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We study Seebeck effect in liquid electrolytes, starting from its simple neutral analog—thermodiffusion
(so-called Ludwig-Soret or Soret effect). It is observed that when two or more subsystems of mobile particles
are subjected to the temperature gradient, various types of them respond to it differently. In the case when
these fractions, with different mobility parameters (Soret coefficients), are oppositely charged (a case typical for
electrolytes), the nonhomogeneous internal electric field is generated. The latter field prevents these fractions
from space separation and determines the intensity of the appearing Seebeck effect.
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I. INTRODUCTION

The variety of thermoelectric phenomena (the effects of
Seebeck, Peltier, and Thompson) take place in a conducting
media in presence of a gradient of temperature ∇T and an
electric field E. To characterize them quantitatively one can
use the standard linear response theory approximation [1–4]
and write the appearing electric current as the expansion over
these perturbations:

j
(e)
i = σikEk + βik∇kT , (1)

where βlk and σik are conductivity and thermoelectric tensors.
The simplest effect is the Seebeck one (ES), and it is observed
in conditions when the external circuit is broken (the current
in the system does not flow, j(e) = 0). The ES consists of the
appearance of nonzero electric field related to the gradient of
temperature in a conductor due to the condition of absence of
current:

Ei = −σ−1
il βlk∇kT = Sik∇kT . (2)

As it is seen, in frameworks of the linear theory Seebeck
coefficient Sik is expressed in terms of tensors βlk and σik.

More sophisticated Peltier and Thompson effects are observed
in conditions when ∇T �= 0 and j �= 0.

Being natural for the infinite media Eqs. (1) and (2) fail to
describe self-consistently the realistic experimental situation
when the system has finite sizes. Indeed, from Eq. (2) follows
∇ · E = 0. Thus it corresponds to the Poisson equation in
absence of charges and allows the solution

∇T = const, Ei = Sik∇kT = const, (3)

which does not assume the appearance of the density inhomo-
geneity, i.e., is valid for ni = const (ni is the ion concentration).
At the same time it is evident that any thermoelectric effect
should be accompanied by the formation of the domains where
∇ni �= 0 correspondingto variation of the distribution function
along the temperature gradient direction.

In this paper we consider ES in liquid electrolyte, when the
boundary conditions for the case ∇ni �= 0 can be explicitly

written down. To do this we will start from its simple neutral
analog—thermodiffusion (so-called Ludwig-Soret, or Soret,
effect [5]). It is observed when a mixture of two or more types
of mobile particles is subjected to the temperature gradient
and different types of particles respond to it differently.
Specifically, we consider the neutral solution, where the
existence of ∇T results in a break of homogeneity of neutral
particles distribution n0(r) and the appearance of gradient of
their concentration ∇n0 �= 0. Some time ago this problem was
carefully studied for superfluid solutions of He4 (see Ref. [6]).

Seebeck effect can be considered as the variety of Soret
effect for the solution of easily dissociated particles. The latter
usually break up into charged parts with the different degrees of
thermal flow drug. The account for Coulomb interaction on the
process of thermodiffusion of charged particles modifies the
character of stationary Soret effect even in the linear regime.
We will show that the conditions of linearity are very subtle and
can be easily violated. It is why we devote special attention
to the analysis of the nonlinear version of the problem. We
stress the formal analogy between the effect of Seebeck and
sedimentation of the asymmetric electrolytes [7–10], and also
discuss the series of known examples where the specifics of
the diffusion in electric field are important.

II. NEUTRAL THERMAL DIFFUSION (SORET EFFECT)

We start our discussion from the definition of the neutral
mass flow, which occurs in the system where the chemical
potential (concentration) and temperature gradients take place.
We will assume them as sufficiently small. In this case the
mass flow density j(m), in complete analogy with Eq. (1), can
be expanded over the gradients [4,11,12],

j
(m)
i = −αik∇kμ(r,T ) − ηik∇kT .

The first term, proportional to the chemical potential gradient
μ(r,T ), describes the diffusion contribution to the mass flow,
the second one, proportional to the gradient of temperature,
has the force origin. The expansion coefficients αik and ηik
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determine the values of diffusion (Dik) and thermodiffusion
(kTDik) coefficients:

Dik = αik

ρ

(
∂μ

∂n0

)
P,T

, (4)

kTDik = −αikT

ρ

(
∂μ

∂T

)
n0,P

+ ηik. (5)

The dimensionless parameter kT is called thermodiffusion
ratio. We note that in case of charged particles tensor ηik

is directly related to the thermoelectric tensor: ηik = βik/q,

where q is the value of particle charge.
Consider the case j(m) = 0 in conditions when ∇kT �= 0. In

such situation

∇iμ(r,T ) = −α−1
il ηlk∇kT , (6)

which means that the stationary nonhomogeneous distribution
of particles appears in solution as the response to the
temperature gradient applied. Indeed, the chemical potential
for particles can be assumed here in Boltzmann form,

μ0(r,T ) = T ln n0(r,T ), (7)

and substituting this expression to Eq. (6) one finds

∇in0(r,T )

n0(r,T )
= −�ik

∇kT (r)

T (r)
(8)

with the dimensionless coefficient of the Soret effect,

�ik = α−1
il ηlk. (9)

Passing from Eq. (6) to Eq. (8) we omitted the terms of the order
of O[(	T/T )2], where 	T is a small temperature difference
between the boundaries of the system which generates the
gradient ∇T .

Experimental study of Soret effect involves the measure-
ment of the stationary concentration gradient under conditions
when ∇T = const. The coefficient αik is supposed to be known
from independent measurements, hence Eq. (9) allows us to
determine the coefficient ηlk. Note that, apart from direct
measurement, the value of �ik can be also obtained from
the independent studies of the relaxation process when the
diffusion part adjusts the stationary distribution Eq. (8) (see
Ref. [5]).

Let us discuss the conditions of observability of the linear
Soret effect in more detail. We consider a liquid poured in
cuvette of the length L; the axis x we direct along the cuvette.
Temperature increases from the value T (0) at the left border
of the cuvette (x = 0) to T (L) at its right border. In the
assumption of constant and small temperature gradient

T ′
x = T (L) − T (0)

T (0)
� 1

one can easily find from Eq. (8) distributions of the particles’
concentration and temperature

n0(x) = n(0) exp

(
− �

T ′
x · x

T (0)

)
, (10)

T (x) = T (0)

(
1 + T ′

x · x

T (0)

)
(11)

FIG. 1. (Color online) Qualitative presentation of Soret distribu-
tions n0(x) for two different kinds of neutral particle subsystems along
the length of the cuvette (0 < x < L) in the presence of temperature
gradient. Solid line corresponds to the distribution n01(x) with Soret
length ls1 < L. Dashed line demonstrates the distribution function
n02(x) with Soret length lS2 < L(lS2 > lS1).

(we assume low enough particles concentration). One can see
that the characteristic length

lS = 1

�

T (0)

T ′
x

(12)

appears in the problem. The Soret effect can be considered
as linear when L � lS and it is nonlinear in the opposite
case. The condition of linearity can be easily satisfied just
decreasing the gradient T ′

x in conditions when a cuvette length
is fixed. The smallness of the Soret constant � also favors the
linearity of the Soret effect. On the other hand, the opposite
limit lS � L becomes essential for such applications as isotope
separation, centrifugal sedimentation of different solutions in
order to get mass stratification of components, etc. [7–10]. Two
different Soret distributions of neutral particle concentrations
with different Soret length along the cuvette length in the
presence of the linear temperature distribution are shown in
Fig. 1. When both Soret lengths lS1 and lS2 are smaller to
the cuvette length L, the distributions are localized in the
cold domain of the cuvette. The degree of their localization is
different (it is determined by the value of corresponding Soret
length) which can work toward their separation in the case
when some repulsive forces occur.

The similarity between the Soret effect and the phenomenon
of sedimentation is noteworthy. Indeed, in the specific case
of the latter—gravitational differentiation—the equilibrium of
the system of particles in the gravitational field can be formally
written as (we assume here a low particles concentration)

∇[μ0(x) + U (x)] = 0, μ0 = T ln n0, U (x) = mgx, (13)

with m the mass of particle. These conditions evidently are
completely analogous to Eqs. (6) and (12), which describe the
above-discussed Soret effect. Mapping Eqs. (13) on the latter
leads to the expression for sedimentation length,

lm = T/mg. (14)

Below we will use this analogy discussing the actual limits of
both problems.
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III. THERMODIFFUSION OF CHARGED PARTICLES
(SEEBECK EFFECT)

A. Clarification of the basic equations

We will discuss now the process of a mass flow at the
same conditions as in previous section but in the case of
charged particles. In this situation the nonhomogeneity of
their distribution should be accompanied by the appearance
of some electric field. Indeed, as it is well known [2], in
doped semiconductors, where the distribution of immobilized
charged donors is homogeneous, any deviation of the electron
density distribution from homogeneity results in the appear-
ance of the electric field preventing further charge separation.
This effect is less pronounced in the electrolytes [4,11,13–21]
since all charged components there are mobile. The relative
shift between oppositely charged subsystems of a strong
electrolyte appears only in the case when these subsystems
react differently to the applied gradient of temperature. Such
situation can happen when ions of different subsystems have
different diffusion or thermodiffusion coefficients. Even more
delicate is the situation in weak electrolyte, where charged
particles are diluted in neutral liquid. Here the homogeneities
of charged and neutral subsystems are perturbed differently
due to the Soret effect, but these perturbations should be
adjusted in view of the possibility of molecule dissociation.
For simplicity, we will limit our considerations below by the
case of a strong electrolyte only.

The starting equations, declaring the absence of a mass flow
for each component of a strong electrolyte, are determined by
Eq. (6):

α+∇μ+ + η+∇T = 0, (15)

α−∇μ− + η−∇T = 0 (16)

(subscript “±” indicates positive and negative components).
In the special case

α+/η+ = α−/η− (17)

Eqs. (15) and (16) give ∇μ+ = ∇μ−, i.e., the application of
the temperature gradient does not result in charge separation,
no intrinsic electric field appears.

Of course, Eq. (17) generally speaking is not fulfilled and
creation of a temperature gradient leads to the appearance of
local concentrations difference (n+ − n ), i.e., to generation
of the internal electric field in cuvette:

E = −∇ϕ ∝ (n+ − n−).

Accounting for this field in Eqs. (15) and (16) can be done
by means of replacement of chemical potentials μ± by
corresponding electrochemical potentials μ± ± eϕ (e is the
absolute value of the electron charge):

α+∇μ+ + α+e∇ϕ + η+∇T = 0, (18)

α−∇μ− − α−e∇ϕ + η−∇T = 0. (19)

Subtracting and summing Eqs. (18) and (19) one finds

(η+−η−)∇T +(α++α−)e∇ϕ+ (α+∇μ+−α−∇μ−)= 0,

(20)

(η++η−)∇T +(α+−α−)e∇ϕ+ (α+∇μ++α−∇μ−)= 0.

(21)

Equations (20) and (21) constitute the basis for the consistent
description of Seebeck effect, i.e., the appearance of the
electric field E = −∇ϕ as the response to the applied gradient
of temperature ∇T .

It is noteworthy that in the literature devoted to thermoelec-
tric effects in semiconductors [2] and electrolytes [11,13–18]
a simplified version of Eqs. (20) and (21),

(α+ + α−)e∇ϕ + (η+ − η−)∇T � 0, (22)

ignoring the term (α+∇μ+ − α−∇μ−), is used. Equation (22),
being equivalent to Eq. (2), allows us to find the Seebeck
coefficient

S(∇T ) = 1

e

(η+ − η−)

(α+ + α−)
= 1

e2

(β+ − β−)

(α+ + α−)
(23)

without addressing the Poisson equation (we recall that η± =
β±/|e|). Nevertheless, this approach does not provide us with
the answers to paradoxes mentioned in the Introduction.

B. Poisson equation and validity of the linear approximation
in Seebeck problem

Equations (20) and (21) together with the Poison equation
formally fully describe the problem of thermodiffusion of the
oppositely charged particles accounting also for their Coulomb
interaction. We start from discussion of the conditions required
for applicability of the linearization procedure of this system.
For the beginning we assume that such procedure is valid, and
look for the solutions of Eqs. (20) and (21) in the form of

n+(x) = n0(x) + δn(x), n−(x) = n0(x) − δn(x) (24)

with n0(x) defined by Eq. (10). Using the relation (7) and
substituting Eq. (24) to Eq. (21) one finds

∇μ0 � − (η+ + η−)

(α+ + α−)
∇T (25)

[we omitted the term ∼(α+ − α−)e∇ϕ, which is of the second
order of smallness]. It should be noted that the linearization of
Eq. (25) is not yet required.

The next step is the linearization of Eq. (20) in δn, which
gives

(α+ + α−)T
∇δn

n(0)
= −(η+ − η−)∇T

(26)
−(α+ − α−)∇μ0 − (α+ + α−)e∇ϕ,

with ∇μ0 defined by Eq. (25) and n(0) as the average value of
the electrolyte concentration in equilibrium, when T = const
[see Eq. (10)].

Now one can solve the Poisson equation

d2ϕ(x)

dx2
= 4πe

ε
δn(x) (27)
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with δn taken from Eq. (26), ε as the solvent dielectric
constant, and the boundary conditions corresponding to the
total charge conservation. We will look for the solution of this
nonhomogeneousequation in the form

ϕ(x) = ϕ0(x) + δϕ(x), (28)

where the function ϕ0(x) satisfies Eq. (26) with δn = 0:

(α++α−)e∇ϕ0 =−(η+−η−)∇T − (α+ − α−)∇μ0

= −
[

(η+ − η−) − α+ − α−
α+ + α−

(η+ + η−)

]
∇T (29)

[we used here Eq. (25) relating explicitly the chemical
potential and temperature gradients]. Correspondingly, the
homogeneous field E0 = −∇ϕ0 occupies almost all the
cuvette volume besides the boundary domains of the Debye
length [lD = (4πe2n+/εT )1/2] sizes. It should be noted that
in these domains the charges, necessary for satisfaction of the
particular correct boundary conditions [E(0) = E(L) = 0] are
concentrated. This means that the function δϕ(x) is localized
close to the borders x � lD, L − x � lD and in these domains
it gradually reduces the total electric field from E0 to zero.
Considering the problem on semispace one can integrate
Eq. (27) and get

ϕ′
0(0) + δϕ′(0) = 0, δϕ(x � lD) → 0. (30)

It turns out that the solution δϕ(x) of Eqs. (27)–(30),
different from zero only in the cuvette boundary domains,
indeed exists. What concerns the electrostatic potential beyond
these border regions is determined by the function ϕ0(x)[see
Eq. (29)], and namely this function determines the value of
the Seebeck coefficient in this particular linear regime. In the
limit lD � L the solution of Eqs. (27)–(30) ceases to depend
on the cuvette geometry.

Now one can find the conditions of applicability of this
linearity. Indeed, in order to obtain the basic Eq. (29) we used
expansions like

∇μ+ = T
∇(n0 + δn)

n0 + δn
� ∇μ0 + T

∇δn

n(0)

[see Eq. (7)]. This requires to satisfy the condition of smallness
of the exponent in n0(x) at any point of the cuvette, i.e.,

eϕ0(L) = eϕ′
0L � T , (31)

or, substituting in Eq. (31) Eqs. (25)–(29) one finds restriction
on the gradient:

∇T �
(

T

L

)
(α+ + α−)2

η+η− |α+/η+ − α−/η−| . (32)

The estimations (31) and (32) confirm the intuitive ideas
concerning the space scaleof the Seebeck effect. The latter
can remain linear even in conditions when the Soret effect
[see Eqs. (10)–(12)] takes off its linearity. The additional
requirement lD � L usually is fulfilled. This condition also
clarifies the limits of applicability of Eqs. (2)–(22): only the
homogeneous electric field (29) remains in the bulk of the
cuvette (besides the border domains), the correction δϕ(x)
here is negligible. Nevertheless, Eq. (29) itself, in contrast to
Eq. (22), contains the term (α+ − α−)∇μ0.

The condition (32) generally speaking is restrictive enough,
since the coefficients α± contain additional smallness due

to the presence of ∂n/∂μ in it [see Eq. (4)]. Formally in
accordance with Eq. (32) the linearity is not restricted at all
when α+/η+ = −α−/η−, but, as we have seen above [see
Eq. (17)], in this case the Seebeck effect is just absent. In
the next subsection we will study what happens around this
particular case.

Equations (27)–(30) present the main result of this work.
Their accurate solution resolves the contradiction, mentioned
in the Introduction, between the evident nonhomogeneity of
a space charge distribution and the requirement ∇ · E = 0,
necessary for validity of Eqs. (1)–(3). As the result, the ions’
congestions are found in the cuvette boundary domains. It is the
presence of these inhomogeneities that leads towards zero of
the electric field intensity at the points x = 0 and x = L. In the
well studied case of metals and degenerated semiconductors,
where the validity of Eqs. (1)–(3) is undoubtful, these layers
also exist but their thickness lDreaches interatomic distances.
In these conditions, charges, corresponding to layers, can
be considered as the surface ones and, in accordance with
the Gauss theorem, they do not effect the homogeneity
of the charge distribution in the bulk of conducting media.
The electric field entering in Eqs. (1)–(3), can be considered
in this case as uniform. Nevertheless, the latter statement
is not universal. For example, the thermoelectric effect in a
two-dimensional conducting system exists, but the charges
distributed along the contour of the system affect the internal
electric field in it.

Let us underline the important generalization of the theory
of Seebeck effect in electrolytes achieved with respect to the
standard theory Eq. (22) and formalized by Eq. (29). Looking
at its second line one finds that in the Seebeck coefficient,
side by side with the direct contribution S(∇T ) [see Eq. (23)],
induced by the difference of thermoelectric tensors of two ion
subsystems (β+ − β−), the additional term S(∇μ) appears:

S(tot) = S(∇T ) + S(∇μ)

= 1

e2

(β+ − β−)

(α+ + α−)
− (α+ − α−)(β+ + β−)

e2 (α+ + α−)2 . (33)

Being proportional to (α+ − α−) , the contribution S(∇μ)

occurs due to the difference between the subsystems’ diffusion
coefficients [see Eq. (4)] and can be of the same order as S(∇T ).

The standard definition (23) directly corresponds to Eq. (2)
and is good for metals, but can be insufficient for semiconduc-
tors and electrolytes. The matter of fact is that S(∇T ) accounts
for thermodiffusion of charged particles in the Seebeck
coefficient, which occurs in the presence of temperature
gradient in all these systems. Yet, in semiconductors and
electrolytes, where both subsystems of oppositely charged
particles are mobile, in conditions of varying temperature,
the gradient of concentration also appears. The latter leads to
particle diffusion which generates the term S(∇μ).

One can present Eq. (33) in a slightly different form:

S(tot) = 1

e2

(β+ − β−)

(α+ + α−)

[
1 − (α+ − α−)(β+ + β−)

(α+ + α−) (β+ − β−)

]
, (34)

convenient for determination of the Seebeck coefficient sign.
The latter can be manipulated due to the different temperature
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dependencies of the coefficients αi and βi . Indeed, the
coefficients βi ∝ T in view of their thermodiffusive nature.
As for the coefficients αi, they characterize the diffusion
process [see Eq. (4)] and by means of the Einstein relation
and the Stokes viscous law can be related to the viscosity
of solution, which depends on temperature exponentially.
Consequently, the sign of the square brackets in Eq. (34) can
be reversed varying temperature in conditions of the same
experiment. Such a possibility is absent from the framework
of the simplified version of the Seebeck effect described by
Eqs. (22) and (23).

C. Particular case

We have already mentioned above a special case described
by the condition (17), when, in spite of the temperature
gradient applied, no electric field is generated in the bulk of
electrolyte. Let us address the consideration of Seebeck effect
specifics in the system being close to this limit, namely when
the parameter

γ =
(

α+
η+

− α−
η−

)
� 1. (35)

Equations (20) and (21) can be rewritten in the form
α+
η+

(∇μ+ + e∇ϕ) + ∇T = 0,

(36)
α−
η−

(∇μ− − e∇ϕ) + ∇T = 0.

In the assumption that ∇μ+ ∼ ∇μ− = ∇μ0(n0) one finds for
the sum and difference of the equations (36)

γ∇μ0 + 2e∇ϕ = 0, (37)(
α+
η+

+ α−
η−

)
∇μ0 + γ e∇ϕ + 2∇T = 0. (38)

The value of Seebeck coefficient directly follows from
Eqs. (37); it is enough to substitute Eq. (25) in it. Recalling
that η = β/|e| one finds

S (γ � 1) = E

∇T
= − γ

2e2

(β+ − β−)

(α+ + α−)
. (39)

One can see that the Seebeck coefficient turns zero linearly in
γ , when γ → 0, in agreement with Eqs. (17).

It is worth mentioning that Eq. (39) cannot be obtained from
Eq. (33) just tending γ → 0. The point is that the latter was
derived in assumption of the temperature gradient smallness
(32) and corresponding possibility of the chemical potential
expansion [see Eq. (26)]. As regards result (39), it has been
obtained without the need of such expansion, and it tells us
what happens with the formula (39) beyond the limits of its
applicability, when γ → 0 and the condition (32) is broken.

Neglecting the second term in Eq. (38) (it is of the second
order of smallness in γ � 1 with respect to the first one), one
can find from Eqs. (37) and (38) the consistent definitions of the
concentration and electric field in electrolyte. The distribution
of concentration (38) turns out to be almost neutral and it is
very close to Eq. (6).

The relation between electric field and concentration of
the type (37) is typical for the problem of “ambipolar
diffusion.”Usually, the latter takes place in systems with

FIG. 2. (Color online) Coordinate dependency of the positive
n+(x) and the negative ion n−(x) concentrations in conditions of
a finite temperature gradient and γ � 1. The values n(0) = [n+(0) +
n−(0)]/2 and δn(0) = [n+(0) − n−(0)] are connected by the relation
δn(0)/n(0) ∝ γ � 1.

quite different carrier mobilities. In the case of Seebeck
effect for validity of Eq. (37) it is enough to satisfy the
condition γ � 1. At the same time, each of subsystems can
possess a noticeable Soret effect, such as lS � L. As a result,
the potential ϕ(x) and concentration n0(x) distributions are
essentially nonhomogeneous (and nonlinear in concentration)
along the length of cuvette.

In order to illustrate the case γ � 1, in Fig. 2 we present the
concentration distributions n+(x) and n−(x) side by side with
their difference δn(x) = n+(x) − n−(x). One can see that the
uncompensated charges are localized in the domain restricted
by the common Soret length lS ≈ lS

+ ≈ lS
− (lS− − lS

+ � lS)
for γ � 1. The Soret length lS itself may considerably differ
from the cuvette length (for instance, lS � L). The opposite
limit γ > 1 we will discuss in the next subsection.

D. Sedimentation in the system of charged particles

In order to demonstrate the specifics of Seebeck effect
in nonlinear regime we will analyze the problem of sed-
imentation in electrolyte under the effect of gravitational
force (gravitational differentiation). This problem is of interest
for us for two reasons. First, as was mentioned above [see
the discussion around Eq. (13)], the Seebeck effect and
sedimentation are tightly connected. Second, the problem of
nonlinear sedimentation arises in analysis of the experiments
on charged particles separation in ultrafast centrifuges.

We assume that negative and positive ions with masses
M and m respectively (which we suppose differ strongly:
m � M) possess by charges ∓e. The ions concentration in the
absence of gravitation is denoted as above, ni . The size of the
system L along the direction of gravitational field was chosen
to be much larger than corresponding sedimentation lengths
(14) for both subsystems of ions: LM = T/(Mg) �lm =
T/(mg) � L. Without account for Coulomb forces the ions
of each subsystem would be distributed in space in accordance
with Boltzmann law [see Eqs. (10)–(14)].

The account for ion interaction leads to violation of the
condition of local electroneutrality. As a result, in some domain
there appears the internal electric field E(x) (see Fig. 3), which
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FIG. 3. (Color online) Boltzmann distributions for the concentra-
tions of two different kinds of particles in electrolyte in presence of
gravitation field: (a) without electric field; (b) in presence of additional
electric field.

has to be taken into account side by side with gravitational
forces. The effect of this electric field on sedimentation we
evaluated neglecting its coordinate dependence. Below we will
justify this assumption.

Corresponding sedimentation lengths are renormalized:

l̃m(E)=T/[mg+|e|E], L̃M(E)=T/[Mg−|e|E]. (40)

Consequently, distribution of the light particles

ñ(x) ∝ ñ0 exp

[
− x

l̃m

]
(41)

shrinks, while that of heavy particles,

Ñ (x) ∝ Ñ0 exp

[
− x

L̃M

]
, (42)

stretches (see Fig. 3). The renormalized concentrations ñ0 and
Ñ0, accounting for the effect of electric field can be related
to n(0) and N (0) due to conservation of the total number of
particles:

l̃mñ0 = lmn(0), n(0)= l−1
m

∫ ∞

0
n(x)dx = niL

lm
, (43)

L̃MÑ0 =LMN (0), N (0)=L−1
M

∫ ∞

0
N (x)dx = niL

LM
. (44)

The supreme field E∗, determined by the condition l̃m(E∗) =
L̃M (E∗), restricts the limits of applicability of the model:

E∗ = g

2e
(M − m). (45)

Determine the point x0, where the distributions (41) and
(42) intersect: ñ(x0) = Ñ (x0) (see Fig. 3). This is

x0 = L̃M ln(l̃m/L̃M ). (46)

Charge separation can be modeled as the double layer with the
surface charge density (see Fig. 3),

ns =
∫ x0

0
[Ñ (x) − ñ(x)]dx � niL(1 − l̃m/L̃M ). (47)

The intensity of corresponding electric field, induced within
the volume of this double layer, is related to ns as E �

2πens/ε. Substituting this expression to Eq. (47) one defines
(with the accuracy m � M) the value of E in terms of E∗ [see
Eq. (45)]:

E = ζ

1 + ζ
E∗. (48)

Here

ζ = 8πe2niL

εgM
(49)

is the characteristic “interaction constant.” Evidently, E → 0
when ζ � 1 and formally E → E∗ in the case of “strong inter-
action” (ζ � 1). The explicit expressions for the renormalized
lengths take the form (m � M)

l̃m(ζ )= lm
1

1 + M
2m

ζ

1+ζ

, (50)

L̃M(ζ )=LM
1 + ζ

1 + ζ/2
. (51)

One can see that in the limit of strong interaction

l̃m(ζ � 1)→ L̃M(ζ � 1) = 2LM (52)

which justifies the definition of the supreme field E∗ (45).
The proposed evaluation, based on the model of plane

capacitor and charged double layer, is applicable until l̃m �
L̃M, i.e., in the region of weak enough interactions (ζ � 1).
In the region of strong interactions (ζ � 1), the clouds of
light and heavy ions overlap strongly and our simple model
is no longer applicable. It is necessary to stress that the
problem of sedimentation itself still makes sense here, but
for such strong interactions its solution requires consistent
definitions of distributions ñ[x,ϕ(x,̃n,Ñ )], Ñ [x,ϕ(x,̃n,Ñ )],
and ϕ[x,̃n(x),Ñ (x)].

Above discussion demonstrates the effect of Coulomb in-
teraction of charged particles on their Boltzmann distributions
and establishes the quantitative criterion (49) when such inter-
action becomes significant. It can considerably renormalize the
localization lengths of Boltzmann distributions. We would like
to point out that this approach remains valid for distributions
under the effect of forces of various nature: gravitational,
centripetal forces in centrifuge, image forces at the interface
between different insulators.

The effect discussed is similar to the phenomenon of
“ambipolar diffusion,” well known in the cold plasma transport
problems [22]. It is important to point out that information
concerning the nonlinear effects, inherent to the problem, is
contained in the general equations (20) and (21), but it cannot
be described in the approximation (22).

It is worthwhile to mention that the space distributions
of different components of electrolytes were studied experi-
mentally [7–10]. For instance, the authors of Ref. [7] studied
the ions and colloidal particles space distributions in initially
symmetric electrolyte diluted by colloidal particles. They
found deviation from the Boltzmann law, claimed as the new
physical effect.

The characteristic sedimentation (or thermodiffusion)
lengths can vary in wide limits. For example, the gravitational
sedimentation length for molecules of the atmosphere is of
the order of ten kilometers. The process of heavy isotopes
separation in high-speed centrifuges at high temperatures takes
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place in the scale of one meter. In biophysical experiments on
colloidal or polymer solutions the characteristic length reduces
up to centimeters.

IV. CONCLUSIONS

Our analysis gives rise to several general conclusions on the
issues outlined in the Introduction. First of all, the definition
of a charged particles flow in the form of Eq. (1) indeed needs
to be clarified. Namely, in situations when the temperature
gradient is applied the diffusion component has to be taken into
account. Only after this adjustment, such definition matches
the standard thermal diffusion theory in the absence of electric
field. Moreover, the account for diffusion terms enables one
to provide the necessary boundary conditions for a common
solution of the multicomponent continuity equation together
with the corresponding Poisson equation. A particular example
of such coexistence is given by Eqs. (24)–(29). The formal
analogy between thermal diffusion transport and the problem
of sedimentation of particles in solution in the presence of
gravitational field is analyzed and used to demonstrate the
specifics of nonlinear effects manifestation.

The above examples show that the description of the
electrolyte charged fractions separation due to some forces of
the nonelectrostatic origin must also take Coulomb interaction
into account. In the simplest case when lS � L such interaction
just renormalizes the observables [for example, the potential
(29)]. Under the more rigid conditions lS � L (or lm � L),
the properties of neutral and charged systems turn out to
be qualitatively different. The analysis of thermodiffusion or,
close to it, the phenomenon of sedimentation in such systems
is reduced to nonlinear scenarios. For one of such problems,
sedimentation of asymmetric electrolyte, we proposed the
self-consistent description.
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