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Spectral properties of thermal fluctuations on simple liquid surfaces below shot-noise levels
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We study the spectral properties of thermal fluctuations on simple liquid surfaces, sometimes called ripplons.
Analytical properties of the spectral function are investigated and are shown to be composed of regions with
simple analytic behavior with respect to the frequency or the wave number. The derived expressions are compared
to spectral measurements performed orders of magnitude below shot-noise levels, which is achieved using a novel
noise reduction method. The agreement between the theory of thermal surface fluctuations and the experiment
is found to be excellent, elucidating the spectral properties of the surface fluctuations. The measurement method
requires relatively only a small sample both spatially (few μm) and temporally (∼20 s). The method also requires
relatively weak light power (∼0.5 mW) so that it has a broad range of applicability, including local measurements,
investigations of time-dependent phenomena, and noninvasive measurements.
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I. INTRODUCTION

Thermal fluctuations are ubiquitous. While usually not
noticed, all types of surfaces, solid, liquid or otherwise,
are fluctuating thermally. However, the fluctuations tend to
be too small to be observed or measured directly, except
under special circumstances. Indirectly, the fluctuations can
be visible through phenomena such as Brownian motion and
thermal noise in electronic circuits, referred to as Johnson-
Nyquist noise. Phenomena in which thermal fluctuations can
be examined directly in nonexotic materials are surface fluctua-
tions of liquids, sometimes called “ripplons” [1]. Using surface
light scattering, thermal surface and interface fluctuations
of liquids have been studied for some time [2] and are of
current experimental, as well as theoretical interest [3–8].
Other direct thermal fluctuation measurements include high
power interferometry of mirror surfaces [9] and fluctuations
of surfaces with exceptionally low surface tension [10].

In this work, we detect reflected light from surfaces to
measure their inclination spectra [11–13]. Essentially, the
sample surface acts partially as a mirror and its inclination
can be obtained regarding it as an optical lever [14]. The
dynamical measurements can be Fourier transformed to obtain
the inclination fluctuation spectra of surfaces. While we
concentrate on thermal surface fluctuations of simple liquids
in this work, our method has a much broader applicability
in studying surface and interface fluctuation spectra, some of
which was explored in [13]. Our measurements are somewhat
complementary to the more traditional spectral measurements
performed at specific wavelengths [2,15–20]. Compared to the
standard surface light scattering methods, the approach can be
characterized more as a surface light reflection measurement,
wherein almost all the light reflected by the surface is collected.
Consequently, our measurements require less power than the
traditional scattering methods and requires less time (typically
around 20 s for obtaining a spectrum shown below). The
measurement also affects the sample less since lower power is
applied for a shorter period of time, which can be crucial
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when noninvasiveness is required. The short measurement
time allows the method to be used to investigate dynamical
changes in the spectra. Furthermore, we do not require that
the surface act as effective gratings so that the measurements
can be performed on smaller samples, rough surfaces, and
highly viscous fluids with strong dissipation. Since we focus
the beam, a particular region in depth can be selected so that
the method can be used in the studies of interface phenomena
as well. As explained below, it is possible to independently
calibrate the magnitude of the fluctuations we measure, which
seems difficult in the more traditional scattering experiments.
The measurement system can be made simpler than the surface
light scattering approach.

While shot noise is often regarded as an unavoidable
limitation in optical measurements, we show that such is not
the case. The measurements involve novel methods that allow
us to measure the spectrum directly, down to several orders
of magnitude below the shot-noise level. Intuitively speaking,
by using the correlation of two independent measurements of
the same signal, we eliminate the noise, which is decorrelated.
As we explain, this principle is not limited to thermal noise
measurements nor to surface light scattering measurements.
The experimental results agree with the theory quite well. In
the process, we elucidate the simple analytic behavior of the
spectra and show how it appears in the full spectrum, which
can be seen in experiments.

The dispersion relation for surface waves on a simple liquid
surface can be derived from the Navier-Stokes equation, when
the viscosity of the liquid can be ignored, as [21]

ω(k) =
√

σk3

ρ
+ gk. (1)

Here, g is the gravitational acceleration, ρ,σ are the density
and the surface tension of the liquid, k is the wave number,
and ω is the (angular) frequency. The viscosity becomes
more important for shorter wavelengths and dissipation will
play an essential role below. Gravitational effects are more
important for longer wavelengths but are negligible for
wavelengths much smaller than π

√
σ/(ρg). For liquids we

examine, namely, water, ethanol, and oil, gravitational effects
are unimportant for scales below 10 mm. The samples we
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examine have surface sizes of few mm and longer wavelengths
are effectively cut off, so that henceforth we ignore effects due
to gravity. Under these circumstances, the dispersion relation
reduces to the following two equivalent relationships.

ω = ωR(k) =
√

σk3

ρ
, k = kR(ω) =

(
ρω2

σ

)1/3

. (2)

While the beam size that determines the observed surface
region is much smaller than the sample size, the inclinations
of waves with wavelengths much larger than the beam size can
still be measured. In addition to the cutoff due to the sample
size, there is an additional cutoff for shorter wavelengths to be
explained below. Intuitively speaking, since the average incli-
nation within the beam spot is measured, shorter wavelengths
are averaged out. In what follows, we examine the spectra of
surface fluctuations within these cutoffs, both experimentally
and theoretically, including the full effects of dissipation.

The paper is organized as follows: In Sec. II, we explain the
surface light reflection experiment and derive what precisely
is measured by this method. The properties of thermal surface
fluctuations of simple liquids are examined in Sec. III and
the approximate simple analytic behavior of the spectra are
derived. The shot-noise level in our experiments are assessed in
Sec. IV. The noise reduction method explained in Sec. V allows
us to detect weak signals buried under the shot-noise level. The
general applicability of the principle is also clarified. Finally,
we combine the theoretical and the experimental results in
Sec. VI and find that they agree. The limitations in the exper-
iment and further directions for research are also discussed.

II. THE EXPERIMENT AND THE MEASUREMENT

In the experiment, a laser beam is shone on the sample and
the average inclination within the beam spot is measured at
each instant (Fig. 1). The surface effectively acts as an optical
lever [14] and its inclination can be measured through the
difference in the amount of light received by each element
in a dual-element photodiode (DEPD 1,2, S4204 Hamamatsu
Photonics, Japan). We use two such independent measurement
systems with a laser beam 1 (wavelength 638 nm) and 2
(658 nm). The reason for using these two systems is to reduce
unwanted noise in the measurements, which we achieve by
using correlations of two independent measurements, since
the noise within them is decorrelated. The principle behind
this noise reduction is described in Sec. V in detail. The
DEPD signals are amplified and then fed into a computer
via analog to digital converters (ADC, 14 bit, ADXII14-80M,
Saya, Japan). The inclination data in the time domain are
converted to the spectral information through the use of Fourier
transform. Fourier transforms and averagings are performed by
the computer.

The total laser beam power at the sample is 0.5 mW. The
beam is focused down to μm order and its diameter (∼λ/NA)
is varied by changing the numerical aperture (NA) of the
objective lens, where λ is the wavelength of the probe laser
beam. This focusing allows us to select a particular region
of interest in the depth direction, which can, for instance, be
useful in the studies of interface phenomena. The beam size
is considerably smaller than that used in the standard light
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FIG. 1. Two laser beams with wavelengths 638 and 658 nm are
combined at a dichroic mirror (DM1) and focused by a microscope
objective lens onto the liquid surface. The reflected light with
different wavelengths are separated at DM2 to obtain two independent
inclination measurements of the same surface. The inclination is
converted into electric signals using DEPD1, DEPD2 and are fed
via ADCs into a computer where fast Fourier transform (FFT) and
averagings are performed. A polarizing beam splitter (PBS) and a
quarter wave plate (QWP) are included to extract the light reflected
back from the sample efficiently. DM3 is used for viewing the sample
through a video camera.

scattering methods. The amplitude of the waves are small
compared to the wavelength so that the reflected light is almost
all collected by the objective lens. Therefore, compared to the
standard light scattering experiments which observe only a
small fraction of the scattered light, we obtain larger signals
for a given beam power. This can be crucial in low power
measurements.

We now explain what is measured in this experiment and
how this relates to the spectrum of surface fluctuations. Since
the surface acts effectively as an optical lever, we measure
fluctuations in the average inclination of the surface. The
average inclination can be obtained by approximating the
surface level, φ(r,t), with a linear profile. This can be done by
minimizing∫

d2r G(r) |φ(r,t) − (a0(t) + a1(t)x)|2 . (3)

Here, r = (x,y) are coordinates on the surface and G(r) is
the beam profile function. In what follows, the results from
this approach are thoroughly compared with the experimental
results on various liquids, with which they agree quite
well. Equation (3) leads to the expression for the average
displacement a0 and inclination a1,

a0(t) =C0

∫
d2r G(r)φ(r,t), C0 =

(∫
d2r G(r)

)−1

,

(4)

a1(t) =C1

∫
d2r G(r)xφ(r,t), C1 =

(∫
d2r x2G(r)

)−1

.

(5)

While we can solve for aj (t) more generally, we assumed
here that the profile is symmetric,

∫
d2r xG(r) = 0, which
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applies to our case, as discussed below. We define the Fourier
transform of aj as

ãj (ω) = 1√
T

∫ T/2

−T/2
dt eiωtaj (t), j = 1,2, (6)

where T is the measurement time, which is much longer when
compared to the other time scales involved.

Since the correlation function of the surface fluctuations is
translation invariant both in space and time, it can be expressed
as

〈φ(r,t)φ(r ′,t ′)〉 =
∫

dω

∫
d2k

(2π )2
eik·(r−r ′)−iω(t−t ′)P (k,ω).

(7)

Here, P (k,ω) is the spectral function of the fluctuations of
the surface displacement and 〈· · ·〉 denotes the statistical
average. Using this correlation function, the fluctuations in
the inclinations are obtained as

〈|ã1(ω)|2〉 =
∫

d2k
2π

∣∣∣∣C1

∫
d2r eik·rxG(r)

∣∣∣∣
2

P (k,ω). (8)

Since we are using a laser beam well described by a
Gaussian profile to observe surface fluctuations, the profile
function G(r) can be expressed using the beam diameter b as

G(r) = G0e
−4r2/b2

. (9)

The spectrum measured in the experiment is (we henceforth
use the notation ω = 2πf )

S(f ) = 2〈|ã1(ω)|2〉, (10)

taking into account that the measurement is in frequency space
and the one-sidedness of the spectrum. Combining the results
above, we derive a compact expression for the fluctuation
spectrum observed in the experiment,

S(f ) =
∫ ∞

0
dk k3e−b2k2/8P (k,2πf ). (11)

It should be noted that this formula applies to general surface
fluctuation spectra measured using this method and is not
limited to liquids nor to thermal fluctuations. This result
specifies the measured spectrum S(f ) completely including
its magnitude, given the spectral function P (k,ω) and the
beam diameter b, and is independent of the beam power
applied. As can be seen from the expression, the role of
the beam size is to effectively cut off the k integral of
the spectral functions for values over ∼2π/b. Consequently,
fluctuations with wavelengths much smaller than the probe
light wavelength cannot be investigated using this method,
which is a general limitation of optical measurements, unless
we use near-field methods. This cutoff occurs because the
inclination is effectively averaged within the beam spot, so
that shorter wavelengths are effectively averaged out. It also
explains why we integrate up to infinity in this formula; while,
in principle, the wavelengths of surface fluctuations should
be cutoff at atomic length scales, this is much smaller than
b so that using infinity as the upper limit in the integration

region introduces negligible difference, due to the Gaussian
damping. The lower limit of the integration region should,
strictly speaking, be set to ∼2π/L, where L is the size of the
sample (L is few mm in our experiment) providing an upper
bound for wavelengths. However, the difference from setting
the lower end of the integral to zero as in the formula can also
be ignored, as will become clear below.

III. ANALYTIC STRUCTURE OF THE SPECTRUM

The spectral function for thermal fluctuations of simple
liquid surfaces has been derived previously [22],

P (k,ω) = kBT

π

ku2

ρω3
Im[(1 − iu)2 + y − √

1 − 2iu]−1,

u ≡ ρω

2ηk2
y ≡ ρσ

4η2k
. (12)

While this expression for the spectrum is analytic, its depen-
dence on the various physical parameters is not apparent. The
dependence can be obtained in simple form when the wave
number domain or the frequency domain is split into several
regimes, depending on the viscosity. We concisely summarize
this dependence below, to gain insight into the behavior of the
spectral function and for later use.

A. Leading analytic behavior with respect to k

Let us study the dependence of the spectral function P (k,ω)
on k, when ω is fixed. The dimensionless measure of the
viscosity of the liquid, η3ω/(ρσ 2) influences the properties of
the spectral function P (k,ω) qualitatively. Any liquid is highly
dissipative for high enough frequencies, which is intuitively
natural. When the viscosity is effectively low, η3ω/(ρσ 2) < 1/

(8
√

2), the leading order analytic behavior P0(k,ω) can be
obtained as

P0(k,ω) = kBT

π
×

{
4ηk3

ρ2ω4 when k < 2−1/6kR(ω)

2η

σ 2k3 k > 2−1/6kR(ω)
. (13)

In this case, P (k,ω) has a peak close to k = kR(ω),
which becomes less prominent as η3ω/(ρσ ) increases. When
η3ω/(ρσ 2) > 1/(8

√
2), the leading behavior of the dispersion

relation splits into three regions as

P0(k,ω) = kBT

π
×

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

4ηk3

ρ2ω4 when k < 2−1/4
√

ρω

2η

1
2ηkω2 2−1/4

√
ρω

2η
< k <

2ηω

σ

2η

σ 2k3 k >
2ηω

σ

. (14)

In both cases with low and high viscosity, for long wavelengths
compared to 2π/kR(ω), the spectral function is governed by
the viscous properties of the liquid and depends on ρ. On
the other hand, for short wavelengths, it is suppressed by
the surface tension of the liquid and is independent of its
density.

In Fig. 2, we compare the full spectral function Eq. (12) with
its approximate analytic behavior derived above. We see that in
all the cases, the spectrum is well reproduced by them, except

011602-3



KENICHIRO AOKI AND TAKAHISA MITSUI PHYSICAL REVIEW E 86, 011602 (2012)

10-50

10-45

10-40

10-35

10-30

103 104 105 106 107 108

P
(k

,2
πf

) [
m

4 /H
z]

k [m-1]

(a)

10-50

10-48

10-46

10-44

10-42

10-40

10-38

10-36

10-34

10-32

103 104 105 106 107 108

P
(k

,2
πf

) [
m

4 /H
z]

k [m-1]

(b)

FIG. 2. (Color online) P (k,2πf ) computed numerically for (a) water and (b) oil with respect to k at fixed f . Frequencies are f = 103,105,

107 (s−1) [red (upper), green (middle), blue (lower) lines, respectively], with the maximum of the spectrum being larger for higher f . The
corresponding simple analytic behaviors Eqs. (13) and (14) are also shown (black dashed) and match well with the full spectral function and
are almost invisible, except at the boundaries between the regions.

for the peak seen in the water surface fluctuations at lower
frequencies. The peak reflects long-lived waves and disappears
when the viscosity is effectively high, due to dissipation. In
both Eqs. (13) and (14), the spectral function is independent
of f for large k, which can be seen from the plots. The simple
analytic formulas derived above capture the situations with
weak and strong viscosity, which have qualitatively different
properties.

B. Leading analytic behavior with respect to ω

We now analyze the dependence of P (k,ω) on ω, for
fixed k (Fig. 3). For a liquid with low viscosity effectively,
η2k/(ρσ ) < 1/(4

√
2), the leading order analytic behavior

P0(k,ω) is broken up into two regions as

P0(k,ω) = kBT

π
×

⎧⎨
⎩

2η

σ 2k3 when ω < 21/4ωR(k)

4ηk3

ρ2ω4 ω > 21/4ωR(k)
. (15)

For the highly viscous case, the leading analytic behavior can
be broken down into three regions, thus,

P0(k,ω) = kBT

π
×

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2η

σ 2k3 when ω < σk
2η

1
2ηkω2

σk
2η

< ω <
2
√

2ηk2

ρ

4ηk3

ρ2ω4 ω >
2
√

2ηk2

ρ

.

(16)

C. Analytic behavior of the integrated spectrum

While the spectrum S(f ) in Eq. (11) can be computed
numerically, we now clarify its rough analytic behavior using
P0(k,2πf ) derived above. In the integrated spectrum S(f ),
b provides a cutoff kmax for the integral, whose relation we
specify below. The spectrum can be approximated by

S0(f ) =
∫ kmax

0
dk k3P0(k,2πf ). (17)

This can be computed explicitly. For the low viscosity case
η3ω/(ρσ 2) < 1/(8

√
2),

S0(f ) = kBT

π
×

⎧⎪⎨
⎪⎩

(
2ηkmax

σ 2 − 211/63ρ1/3η

7σ 7/3 ω2/3
)

when ω < 21/4ωR(kmax)

4ηkmax
7

7ρ2
1
ω4 ω > 21/4ωR(kmax)

. (18)

When the viscosity is high, the spectrum has the following approximate:

S0(f ) = kBT

π
×

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(
2ηkmax

σ 2 − 8η2

3σ 3 ω − ρ3/2

25/421η5/2
1

ω1/2

)
when ω < σkmax

2η(
kmax

3

6η
1
ω2 − ρ3/2

25/421η5/2
1

ω1/2

)
σkmax

2η
< ω <

2
√

2ηkmax
2

ρ

4ηkmax
7

7ρ2
1
ω4 ω >

2
√

2ηkmax
2

ρ

. (19)
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FIG. 3. (Color online) P (k,2πf ) obtained numerically for (a) water and (b) oil with respect to frequency f at k = 103,105,107 (m−1)
[red (smallest at highest frequencies), green and blue (largest at highest frequencies) lines, respectively). The spectra with larger k have more
fluctuations at higher f . Their analytic approximations Eqs. (15) and (16) (black dashed) agree well with the full spectral function and are
almost invisible, except at the boundaries between the regions.

Taking into account the formula for S(f ) in Eq. (11), we use
kmax = 21/44/b, which satisfies

∫ ∞
0 dk exp(−b2k2/16)k3 =∫ kmax

0 dk k3. In Fig. 4, the spectrum S(f ) is compared to its
approximate analytic behavior S0(f ) in Eqs. (18) and (19).
It can be seen that the essential features of S(f ) are well
reproduced by the simple analytic formulas. Examining in
more detail, we see that the agreement is better for more vis-
cous liquids. This is presumably due to the peak contribution
unaccounted for in the formulas Eqs. (13) and (14), which does
not exist for more viscous fluids. It can be seen from Eqs. (18)
and (19) that S(f ) behaves as ∼ η/σ 2 for lower frequencies
explaining why oil has larger fluctuations than water in this
regime. In addition, from the formulas we can see why the
fluctuations are larger for smaller b (or equivalently, larger
kmax) over the whole spectrum, both when the viscosity is
weak and strong.

We note that the calculations above also show why the
integration region in the spectrum formula Eq. (11) can be
taken down to zero as long as the cutoff is well below the upper
limit of the region; since had we put in a lower cutoff klow, its
contribution to S(f ) would behave as ∼ k7

low. This condition is

equivalent to the surface size being much larger than the beam
diameter, which is always satisfied in our experiments.

IV. SHOT-NOISE LEVEL

While our measurement precision is not limited by the
shot noise of the photodetection system, it is illuminating to
understand how the shot-noise level would have appeared in
our setting. The electric current through the photodiode is
I = κeP/hν, where P is the signal power, e is the electron
charge magnitude, and κ is the quantum efficiency of the
photodiode. κ 	 0.8 for the photodiodes we use. The current
generated by shot noise is

ISN =
√

2eI �f = e

√
2κP
hν

�f . (20)

�f is the frequency range of the measurement. The signal in
the experiment comes from difference in the current �I due
to the geometric effects of the optical lever. For an inclination
θ , the signal is

�I = κ
2eθP
hνNA

. (21)
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FIG. 4. (Color online) S(f ), the integrated spectra of surface fluctuations, computed numerically for (a) water and (b) oil with respect to
f . The spectra are shown for b = 0.85,1.7,7.1 (μm−1) [red (upper), green (middle), blue (lower) lines, respectively), along with their analytic
approximations (black dashed). The spectra for smaller b have larger fluctuations across the spectrum.
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The shot-noise level in our experiment is the size of
the angular fluctuations θ2

SN corresponding to the shot-noise
current. This is what appears in the measurements, had we
not used the noise reduction through correlations described in
Sec. V. θ2

SN can be obtained from �I 	 ISN to be

θ2
SN 	 NA2e

2I
�f. (22)

Here, the current I is the photoelectric current collected by the
dual photodiodes. θ2

SN is smaller for larger signals, which is
natural. In addition, for larger numerical apertures, the beam
spot is focused down to a smaller size so that the effect of
the optical lever is smaller, hence the shot-noise effects are
larger. In our experiment, I 	 3 μA so that θ2

SN 	 NA2 × 3 ×
10−14 rad2/Hz. It is crucial to separate out the signal from this
noise, using methods explained in the next section.

V. NOISE REDUCTION THROUGH CORRELATIONS

An essential feature of thermal fluctuations is that they
are random. Since our objective is to directly measure the
fluctuations under normal circumstances, the fluctuations are
furthermore small. Even in ideally executed experiments, some
random noise, such as shot noise, always exist. Therefore, to
measure weak random signals, we need to separate out the
random signal from the random noise. This is possible under
rather general circumstances, as we now explain [13]. The
principle behind this noise reduction is not limited to thermal
fluctuations or optical measurements, but applies generally
to the extraction of random signals from random noise. The
conditions for its applicability will be discussed below.

A detector measurement D1 = S + N1 consists of the
desired signal S and some noise N1, independent of S.
Denoting Fourier transforms with tildes, the power spectrum
obtained under simple averaging is

〈|D̃1|2〉 = 〈|S̃|2〉 + 〈|Ñ1|2〉. (23)

Since the signal itself is random in nature, there is no way
to distinguish the signal from the noise, so that the signal
cannot be measured, unless the signal is larger than the noise,
〈|S̃|2〉 
 〈|Ñ1|2〉. If we use only one measurement, this is an
essential limitation.

To overcome this obstacle, we make another independent
measurement of the same signal, D2 = S + N2, where N2

denotes the noise for this measurement. Then,

〈D̃1D̃2〉 → 〈|S̃|2〉, N → ∞, (24)

eliminating the random noise N1,N2. Here N is the number
of averagings. This result holds since the measurements
D1,D2 are independent and the cross terms of decorrelated
random observables (and their Fourier transforms) vanish
under averaging. The relative error in this method is ∼1/

√
N ,

which arises from the statistical nature of the method. In
principle, given enough averagings, we can suppress shot noise
and other random noise effects to an arbitrarily small size.

The crucial requirements for our method to work is
that multiple independent measurements can be made and
that the signal is stable enough to withstand averagings.
The independence of the measurements, or equivalently, the
decorrelation of the noise in them is clearly crucial. As the

signal becomes weaker, stricter independence is required,
which in practice can be quite delicate. For instance, cross
talks can arise in electronic circuits, unless they are com-
pletely separated and electronic signals can affect each other
through electromagnetic fields in the intervening space. These
properties put practical limitations on the reduced noise level.
While our method cannot be used for a one-time event, it can
be used for any recurrent signal.

Specifically within our experiment, there exist five main
sources of noise which need to be greatly reduced to achieve
the desired sensitivity which is four orders of magnitude below
the shot-noise level. First source is the shot noise within
the photoelectric conversion processes. Second source is the
amplification noise that arises mainly from thermal noise and
noise within the semiconductor chips. Third source is the
amplitude modulation (AM) noise of the laser beam. Fourth
source is the frequency modulation (FM) noise of the laser
beam. While the system may seem insensitive to this FM
noise through the use of dual-element photodiodes, unwanted
interference effects in the experimental setup have frequency-
dependent response, leading to significant noise levels. Fifth
source is the directional fluctuation of the laser beam. First two
sources of noise arise within the photodetection system so that
they can be eliminated by using duplicate dual-element pho-
todetectors. The other three types of noise can be eliminated
by using different laser sources. So our setup that uses laser
sources with two wavelengths and two detector systems lead to
two independent measurements which can easily be separated.
Using the correlation of these measurements, all these types
of noise can be removed, in theory as well as in practice.
While it is also possible, in principle, to use a single laser with
one wavelength for the measurements, more sophistication
is necessary to obtain two independent measurements of the
same signal.

Another possible approach to reducing the relative noise is
to increase the signal strength. In our context, this would mean
increasing the beam intensity. However, this is not always
applicable, since a stronger beam will affect the sample. Even
for simple liquid surfaces, it leads to more evaporation and
can lead to less precise measurements. More generally, if
we consider measuring the physics properties of biological
materials, as required for medical applications [23], using a
strong light source is often excluded. In surface light scattering
experiments, heterodyne detection involving correlations of
the signal and a reference signal has been used previously [24].
While in a different area, cross correlations have been used
in dynamic light scattering (DLS) to study the properties
of particles suspended in a liquid [25–27]. In DLS, cross
correlations of scattered light from different paths are used
to reduce contributions from multiple scattering and to study
the properties of a single particle. In contrast, we use the cross
correlations of independent measurements of the same signal
from the same path to reduce the noise.

VI. EXPERIMENTAL RESULTS AND THEORY

In Fig. 5, we compare the experimentally measured spectra
against the theory explained above for water, ethanol, and
oil (Olympus immersion oil AX9602) with various beam
sizes. We analyze the frequency range from a few hundred to
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FIG. 5. (Color online) Experimentally observed fluctuation spectra for (a) water [b = 0.92,2.2,8.1 (μm)], (b) ethanol [b = 0.64,1.8,

6.7 (μm)], and (c) oil [b = 1.2,1.8,7.8 (μm)]; red (upper), green (middle), blue (lower) lines from smaller to larger b. Respective theoretical
spectra S(f ) are also shown (black dashed). The spectra for smaller b have larger fluctuations.

7 × 106 Hz. Due to the aforementioned cutoffs, the wave-
lengths of the surface waves we study range from μm to few
mm. The fluid properties we used for water, ethanol, and oil
are {ρ [kg/m3],σ [kg/s2],η [kg/(m · s)]} = (1.0 × 103,7.3 ×
10−2,1.0 × 10−3), (0.79 × 103,2.2 × 10−2,1.1 × 10−3), and
(0.92 × 103,3.0 × 10−2,0.124), respectively. The agreement
between the theoretical formula Eq. (11) and the experimental
measurements is mostly quite satisfactory, including its beam
size dependence. Going in the other direction, given a
spectrum, we could have deduced the physical properties of
the liquid. For instance, given ρ, which can usually be obtained
independently, σ,η can be determined within 10% or so. There
is some excess signal in the water surface fluctuations at low
frequencies for small b [b = 0.92 μm case in Fig. 5(a)], whose
cause is discussed below. The rough features of the spectra can
be understood from Eqs. (18) and (19); the spectrum behaves
as S(f ) ∼ η/(σ 2b) at low frequencies. So, the spectral density
of the fluctuations is largest for oil due to its high viscosity
and smallest for water due to its large surface tension. The
fluctuations are larger for smaller b. At high frequencies,
as we decrease b, the effective cutoff for the wavelength
decreases and fluctuations at larger frequencies become more
apparent.

While the exact cause of the excess signal in the
water surface fluctuation spectrum at low frequencies for
b = 0.92 μm is not certain, a plausible explanation is the
following: Ideally, the experiment measures only inclination
fluctuations of the surface. However, if there is an imperfection
in the beam symmetry or in its alignment, the setup is weakly
sensitive also to surface height fluctuations. This is especially
true for larger NA (or equivalently smaller b), when the
depth of field is shallow. The dimensionless ratio of the
height fluctuation spectrum to the inclination spectrum has
the dependence, 〈|ã0(ω)|2〉/(〈|ã1(ω)|2〉b2) ∼ σ/(ηbf ). 1/f

dependence contributes to larger signal at lower frequencies
and the ratio is larger for liquids with higher σ , such as water,
and at small b. Therefore, a very weak sensitivity in the surface
height fluctuations can give rise to the excess signal such as
those seen in Fig. 5(a).

The shot-noise levels in the measurements are 3 × 10−15,

1 × 10−15,7 × 10−17 (Hz−1) for the beam diameters b =
1,2,8 (μm), as explained in Sec. IV. Therefore, we see that
the noise reduction using signal correlations explained in the
previous section is crucial for examining even the qualitative
features of the spectra, since most, and in some cases all, of
the spectra can be below shot-noise levels.
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Some comments regarding the calibration of the measure-
ments is in order. On the theoretical side, given the properties
of the liquid and the beam diameter, there are no further
parameters at all in the spectrum Eq. (11), which is specified
completely. Experimentally, the frequency dependence of the
spectrum can be measured precisely. Calibrating the overall
magnitude of the measured spectrum is more difficult and this
is done using a piezoelectrically driven mirror with a known
oscillation amplitude. While this works well when b is large,
for smaller b, the shallowness of the depth of field makes
the calibration less accurate. Another complication is that the
liquid in general evaporates during the measurement so that the
beam defocuses. This, in effect, increases the beam diameter
and can influence the spectral shape. This problem is clearly
more acute for larger beam powers. A typical measurement of
simple liquid surface fluctuations takes around 20 s and the
beam power applied is 0.5 mW. Given the excellent agreement
of the observed fluctuation spectra of simple liquid surfaces
and theory, it might be reasonable to use thermal surface
fluctuations of a specific liquid having well-known properties
and a high boiling point to finely calibrate the system, when
applying the measurements to more general samples.

In this work, we directly studied the spectra of thermal
fluctuations for simple liquids, using surface light reflection
methods. The spectra obtained are integrated over wavelengths
and we have also investigated the dependence of the spectra
on the beam diameter. In the process, we applied a novel
general method for noise reduction, using the correlation of
independent measurements of the same signal. The spec-
tra obtained experimentally matches well with the theory,

whose approximate analytic behavior can be summarized
rather simply. The derived analytic behavior elucidates the
physics underlying the properties of the spectral functions,
depending on the regime. Theoretically, the spectrum is
uniquely determined by the physical properties of the liquid
and the beam diameter. The agreement between the theoretical
and the experimental results for liquids with quite different
properties—for instance, water with strong surface tension,
oil with high viscosity—over a wide frequency range and
for various beam sizes provides a highly nontrivial check
on the theory. Such detailed analysis of the spectra seems
difficult in other methods, since the shot-noise level is high
unless a stronger light is used, in which case the sample is
affected. The measurement method is complementary to the
surface fluctuation measurements for specific wavelengths,
when applied to simple liquids. The method, especially when
combined with the noise reduction method, has a broad range
of applicability, especially since the required sample size,
observation time, and power are small. The method can hence
be also used for measuring fluctuation spectra of biological
materials which can be affected by the probe light and physical
properties of transient phenomena, such as those involving
paint or epoxy [13].
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