability of the substrate, dictated by θY [see Fig. 4(a)].
An increase in ionic concentration, which induces a larger
effect of the EDL free energy (see Fig. 3), increases the
hydrophilicity of an originally hydrophilic substrate. This
increase is substantially larger than the increase induced by
the simple roughness effect for a classical EDL-independent
Wenzel state. For example, when r = 1.2 and θY = 60◦,
without the EDL effect θ = θWn,0 � 52.2◦, whereas with the
EDL effects θ = θWn,λ � 2◦ [for c∞ = 1M; see Fig. 4(a)].
Therefore, we can infer that for an originally hydrophilic
substrate, the consideration of the EDL effects induces a
behavior that is analogous to the consideration of the Wenzel
roughness effect (i.e., hydrophilic becomes more hydrophilic),
but the extent of variation is substantially larger, with the
potential of obtaining a superhydrophilic. Also, owing to
this pronounced hydrophilicity-inducing tendency of the EDL
effects, at larger values of r (where the EDL-independent
lowering of the hydrophilic contact angle is substantially
large), the window of ionic concentration values over which
the EDL effects can be useful is narrowed because at larger
ionic concentrations [i.e., for values of c∞ > cc

∞, where cc
∞ is

defined as θ∗
Wn,λ(c = cc

∞) = 0] the liquid film will break.
The case of the originally hydrophobic substrate (θY =

120◦) is even more intriguing [see Fig. 4(a)]. The Wen-
zel roughness effect (without the EDL effects) makes a
hydrophobic substrate more hydrophobic, i.e., triggering it
towards superhydrophobicity. The larger the values of the
roughness parameter r are, the stronger this behavior is.
On the other hand, the consideration of the EDL effects
attempts to lower this prominent hydrophobic behavior. This
lowering, for substantially large ionic concentration, will
totally nullify the roughness effect and will ensure a more
hydrophilic substrate than predicted by θY . Therefore, we see
θ∗
Wn,λ(r = 1.2,c∞ = 1M) = 101.6◦ and θ∗

Wn,λ(r = 1.8,c∞ =
1M) = 107.5◦. Therefore, we can now define an EDL-effect-
induced modified Wenzel state: the hydrophilic condition be-
comes (substantially) more hydrophilic (qualitatively identical
to the classical Wenzel behavior), whereas the hydrophobic
condition becomes less hydrophobic (qualitatively converse to
the classical Wenzel behavior).

In Fig. 4(b), we provide the complete cos θ∗
Wn,λ versus

cos θY and cos θ∗
Wn,0 versus cos θY phase space for different

values of the roughness factor r at a given value of c∞.
This phase space provides a broader data set, confirming our
observations from Fig. 4(a). Also note that for larger values
of r , all cos θ∗

Wn versus cos θY curves (with or without the
EDL effects) become steeper, indicating a more prominent
influence of the roughness as well as the EDL effects. This
phase space plot also provides a notion on the range of θY

over which the film can remain continuous. In accordance
with the hydrophilicity-inducing tendency of the EDL effects,
an originally hydrophilic drop breaks down very quickly
(indicated by cos θ∗

Wn → 1 for relatively small positive values

of cos θY ), whereas an originally hydrophobic drop shows
more stability (indicated by the fact that with the EDL effects
larger negative values of cos θY can be spanned).

The hydrophilicity-inducing tendency of the EDL effects,
as manifested by its influence on the Wenzel states [see
Figs. 4(a) and 4(b)] as well as the Cassie-Baxter states
(demonstrated later), can be physically argued by drawing
an analogy to the electrowetting scenario. Both for this case
and for electrowetting, the additional electrostatic surface
energy works towards flattening the drop. However, there
is one key intuitive difference between these two cases. For
electrowetting, the additional energy is infused into the drop
by application of an external electric field, whereas for the
present case the electrostatic energy comes from the in situ
created EDL resulting from the wetting of the substrate by the
drop.

Based on the modifications induced by the EDL effects,
we now attempt to define an effective roughness parameter
reff [see Eq. (4)], which we plot in Fig. 4(c). As the EDL
effect enhances and weakens the original Wenzel roughness
effect for acute and obtuse contact angles (θY ), we find
reff (θY <90◦)

r
> 1 and reff (θY >90◦)

r
< 1. We, however, observe two

singularities for each of the plots (for a given c∞). The first
singularity occurs as θY → 90◦, as can be explained from the
expression of reff/r [see Eq. (4)]. θY → 90◦ implies a physical
limit where there is no effect of roughness for the EDL-
independent case [we can easily infer that from the classical
EDL-independent Wenzel expression; see Eq. (4)]. Therefore
the EDL-induced alteration of the roughness shoots up as
θY → 90◦. This singularity makes reff/r → ∞, and as already
stated, its location is identical for all concentration values
(i.e., at θY → 90◦). The second singularity makes reff/r → 0;
therefore the EDL effect can be inferred to have made a rough
substrate smooth. The location of the singularity with respect
to θY (we use θss

Y for the corresponding θY ) varies for different
concentration values [e.g., θss

Y (c∞ = 0.01M) = 92◦, θss
Y (c∞ =

0.1M) = 96.3◦, θss
Y (c∞ = 1M) = 109.4◦]. This stems from

the definition of reff/r , where we take the modulus of
(cos θY − WEDL/γLV ) to define the effective roughness. This
expression (cos θY − WEDL/γLV ) changes sign on either side
of this singularity (which is effectively a pseudosingularity,
as it appears due to a mathematical definition). In addition,
this singularity ensures that on either side the variation of
reff/r with θY becomes nonmonotonic, i.e., for θY < θss

Y , reff/r

decreases with θY , whereas for θY > θss
Y , reff/r increases with

θY .

C. Cassie-Baxter state in the presence of EDL effects

From the equation of state of the classical EDL-independent
Cassie-Baxter state [see Eq. (7)], we can easily see that θ∗

CB,0 >

θY for all values of φs and θY , with θ∗
CB,0(φs → 0) → 180◦,

θ∗
CB,0(φs → 1) → θY , and θ∗

CB,0(θY → 180◦) → 180◦. Under
these circumstances, consideration of the EDL effect and
its hydrophilicity-inducing tendencies will imply significant
modifications of the Cassie-Baxter state. These are described
in Figs. 5(a) and 5(b), which form the central result of this paper
regarding the Cassie-Baxter state. With finite EDL effects,
there is a competition between the hydrophobic influence of
the voids in the Cassie-Baxter state and the hydrophilicity-
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FIG. 5. (Color online) (a) Variation of θ∗
CB,λ with ionic concen-

tration for different values of r and θY . (b) Variation of cos θ∗
CB,λ and

cos θ∗
CB,0 with cos θY for different values of r with (c∞ = 1M) and

without the EDL effects. (c) Variation of the dimensionless effective
solid fraction [defined in Eq. (8)] with θY for different values of ionic
concentration c∞. Here we use ζ = −100 mV. All other parameters
are identical to those of Fig. 3.

inducing tendencies of the EDL effects, and depending
upon the values of φs and θY , one may witness θ∗

CB,λ <

θY [e.g., θ∗
CB,λ(θY = 120◦,φs = 0.75,c∞ = 1M) = 112◦; see

Fig. 5(a)]. Therefore, quite remarkably, consideration of EDL
effects may completely overhaul the classical Cassie-Baxter
picture and introduce a yet unknown Cassie-Baxter state,
where the final state is more hydrophilic than the original
(dictated by θY ) state.

Figure 5(b) provides the cos θ∗
CB,λ and cos θ∗

CB,0 versus
cos θY phase space and confirms the observations of Fig. 5(a),
in particular the remarkable situation where we have a Cassie-
Baxter state that is more hydrophilic than the original one. It is
also clear from Fig. 5(b) that the influence of the EDL effects in
hydrophilization is most severe for larger (very hydrophobic)
original contact angles. This can be understood by again
referring to the original EDL-independent Cassie-Baxter state.
As shown above, as θY → 180◦, the difference between θY

and θ∗ is minimized; therefore it is for such large obtuse angle
values of θY that the hydrophilization effect of the EDL gets
most magnified.

To quantify the exact extent of the influence of the EDL, we
plot the variation of φs,eff/φs , defined in Eq. (8). As the EDL
effect always reduces the extent of hydrophobicity (which, in
turn, is triggered by the presence of voids or air gaps in the
substrate), we always have φs,eff/φs � 1. The most interesting
situation is encountered for large obtuse angle values of θY ,
i.e., when the relative EDL effects can be large enough to
completely outweigh the effect of voids in the Cassie-Baxter
state and make the system more hydrophilic as compared to
the original system. For such systems, we find φs,eff � φs ,
which will imply φs,eff � 1. This is completely nonintuitive
in the sense that φs , representing the faction of solid, must be
less than unity. However, such values of φs,eff � 1 imply that
in order to explain the consequences of the EDL effects in the
framework of the classical Cassie-Baxter picture one needs to
have a solid with a surface area that is significantly higher than
even the most ideal case of flat surface, i.e., φs = 1. In fact, we
can rewrite the classical Cassie-Baxter equation as cos θ∗ �
φs,eff cos θY + φs,eff (with φs,eff � 1); i.e., we replicate a
situation identical to the Wenzel state except for a constant.

IV. CONCLUSIONS

In this paper we have demonstrated the existence of
EDL-effect-modified Cassie-Baxter and Wenzel states for an
electrolytic drop on charged rough or patterned surfaces. We
have shown that under optimal EDL characteristics, dictated
by the ionic concentration and the substrate ζ potential, one can
radically affect these two states. For an originally hydrophilic
state, EDL effects lead to a superhydrophilic Wenzel state.
This is an improvement on the classical EDL-independent
Wenzel scenario where there is only a minor increase in
the hydrophilicity of the originally hydrophilic state. Even
more fascinatingly, for an originally hydrophobic state EDL
effects lead to a hydrophilic Wenzel state. This is the complete
opposite of the classical EDL-independent Wenzel state, where
a hydrophobic substrate becomes more hydrophobic. For the
Cassie-Baxter state, on the other hand, for suitable choices of
the parameters characterizing the EDL, one can actually end up
with a more hydrophilic (as compared to the original) Cassie-
Baxter state. This is remarkable because the classical Cassie-
Baxter state is always more hydrophobic than the original
state. To conclude, we have discussed the classical problems
of appearances of Wenzel and Cassie-Baxter states in light of
EDL dynamics, and the results point towards the existence
of yet unknown Wenzel and Cassie-Baxter states, which may
bear great significance in understanding the behavior of liquid
drops in natural and engineered textured surfaces.
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