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Many-particle surface diffusion coefficients near first-order phase transitions at low temperatures
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We analyze the chemical and jump surface diffusion coefficients, Dc and DJ , near a first-order phase
transition at which two phases coexist and the surface coverage, θ , jumps between single-phase values θ∗

−
and θ∗

+. Contrary to other studies, we consider temperatures that are sufficiently subcritical. Using the local
equilibrium approximation, we obtain approximate analytical formulas for the dependences of Dc and DJ on
the coverage and system size, N , near such a transition. In the two-phase regime, when θ ranges between θ∗

−
and θ∗

+, the diffusion coefficients behave as the sums of two hyperbolas, Dc ≈ A−/N |θ − θ∗
−| + A+/N |θ − θ∗

+|
and DJ ≈ A−|θ − θ∗

+|/θ + A+|θ − θ∗
−|/θ . This behavior rapidly changes as the system goes from the two-phase

regime to either of the single-phase regimes (when θ goes below θ∗
− or above θ∗

+). The crossover behavior of
Dc(θ ) and DJ (θ ) between the two-phase and single-phase regimes is described by rather complex formulas
involving the Lambert function. We consider a lattice-gas model on a triangular lattice to illustrate these general
results, applying them to four specific examples of transitions exhibited by the model.
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I. INTRODUCTION

The chemical (or collective) surface diffusion coefficient,
Dc, is defined via Fick’s first law and describes surface
mass-transport processes for a many-particle system. Another
relevant many-particle coefficient is the jump surface diffusion
coefficient, DJ , that describes the asymptotic behavior of
the mean-square displacement of the center of mass of the
system (hence, it is also called the center-of-mass diffusion
coefficient) [1]. The two diffusion coefficients are related by
the Kubo-Green equation [1–3],

Dc = �DJ with � = θ

χ/β
, (1)

where β = 1/kBT is the inverse temperature, θ is the surface
coverage, and χ is the isothermal susceptibility. The thermo-
dynamic factor � is associated with thermodynamic properties
of Dc, while DJ is associated with its kinetic properties.

Theoretical studies of the diffusion coefficients Dc and
DJ and of the influence of lateral interparticle interactions
on these coefficients have often used lattice-gas models to
simulate surface diffusion. In these models the migration of
adparticles is given by the potential relief of the substrate
surface: most of the time the adparticles stay at the positions
(sites) where the relief attains its minima, but from time to
time they perform random jumps to the adjacent vacant sites.
Assuming the jumps to be instant, the states of the system
of adparticles are represented by occupation numbers (one
number for each site), like in a lattice gas. Although this
description is rather oversimplifying, it should possess the
key aspects of the diffusion and, moreover, it can be treated
by a number of statistical mechanical methods, such as the
mean-field, real-space renormalization group, and computer
simulation techniques [1,4].

In order to determine the chemical diffusion coefficient Dc

in general, one should solve a system of balance equations
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for a large number of adparticles that strongly interact with
each other as well as with the substrate surface. Analytic
treatment of such a formidable kinetic problem often results in
some kind of approximation. In particular, assuming that the
adparticle surface coverage varies only very slowly with time
and space (the local equilibrium limit), purely thermodynamic
quantities are sufficient to obtain Dc, i.e., the problem reduces
to the evaluation of the finite-size specific free energy, f , of
the system [2,5–7]. This approximation has been extensively
tested for lattice gases, and the results obtained from it by
analytical methods have been in good agreement with the
numerical results obtained by kinetic simulations [8].

Now, assume that the jumps of adparticles are mutually
uncorrelated and restricted to nearest neighbors. In addition,
assume that an activated adparticle at a saddle point of the
potential barrier interacts only with the adjacent adparticles.
Then in the local equilibrium approximation the original
problem can be reduced to a diffusion equation, with the
corresponding diffusion coefficient given as [5,9,10]

Dc ≈ D0 eβμ P

χ/β
, (2)

which furthermore yields, due to Eq. (1),

DJ ≈ D0 eβμ P

θ
. (3)

Here D0 is the diffusion coefficient of noninteracting particles
and μ is the chemical potential. The correlation factor P can
be expressed via derivatives of the free energy f [see Eqs. (4)
below] so that it is a thermodynamic quantity, like the coverage
θ and susceptibility χ . Consequently, the evaluation of f is
sufficient to yield the diffusion coefficients Dc and DJ from
the approximative expressions (2) and (3).

The correlation factor P is associated with the interactions
of an activated adparticle with other particles. It is given as
a sum of the probabilities that certain clusters of adjacent
sites are vacant [8,9,11]. The clusters contain the lattice bond
on which a particle jump is performed, plus the neighboring
sites with which an activated adparticle is considered to
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interact. Usually, only the sites nearest to the saddle point
are considered. Then the clusters are quite small (for example,
for a triangular lattice they can be bonds, elementary triangles,
and parallelograms [9]). Clearly, the probabilities that clusters
are vacant may be expressed via derivatives of f with respect
to suitable interparticle interaction parameters, ui . Therefore,
quite generally, the factor P has the form given as

P = C0 +
∑

i

Ciξi with ξi ≡ ∂f

∂ui

, (4)

where the constants Ci may depend on the interaction
parameters of an activated adparticle.

One of the intriguing problems that has attracted particular
attention is the presence of phase transitions and their effects
on surface diffusion. Since lattice gases can be used to
model such transitions, they have provided a convenient
framework also in this regard [3,9,10,12–20]. However, below
critical temperatures ordered phases may arise due to lateral
interactions, and sophisticated arguments should be applied to
analyze surface diffusion [9]. In fact, very low temperatures
have not been considered in the previous studies.

In this paper we wish to fill in this gap and study
the diffusion coefficients Dc and DJ at sufficiently low
temperatures. We shall concentrate on their dependences on the
chemical potential μ, surface coverage θ , and the number N ,
of adparticles in the system. Our analysis is based on two key
points. First, we assume that the approximative expressions (2)
and (3) for Dc and DJ can be applied. This is appropriate only
in the local equilibrium limit and under the above-mentioned
assumptions on the adparticle jumps. Then Dc and DJ can
be obtained just from the finite-size specific free energy
f = −(1/βN ) ln Z of the system, where Z is the finite-size
partition function. Second, we assume that a first-order phase
transition between two phases, p+ and p−, takes place in the
system at a transition point μ = μt . At low temperatures and
near the transition point (for |μ − μt | � const/β

√
N ), we will

employ the formula [21,22]

Z = (ν−e−βf−N + ν+e−βf+N )(1 + r) (5)

that is applicable for a large class of lattice-gas models with
periodic boundary conditions, such as the models with a
finite range m-potential and a finite number of ground states.
Here ν± are the degeneracies of phases p±, f± are their
single-phase specific free energies, and the error term r =
O[exp(−constβ

√
N )]. [We use the symbol O(x) to represent

a term that can be bounded by const x.]
Combining Eqs. (2)–(5), we will be able to obtain general

finite-size formulas for the diffusion coefficients Dc and DJ

near a low-temperature phase transition of first-order (see
Sec. II). For the sake of illustration, we find it useful to
consider a specific lattice-gas model of surface diffusion and
show how our general results on Dc and DJ can be applied to
this particular model (see Sec. III).

II. GENERAL FORMULAS FOR THE DIFFUSION
COEFFICIENTS NEAR A PHASE TRANSITION

Our starting point in the study of the diffusion coefficients
Dc and DJ is the general expression (5) for the partition
function Z. It enables us to write the finite-size specific free

energy f as

f = ϕ + r, (6a)

where the shorthand

ϕ ≡ − 1

βN
ln(ν−e−βf−N + ν+e−βf+N ). (6b)

Thus, f coincides with ϕ up to the error term r . Analogously,
derivatives of f coincide with the corresponding derivatives
of ϕ up to the same error term r [22].

Next, we use Eq. (6) to evaluate the coverage θ , suscepti-
bility χ , and correlation factor P . We easily get [23]

θ = − ∂f

∂μ
= θ−λ− + θ+λ+ + r,

ξi = ∂f

∂ui

= ξi−λ− + ξi+λ+ + r, (7)

χ = −∂2f

∂μ2
= (θ+ − θ−)2βNλ−λ+ + χ−λ− + χ+λ+ + r,

where

λ± ≡ ν±e−βf±N

ν−e−βf−N + ν+e−βf+N
(8)

may be viewed as weight factors (because λ± > 0 and λ− +
λ+ = 1). Equation (7) shows that the coverage θ is, up to the
error r , the weighted average of the single-phase coverages
θ± ≡ ∂f±/∂μ, the weights being λ±. Similarly, the quantities
ξi from the factor P are the weighted averages of their single-
phase versions ξi± ≡ ∂f±/∂ui . The susceptibility χ has a more
complex structure: it is a sum of a term proportional to the
system size N and the weighted average of the single-phase
susceptibilities χ± ≡ −∂2f±/∂μ2.

Relations (7) provide the dependences of θ , ξi (or P ), and
χ on the chemical potential μ (via the μ dependences of the
single-phase free energies f±). Consequently, combining the
relations with Eqs. (2)–(4), we immediately get approximative
expressions for the μ dependences of the diffusion coefficients
Dc and DJ . In order to get the coverage dependences of the
diffusion coefficients, one needs to eliminate μ between Dc(μ)
and DJ (μ) on the one hand and θ (μ) on the other one. This
can be easily carried out numerically for a given system as
soon as f±(μ) are evaluated.

Nevertheless, explicit finite-size formulas for the coverage
dependences of the diffusion coefficients can be also derived.
To this end, we shall consider three different regimes in the
behavior of Dc and DJ . The regimes are distinguished by the
relative importance of phases p− and p+ as given by their
weights λ+ and λ−, respectively. Namely, if neither λ+ nor
λ− is negligible, both phases are dominant, and we speak of
a two-phase regime. On the other hand, if one of the weights
is negligible, only one phase is dominant, and we speak of
a single-phase regime. In transition between the two regimes
yet another regime arises; we call it a crossover regime. Let
us now consider the three regimes separately. Without loss of
generality, we will assume that phase p− (p+) is stable for μ

below (above) the transition point μt ; then the coverage jump
at the transition is θ+(μt ) − θ−(μt ).

Notation. We shall use �q to denote the difference, q+ −
q−, of single-phase quantities q+ and q−. Moreover, the starred
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quantity, q∗, will denote the value q(μt ) of a quantity q at the
transition. For example, the coverage jump at the transition
will read θ∗

+ − θ∗
− = �θ∗.

A. Two-phase regime

The two-phase regime occurs when the leading term in the
susceptibility χ is the term proportional to the system size (then
both λ− and λ+ are of order larger than N−1). This is true only
very near the transition point, namely, for μ satisfying [21,23]

β|μ − μt | � δ with δ = γ

�θ∗
ln N

N
. (9)

The constant γ can range from 1/2 to 1. To be specific, we
shall take γ = 3/4 in the following.

In the two-phase range (9) the single-phase quantities θ±
and ξi± coincide with their values θ∗

± and ξ ∗
i± at the transition,

up to errors of order δ. Therefore, the expressions in Eq. (7)
may be written as

θ = θ∗
−λ− + θ∗

+λ+ + O(δ),

ξi = ξ ∗
i−λ− + ξ ∗

i+λ+ + O(δ), (10)

χ = (�θ∗)2βNλ+λ−[1 + O(N−1/4)].

Hence, θ and ξi are the weighted averages of the constants θ∗
±

and ξ ∗
i±, while the susceptibility is proportional to the system

size N . Note that, as μ varies within range (9), the coverage
varies within the range

t− � θ � t+, (11)

where t± ≡ θ (μt ± δ/β) = θ∗
± ∓ �θ∗(ν∓/ν±)N−3/4 + O(δ)

by Eq. (10). Thus, in the two-phase regime the coverage attains
almost all values between θ∗

− and θ∗
+.

The μ dependences of θ , ξi , and χ in Eq. (10) are
primarily given by the weights λ±. So, the elimination of
μ amounts to the elimination of λ±. From Eq. (10) and
the equality λ+ + λ− = 1, the coverage dependences λ± =
±(θ − θ∗

∓)/�θ∗ + O(δ) of the weights follow. They in turn
yield the coverage dependences of ξi and χ . Substituting the
latter into Eqs. (2)–(4), we get the coverage dependence of the
diffusion coefficients as

Dc ≈ D0e
βμt

�θ∗N

(
P ∗

−
θ − θ∗−

+ P ∗
+

θ∗+ − θ
+ ε

)
(1 + ε),

(12)

DJ ≈ D0e
βμt

�θ∗

(
P ∗

−
θ∗
+ − θ

θ
+ P ∗

+
θ − θ∗

−
θ

+ ε

)
,

where P ∗
± = C0 + ∑

i Ciξ
∗
i± are the single-phase values of

the correlation factor P at the transition and the error term
ε = O(N3/4δ) = O(N−1/4 ln N ).

The first formula in Eq. (12) shows that the coverage
dependence of Dc behaves as the sum of two hyperbolas,
A±/N |θ − θ∗

±|, decreasing with the system size as 1/N . For
a given size N , it quite slowly varies if θ is well between t−
and t+, while it rapidly increases in a hyperbolic way if θ is
close to t±. The second formula in Eq. (12) shows that the
coverage dependence of DJ is essentially independent of the
system size N . It also behaves as the sum of two hyperbolas,
A±|θ − θ∗

∓|/θ . These results will be illustrated for a specific
model in the following section (see Fig. 2).

B. Crossover regimes

The two-phase region is at either end neighbored by a
crossover region. The crossover corresponds to a rapid change
of the term in χ that is proportional to the system size N—from
the leading term it suddenly turns into an error term (the order
of either λ− or λ+ decreases from above N−1 below it). The
two crossovers take place within the ranges

δ � β|μ − μt | � d with d = c

�θ∗
ln N

N
. (13)

The constant c must exceed 1, and we shall take c = 5/4 in
the following.

In the crossover ranges (13) we may approximate the
single-phase quantities θ± and ξi± by the linear perturbations
θ∗
± + χ∗

±(μ − μt ) and ξ ∗
i± + ζ ∗

i±(μ − μt ) from their values
at the transition, making errors of order d2. (Here ζ ∗

i± are
the derivatives ζi± = ∂ξi±/∂μ evaluated at μt .) The single-
phase susceptibilities χ± coincide with their transition values
χ∗

±, up to errors of order βd. As for the weights, in the
crossover above (below) the transition we have λ+ = 1 −
E+ and λ− = E+ (λ+ = E− and λ− = 1 − E−) with E± =
(ν∓/ν±) exp(−�θ∗βN |μ − μt |), the errors being of order
N−3/2. Consequently, Eq. (7) may be written as

θ = θ∗
± ±

(
χ∗

±|μ − μt | − �θ∗ ν∓
ν±

e−�θ∗βN |μ−μt |
)

+ ε′,

ξi = ξ ∗
i± ±

(
ζ ∗
i±|μ − μt | − �ξ ∗

i

ν∓
ν±

e−�θ∗βN |μ−μt |
)

+ ε′,

χ = χ∗
± + (�θ∗)2βN

ν∓
ν±

e−�θ∗βN |μ−μt | + βNε′, (14)

where the upper/lower signs correspond to the crossover range
above/below μt and the error term ε′ = O(N−3/2). Thus, θ

and ξi differ from their single-phase values θ∗
± and ξ ∗

i± by
a small (positive or negative) amount whose value is given
by an interplay between two terms, one being linear and one
exponential in |μ − μt |. The exponential term also determines
the difference between χ and its single-phase value χ∗

±. Note
that, as μ varies within ranges (13), the coverage varies within
the ranges

τ− � θ � t−, t+ � θ � τ+ (15)

with τ± ≡ θ (μt ± d/β) = θ∗
± ± (χ∗

±/β)d + O(N−5/4) by
Eq. (14). These are very narrow intervals concentrated around
θ∗
±.

The μ dependences of θ , ξi , and χ in Eq. (14) are essentially
given via the difference |μ − μt |. Evaluating the difference as a
function of θ from the first of these dependences, the coverage
dependences of ξi and χ can be deduced. Combining them
with Eqs. (2)–(4), the coverage dependences of the diffusion
coefficients follow. We get

Dc ≈ D0e
βμt

(
ω± + Nε′

�θ∗ ν∓
ν±

K±

)∓ 1
�θ∗N P±(1 + Nε′)

1
β
χ∗±[1 + ω±]

,

(16)

DJ ≈ D0e
βμt

(
ω± + Nε′

�θ∗ ν∓
ν±

K±

)∓ 1
�θ∗N P±

θ
,
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where

P± = P ∗
± + P ′∗

±
χ∗±

(θ − θ∗
±) ±

(
P ′∗

±
χ∗±

− �P ∗

�θ∗

)
ω±
K±

+ ε′ (17)

are the coverage dependences of the correlation factor P in the
crossover regimes and the shorthand

ω± ≡ W

(
�θ∗ ν∓

ν±
K±e∓K±(θ−θ∗

±)

)
. (18)

The constant P ′∗
± ≡ ∑

i Ciζ
∗
i± is equal to the derivative

∂P±/∂μ of P± = C0 + ∑
i Ciξi± evaluated at μ = μt , so it

represents the rate of change of P with μ in a given phase at
the transition. The constant K± ≡ �θ∗βN/χ∗

±, while W (y) is
the Lambert function (the inverse to y = W exp W ). The upper
and lower signs in Eqs. (16)–(18) correspond to the crossover
range (15) around the points θ∗

+ and θ∗
−, respectively.

The behavior of the diffusion coefficients in the crossover
regime as given by Eq. (16) is quite complex. To describe it, we
may consider two extreme cases. First, if θ is close to the two-
phase region (close to t±), then ω± ≈ K±|θ − θ∗

±| � 1, P± ≈
P ∗

± ∓ (�P ∗/�θ∗)|θ − θ∗
±|, and χ ≈ �θ∗βN |θ − θ∗

±|. Hence,
for these coverages formula (16) yields the same Dc and DJ

as the two-phase regime formula (12) would predict. Second,
if θ is close to one of the two single-phase regions (close
to τ±), then ω± ≈ �θ∗(ν∓/ν±)K± exp(−K±|θ − θ∗

±|) 	 1 so
that P± ≈ P ∗

± + (P ′∗
± /χ∗

±)(θ − θ∗
±) and χ ≈ χ∗

±. Hence, for
these coverages the diffusion coefficients are linearly disturbed
from their single-phase values evaluated at the transition.
The two extremes show that within the crossover regions the
diffusion coefficients Dc and DJ suddenly change from their
two-phase to their single-phase behavior. We will illustrate
these results for a specific model in the following section (see
Fig. 3).

C. Single-phase regimes

Finally, far from the transition there is a single dominant
phase: p− for μ < μt − d (i.e., θ below τ−) and p+ for μ >

μt + d (i.e., θ above τ+). Then θ , ξi (or P ), and χ reduce to
their single-phase values [22,23],

θ ≈ −∂f±
∂μ

, ξi ≈ ∂f±
∂ui

, χ ≈ −∂2f±
∂μ2

. (19)

The upper/lower sign corresponds to the μ range where phase
p+/p− is stable and the errors are of order N−1. In order to
obtain the coverage dependences of Dc and DJ in this regime,
explicit expressions for f± are needed. Therefore, we will
discuss the dependences only for the illustrative model in the
following section (see Fig. 3).

III. APPLICATION TO A MODEL

Let us now apply the above general results to a specific
lattice model of surface diffusion.

A. The model

The model assumes that particles can be adsorbed on a
solid surface only at sites forming a regular triangular lattice.
The system contains a rectangular array with a large but finite
number N of adsorption sites. Periodic boundary conditions

are applied so that the array forms a finite torus. For the mesh
size equal to 1, the elementary lattice vectors are taken as (1,0)
and (1/2,

√
3/2). The torus cell is specified by the vectors

(3n,0) and (0,2
√

3n) with n = 1,2, . . .; thus, N = 3n × 4n.
Each lattice site is either vacant or occupied by a particle.

The interaction between two particles is limited to nearest-
neighbor pairs (bonds) with an interaction energy that depends
on the surrounding particles in the simplest possible way—
only on the presence of particles at the sites closest to the
bond. For the triangular lattice there are two such sites. The
bond together with either of the sites forms an elementary
triangle. Hence, the varying interaction energy is equivalent to
having two constant interaction energies: one, εb, for occupied
bonds and one, εt , for occupied elementary triangles. The
corresponding Hamiltonian is given as [9,10]

H = εbNb + εtNt − μNs, (20)

where Nb, Nt , and Ns is the number of occupied bonds,
elementary triangles, and sites, respectively. This model was
already used to study surface diffusion at high temperatures
in the special cases when εb = 0 (for T above 0.21|εt |/kB)
and εt = 0 (for T above 0.1|εb|/kB) [10]. Here we consider
the general case when both the bond and triangle interactions
εb and εt are present, while temperatures are supposed to be
sufficiently low.

As we proved in Ref. [21], model (20) has four ground
states [see Fig. 1(a)]: a fully vacant state, σ0, a fully occupied
state, σ1, and two threefold degenerate states, σ1/3 and σ2/3.

Σ0 Σ1

Σ1�3 Σ2�3

a

Σ0

Σ1�3

Σ2�3

Σ1

0 6�t
Μ

0

2

3
�t

2�t

�b
b �t 0

Σ0

Σ1�3

Σ2�3

Σ1

0
Μ

0

2

3
�t

�b
c �t 0

Σ0

Σ1�3

Σ2�3

Σ1

02�t
Μ

0

4

3
�t

�b
d �t 0

FIG. 1. (Color online) (a) The ground states of the model. Circles
(disks) represent vacant (occupied) sites. (b)–(d) The ground-state
diagram in dependence on the sign (attractivity or repulsivity) of the
triangle interaction εt . On the boundaries between two ground-state
regions either the two ground states coexist (the dashed lines) or there
are infinitely many ground states (the solid lines, including their end
points depicted by disks).
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FIG. 2. (Color online) The coverage dependence of the logarithm the diffusion coefficients Dc and DJ (relative to D0) in the two-phase region
(11) for N = 30 × 40. The bond interactions are (a) εb = −εt/2 < 0, (b) εb = −4εt/3 > 0, (c) εb = −2εt/5 > 0, and (d) εb = −5εt/3 < 0.
The triangle interaction β|εt | = 4 in all cases. The squares correspond to numerical values, whereas the dashed lines correspond to the analytical
formula (12).

The coverage of the two latter states is only partial, namely,
1/3 and 2/3, respectively. The ground-state diagram is shown
in Figs. 1(b)–1(d) and can be easily constructed by comparing
the four ground-state energies e0 = 0, e1 = 3εb + 2εt − μ,
e1/3 = −μ/3, and e2/3 = εb − 2μ/3. On the lines separating
the regions of ground states σ0 and σ1, σ0 and σ2/3, and σ1

and σ1/3 (the dashed lines in Fig. 1), only these two ground
states coexist. However, on the remaining lines (the solid
lines in Fig. 1) as well as at the points where three or all
four ground-state regions meet, there is an infinite number of
ground states, yielding in fact a residual entropy.

Each ground state σα , α = 0,1/3,2/3,1, gives rise to a
unique low-temperature phase, pα , whose typical configura-
tion looks like a “sea” of the ground state σα in which isolated
“islands” of non-ground-state configurations are scattered,
thus resembling the structure of σα [21]. So, phase p0 (p1)
is fully vacant (fully occupied), while phase p1/3 (p2/3)
has an occupancy of 1/3 (2/3). The existence of these
low-temperature phases can be concluded only if the number
of ground states is finite, i.e., only within each ground-state
region and on the lines between these regions where only two
ground states coexist (the dashed lines in Fig. 1). Otherwise, no
conclusions concerning low-temperature phases were drawn
in Ref. [21]. Consequently, a first-order phase transition takes
place between phases p0 and p1, p0 and p2/3, and p1/3 and p1,
whereas transitions between other phases need not be of first
order.

The specific free energy fα of phase pα is essentially equal
to its ground-state specific energy eα because the contributions
from the thermal perturbations of the ground states σα

are suppressed exponentially in β (the Peierls condition).
Namely, taking into account only one-site perturbations (which
represent the leading corrections), one has [21]

fα ≈ eα − 1

β
ln

[(
1 + e−β �H ◦

α

)α(
1 + e−β �H •

α

)1−α]
, (21)

where

�H •
0 = −�H ◦

1/3 = −μ,

�H •
1/3 = −�H ◦

2/3 = 3εb − μ, (22)

�H •
2/3 = −�H ◦

1 = 6εb + 6εt − μ

are the energy excesses of one-site perturbations of σα over
σα . The superscript “◦” corresponds to removing one particle
from σα and “•” to adding one particle to σα . Since a particle
can be only added to σ0 (only removed from σ1), in Eq. (21)
for α = 0 (α = 1) the first (second) term in ln is set equal
to 1.

B. The diffusion coefficients

We shall apply the general results, Eqs. (12) and (16), to
model (20) for the following four representative examples of
first-order phase transitions.
(T1) Transition between phases p0 and p2/3: εt > 0 (re-
pulsion), εb = −εt/2 (attraction), and |μ − μ0| � εt with
μ0 = 3εb/2.
(T2) Transition between phases p1/3 and p1: εt < 0 (at-
traction), εb = −4εt/3 (repulsion), and |μ − μ0| � |εt | with
μ0 = (9εb + 6εt )/2.
(T3) Transition between phases p0 and p1: εt < 0 (attrac-
tion), εb = −εt/3 (repulsion), and |μ − μ0| � |εt | with μ0 =
3εb + 2εt .
(T4) Transition between phases p0 and p1: εt > 0 (repul-
sion), εb = −2εt (attraction), and |μ − μ0| � εt with μ0 =
3εb + 2εt .
The finite-size specific free energy f of the model near any
of these transitions can be readily evaluated from Eqs. (6) and
(21). (The degeneracies of phases p0 and p1 are equal to 1,
while those of phases p1/3 and p2/3 to 3.) The value μt of the
point of transition between two phases can be also evaluated—
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FIG. 3. (Color online) The coverage dependence of the logarithm of the diffusion coefficients Dc and DJ (relative to D0) in the crossover
and single-phase regions for the same system size and interparticle interactions as in Fig. 2. The squares represent numerical values, whereas
the dashed and solid lines correspond to the analytical formula (12) and (16), respectively. The dotted lines represent the analytical dependence
obtained in the single-phase regions, and the disks depict their limiting values. The shorthand notations are � = N−3/4, y1 = −0.001,
y ′

1 = −2.6058, y ′′
1 = −2.60577, y3 = −0.0007, y4 = −1.2 × 10−11, and y ′

4 = −2 × 10−6.

it is the chemical potential at which the free energies (21) of
the two phases coincide [22].

Moreover, we will work with the widely used form of the
correlation factor P that corresponds to the simplest case when
an activated adparticle does not interact with any neighbors.
Then P is identified with the probability that a lattice bond is
vacant so that, for the triangular lattice, one has [9,10]

P = 1 − 2θ + 1
3ξ, (23)

where ξ ≡ ∂f/∂εb is the statistical average number of occu-
pied bonds. (The coverage θ is, of course, the statistical average
number of occupied sites.) Note that factor (23) is a special
case of the general form (4) with C0 = 1, C1 = −2, C2 = 1/3,
u1 = μ, and u2 = εb.

We first obtain the coverage dependences of the diffusion
coefficients Dc and DJ near transitions T1–T4 numerically,
using Eqs. (2), (3), (6), and (7). Then we compare them to the
dependences yielded by the analytical formulas (12) and (16)
in which the error terms are neglected.

In Fig. 2 we depict the coverage dependences of the
diffusion coefficients in the two-phase interval for transitions
T1–T4. Obviously, the analytical formulas very accurately
reproduce the numerical results. If we neglect thermal effects
and the error terms in Eq. (12), for model (20) we can
approximately write

Dc

D0
≈ eβμt

N
×

⎧⎨
⎩

3/2θ transition p0 −p2/3,

3/2(3θ − 1) transition p1/3 −p1,

1/θ transition p0 −p1

(24a)
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and

DJ

D0
≈ eβμt ×

⎧⎨
⎩

1/θ − 3/2 transition p0 −p2/3,

(1/θ − 1)/2 transition p1/3 −p1,

1/θ − 1 transition p0 −p1.

(24b)

In the crossover regions the coverage dependences of the
diffusion coefficients for transitions T1–T4 are shown in Fig. 3.
Very good agreement between the analytical and numerical
results is again obtained.

In the single-phase regions the coverage dependences of
Dc and DJ can be derived from Eq. (19), using the explicit
expressions (21) and (23) for the single-phase free energies
and correlation factor. This is simple to carry out for phases
p0 and p1, yielding

Dc

D0
≈ 1 − 2θ

(1 − θ )2
,

DJ

D0
≈ 1 − 2θ

1 − θ
regime of p0, (25)

while Dc ≈ 0 and DJ ≈ 0 in the regime of phase p1. However,
for phases p1/3 and p2/3 the obtained formulas are very
complex, and thus we will only present their simplified
versions. Namely, using the approximation ln(1 + x) ≈ x in
Eq. (21) [because x = exp(−β�H ◦

α ) and x = exp(−β�H •
α )

are small at low temperatures], we get

Dc

D0
≈

{
(5−9θ+a)(3θ−1+a)/8q3

ba regime of p1/3,

2/q3
b

√
8q3

bq
6
t + (2 − 3θ )2 regime ofp2/3

(26a)

and

DJ

D0
≈

{
(5−9θ+a)(3θ−1+a)/24q3

b θ regime of p1/3,

2/3q3
b θ regime of p2/3,

(26b)

where a ≡ [8q3
b + (1 − 3θ )2]1/2, qb ≡ exp(−βεb), and qt ≡

exp(−βεt ).
The approximation (21) that uses only one-site perturba-

tions is not sufficient to get a nonvanishing diffusion coefficient
in the regime of phase p1. To resolve this drawback, we need to
take into account the next dominant contributions arising from
two-site perturbations (the removal of two particles in a bond).
Then the additional term (−3/β) ln[1 + exp(−β�H ••

1 )] ap-
pears in f1, where �H ••

1 = 2μ − 11εb − 10εt is the energy
excess of a two-site perturbation of σ1 over σ1 [21]. Applying
this refined expression for f1, we get an analytic formula
for nonvanishing coverage dependences of Dc and DJ . Since
the formula is complex, we may use again the approximation

ln(1 + x) ≈ x to obtain its simplified version

Dc

D0
≈ 1

q5
bq

4
t b

,
DJ

D0
≈ b − 1

12q6
bq

6
t θ

regime of p1 (26c)

with b ≡ [1 + 24qbq
2
t (1 − θ )]1/2.

The coverage dependences of Dc and DJ in the single-phase
regions for transitions T1–T4 are detailed in the insets in Fig. 3.
To avoid possible inaccuracies in formulas (26), we employed
their complete versions to fit numerical results in the figure.

Notice that, as is clearly demonstrated in Fig. 3, the
formulas valid in one of the three regions quite smoothly take
over from the formulas valid in a neighboring region. The
agreement between different formulas increases quite fast as
the system size N grows. Since the transitions between phases
p0 and p1/3 and phases p2/3 and p1 need not be of first order,
we cannot analyze the behavior of the diffusion coefficients at
the points θ = 1/3 and θ = 2/3 from both sides.

IV. CONCLUSIONS

We have investigated the dependences of the chemical
and jump diffusion coefficients on the chemical potential
and surface coverage at low temperatures. It was assumed
that a first-order phase transition between two phases takes
place in the system and that the local limit approximation
is applicable. The key aspect of the approximation was that
the diffusion coefficients could be evaluated only from the
finite-size specific free energy f of the system. Hence, rather
crudely but plausibly, the original kinetic problem was reduced
to a thermodynamic one. Our analysis was based on a general
formula, Eq. (6), for the free energy f valid near the transition.

We identified three types of regions, each of which was as-
sociated with a different behavior of the diffusion coefficients:
a two-phase region at and very close to the transition, two
single-phase regions farther away from the transition, and two
crossover regions in between. We derived finite-size formulas
for the diffusion coefficients in the two-phase and crossover
regions, Eqs. (12) and (16), and applied them to an illustrative
model of surface diffusion on a triangular lattice (see Figs. 2
and 3). In the single-phase regions we were able to obtain only
model-dependent formulas.
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IGOR MEDVED’ AND ANTON TRNÍK PHYSICAL REVIEW E 86, 011601 (2012)

[12] C. Uebing and R. Gomer, J. Chem. Phys. 95, 7626
(1991).

[13] C. Uebing and R. Gomer, Surf. Sci. 331–333, 930 (1995).
[14] M. A. Załuska-Kotur, A. Łusakowski, S. Krukowski, and Ł. A.

Turski, Surf. Sci. 566–568, 210 (2004).
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[22] C. Borgs and R. Kotecký, J. Stat. Phys. 61, 79 (1990).
[23] I. Medved’ and A. Trnı́k, Phys. Rev. B 83, 233406 (2011).

011601-8

http://dx.doi.org/10.1063/1.461336
http://dx.doi.org/10.1063/1.461336
http://dx.doi.org/10.1016/0039-6028(95)00282-0
http://dx.doi.org/10.1016/j.susc.2004.06.139
http://dx.doi.org/10.1088/1742-5468/2006/10/P10003
http://dx.doi.org/10.1088/1742-5468/2006/10/P10003
http://dx.doi.org/10.1103/PhysRevLett.98.135504
http://dx.doi.org/10.1063/1.2713100
http://dx.doi.org/10.1063/1.2713100
http://dx.doi.org/10.1088/1742-5468/2008/08/P08002
http://dx.doi.org/10.1016/j.susc.2008.07.037
http://dx.doi.org/10.1088/1742-5468/2010/03/P03008
http://dx.doi.org/10.1088/1742-5468/2010/03/P03008
http://dx.doi.org/10.1088/1742-5468/2012/01/P01025
http://dx.doi.org/10.1007/BF01013955
http://dx.doi.org/10.1103/PhysRevB.83.233406

