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Attracted diffusion-limited aggregation
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In this paper we present results of extensive Monte Carlo simulations of diffusion-limited aggregation (DLA)
with a seed placed on an attractive plane as a simple model in connection with the electrical double layers. We
compute the fractal dimension of the aggregated patterns as a function of the attraction strength α. For the patterns
grown in both two and three dimensions, the fractal dimension shows a significant dependence on the attraction
strength for small values of α and approaches that of the ordinary two-dimensional (2D) DLA in the limit
of large α. For the nonattracting case with α = 1, our results in three dimensions reproduce the patterns of 3D
ordinary DLA, while in two dimensions our model leads to the formation of a compact cluster with dimension 2.
For intermediate α, the 3D clusters have a quasi-2D structure with a fractal dimension very close to that of the
ordinary 2D DLA. This allows one to control the morphology of a growing cluster by tuning a single external
parameter α.
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I. INTRODUCTION

By immersing an object with a large surface-area-to-volume
ratio into an ionic solution, it is surrounded by a double layer
of electrical charge that significantly influences its surface
behavior [1,2]. Electrical attraction of free ions with thermal
motion in the fluid by the surface charge forms a second
layer, known as the diffuse layer, that shields out the Coulomb
potential of the surface layer and makes the whole structure
electrically neutral. Applications of the double layer range
from plasma physics [3] to colloidal science [4] and micro-
and nanofluidics [5].

As a simple theoretical model for the formation of a diffuse
layer in a special case, we implement extensive Monte Carlo
simulations for attracted random walks (ARWs), introduced by
Saberi [6], in order to study the formation of ionic aggregates
on and near an infinite plane located at z = 0. An infinite
surface charge exerts a uniform constant electric force on
the free ionic particles in the fluid. It is therefore reasonable
to consider an infinite attractive plane of uniform attraction
strength α that acts on a free random walker launched from
a point far from the attractive plane. An ionic seed is located
at the center of the infinite plane. Upon contacting, the free
ionic random walker sticks irreversibly to the cluster due to an
absorbing bond introduced between the ionic particles.

The diffusion of an attracted Brownian particle of mass m
in a fluid may be given by the Langevin equation

mz̈ + γ ż + αsgn(z) = ξ (t), (1)

where the second term denotes a viscouslike friction force with
drag γ , the third term stands for an attraction force of strength
α exerted by an infinite plane at z = 0, and ξ (t) is a Gaussian
white noise characterized by

〈ξ (t)〉 = 0, 〈ξ (t)ξ (t ′)〉 = 2Dδ(t − t ′), (2)
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with D being the diffusion coefficient. We implement such
a Langevin-like equation (1) to produce a diffusion-limited
aggregated pattern on an attractive plane and investigate its
fractal properties in terms of the strength of attraction α. We
apply two different mechanisms in our model to produce the
aggregates. First, the aggregates are allowed to grow freely
in three dimensions, i.e., the three-dimensional (3D) ARW
sticks to the aggregate upon touching the cluster giving rise
to the formation of a 3D pattern. Second, the aggregates are
restricted to grow only within the attractive plane, i.e., the
3D ARW sticks to the aggregate only if it touches the cluster
within the attractive plane, which leads to the formation of a
2D pattern.

Our results indicate that for small α, the fractal dimensions
for both cases depend significantly on the strength of attraction;
in the limit of large α, they converge to the fractal dimension
of the ordinary 2D diffusion-limited aggregation (DLA). This
rapid convergence, however, implies the formation of a quasi-
2D pattern for a 3D aggregate for intermediate values of α.
Furthermore, for the two limiting cases, i.e., α = 1 and α →
∞, our model reproduces the results of the ordinary DLA.
Loosely speaking, for α = 1, the 3D ARW is identical to the
ordinary 3D random walk (RW) and thus our model generates
the same patterns as the ordinary DLA in three dimensions.
In the limit of α → ∞, the 3D ARW can move only within
the attractive plane and is indeed identical to the 2D RW and
thus, in both cases, the patterns of the ordinary DLA in two
dimensions are reproduced. The only difference is for α = 1
in two dimensions, where our model gives a different class of
aggregates that are compact clusters with dimension 2.

The ordinary DLA, known also as a Brownian tree, was
originally introduced by Witten and Sander [7] to model
the aggregates of metal particles formed by adhesive contact
in the low concentration limit. This model is shown to
describe many pattern formation processes including dielectric
breakdown [8], electrochemical deposition [9,10], viscous
fingering, and Laplacian growth [11]. According to this model,
the walker does a random-walk process initiated from infinity,
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as described above in our model, but without experiencing
any external force. Many of its fractal properties have then
been reported from various simulations done both in real and
mathematical planes (see, for example, Ref. [12] and refer-
ences therein). This study uncovers insight into various related
phenomena with a discrete time lattice walk [13,14], relaxation
phenomena [15], exciton trapping [16], and diffusion-limited
reactions [14,17].

II. ATTRACTED DIFFUSION-LIMITED AGGREGATION:
DETAILS OF SIMULATION

In this section we investigate aggregation of ARWs on and
near an attractive plane based on the algorithm proposed in
Ref. [7] for ordinary DLA clusters, accompanied by the details
of simulations. For M being the total number of particles, or
equivalently the cluster mass, the simulation box is considered
to be a cube of size Lx = Ly = 20

√
M and Lz = 60

√
M . The

box is divided into a regular lattice of Lx × Ly × Lz cubic
cells of unit size. Periodic boundary conditions are applied
in all three directions. The attractive plane is a horizontal
plane at z = Lz

2 ≡ 0 whose bottom-left corner is taken as the
origin of the coordinate system. We store information about
each lattice site as an integer in the computer. Accordingly,
the total memory to be occupied by the lattice will be equal
to 4LxLyLz ≈ 105M3/2 bytes. One can see that as the total
number of particles M increases, the total memory grows
rapidly and for large M the total memory becomes so huge
that it cannot be handled by conventional computers. In
order to prevent excessive memory usage, we apply different
restrictions to our algorithm to reduce the memory. These
tricks will be discussed separately for both 2D and 3D clusters
in Secs. II A and II B, respectively.

First, let us briefly review the probabilities governing the
movement of an ARW [6]. For the random walker at z 
= 0,
there are six directions that can be chosen by the walker.
One points towards the plane whose probability is set to αp,
where α > 1 is the strength of the attraction. For the other
five directions, the corresponding probability of each link is
equally set to p, providing p = 1

α+5 . For the random walker
at z = 0, there are two directions perpendicular to the plane
whose probability is p′ and four directions on the plane, each
of which with the probability αp′ such that p′ = 1

4α+2 . This
setting of probabilities guarantees that the walker tends to
ramble on and around the attractive plane.

It is well known that the formation of DLAs is dominated by
diffusive motion rather than convective. Therefore, the walker
must start moving far enough away from the attractive plane.
Once a seed particle is settled on the attractive plane, a random
walker is introduced on a random lateral position at height
z0 = 15

√
M and moves according to the probabilities de-

scribed above. The walker keeps moving until it sticks to the
seed. Following that, a new random walker is introduced at
z0 = 15

√
M from a random lateral position and is allowed to

move until it sticks to one of those particles that are frozen.
This procedure is applied until the desired number of particles
in the cluster, i.e., M , is reached. For the growth of 2D and 3D
structures, we implement different additional rules that will be
discussed in Secs. II A and II B.

A. Two-dimensional structures

Two-dimensional structures are formed based on a land-
escape procedure. When a particle is at either z = 1 or −1, it
may land on the plane if its shadow on the plane is not occupied;
otherwise, it must escape to one of the five remaining directions
with equal probability. Once the particle has landed on the
plane, it will diffuse according to the aforementioned rules
until it finds at least one frozen particle in its neighborhood and
gets stuck to that point. It should be stressed out that according
to the probabilities governing the motion of the ARWs, there
still exists a probability for the walker to break from the plane
and fly back into the space.

From our numerical experiments, we empirically found that
the radial distance of the particles farthest from the seed never
exceeds the r = 8

√
M limit. We used this fact to accelerate

our simulation runs in a way that the attractive plane is
divided into two distinct regions: the inner region where the
cluster forms and the outer region where the random walker
moves freely with no need to explore a possible occupied
nearest-neighbor site. We employed this fact in our simulations
and found that it considerably decreases the computational
effort.

In Fig. 1 two snapshots of the growing clusters on the
attractive plane are shown for two different strength of
attraction α = 1.2 and 10 for the top and bottom figures,
respectively. The cluster mass M = 105 and the distance from
camera are considered to be the same for both patterns for a
comparison.

FIG. 1. Snapshots of the growing clusters for α = 1.2 (top) and
α = 10 (bottom) with the same number of particles M = 105. The
radius of gyration is RG = 251.5 and 410.54 for the top and bottom
figures, respectively. The distance from camera is the same for both
clusters. One can see that the gyration radius of the clusters RG

increases with the attraction strength α. Moreover, for the small α the
cluster has fat arms, while for the larger α the chains are elongated
and delicate. The pictures are rendered by the Pov-Ray software.
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FIG. 2. (Color online) Cluster mass M as a function of the radius
of gyration RG of the 2D growing clusters on the attractive plane
for different values of α. For α � 1.15, the curves exhibit a full
power-law behavior Eq. (3).

Both figures have a fractal structure with a rotational
symmetry about the z axis and the same number of main
branches. For lower α, the particles are being condensed along
the main arms, giving rise to much fatter branches than for the
larger α, for which the cluster has delicate chains elongated on
the attractive plane with deeper fjords and sharper tips. It is also
evident that the gyration radius RG of the clusters increases
with the attraction strength α. Here the gyration radius (in units
of a particle diameter) is found to be RG = 220.8 and 410.54
for α = 1.2 and 10, respectively.

In order to get a more quantitative insight into the structure
of the clusters, we compute the gyration radius RG of different
clusters grown under the same conditions but with different
strength of attraction α. Figure 2 illustrates the cluster mass
M as a function of the gyration radius RG of the clusters for
various α. Since the ensemble averaging plays a crucial role
in such computations, the averages for each point in Fig. 2 are
taken over 90 different clusters for given values of α and M .
It is well known that the following relation is usually held for
fractal patterns:

M ∝ R
Df

G , (3)

where Df is the fractal dimension of the cluster. Our results
are in accord with this power-law relation (3) for α � 1.15.
For smaller values of α, the ARW crosses over to the ordinary
3D RW and starts to fill in the empty regions between the
branches. This results in the cluster to being more condensed.
A typical example of such a compact cluster for α = 1 is
shown in Fig. 3. Although the power-law behavior is disturbed,
within our numerical accuracy, for α → 1, the cluster’s outer
perimeter may keep its fractal properties, as shown in Fig. 3.1

A more detailed investigation of this is left for future work.

1This is similar to the compact islands appearing in a 2D cross
section of a height profile in a (2 + 1)-dimensional Kardar-Parisi-
Zhang equation [18].

FIG. 3. (Color online) Typical example of a 2D cluster grown on
the attractive plane with α = 1. The number of particles is M = 1875,
which forms a compact cluster of dimension ≈2, with gyration radius
RG � 19.62.

According to our model, for α = 1 the attraction strength
is set to zero. As a principle of DLA, random walkers
should initiate their motion from infinity (far from the seed).
Therefore, there is a very little chance to find a random walker,
triggered at infinity, on the surface of the attractive plane.
Within this small chance, again there is a very little probability
of keeping the particle moving on and around the plane. Once
the particle lands on the plane, normally it tends to escapes to
infinity and hardly finds a frozen particle in its neighborhood
to join the cluster. Consequently, for 2D clusters at α = 1 the
growth rate is almost zero and we observe only clusters with
small mass 500 < M < 3000, which is not enough to examine
any scaling relation. Therefore, we get poor statistics for α = 1
(see also Fig. 6).

B. Three-dimensional structures

In contrast to 2D structures, the growth model for 3D
clusters is not restricted to the surface of the attractive plane.
Instead, the random walker in this case can get stuck in any
lattice site with each of the nearest-neighbor sites already
occupied, whether or not they are in the attractive plane.

In Fig. 4 we show some of the resulting patterns obtained
by this algorithm in three dimensions. The figure shows a side
view of the grown clusters consisting of M = 105 particles
with α = 1.2, 2, and 10 with RG = 199.6, 342.8, and 405.9,
from top to bottom, respectively. Two different colors are
chosen for the particles: the metallic (light gray) color for
those sitting on the attractive plane at z = 0 and red (dark
gray) for particles sitting elsewhere with z 
= 0. As can be
seen from the figure, the number of red (dark gray) particles
is significantly dependent on the strength of attraction. For
small α, the ARW can easily wander around and thus it is
more likely for the particle to get a chance to stick to the
cluster somewhere at z 
= 0; for larger α, the ARW is almost
rambling on and near the attractive plane, which increases the
sticking probability within the plane. In the limit of α → ∞,
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FIG. 4. (Color online) Three typical examples of 3D grown
clusters with a number of particles M = 105. The metallic (light
gray) particles lie on the attractive plane and the rest, which are
not on the surface, are illustrated by the red (dark gray). The
strength of attraction is considered to be α = 1.2, 2, and 10, with
RG = 199.6, 342.8, and 405.9, from top to bottom, respectively. The
maximum height of the towers perpendicular to the attractive plane
never exceeds a ten-particle diameter on either side of the attractive
plane, implying the formation of quasi-2D clusters.

the 3D ARW falls onto the ordinary 2D RW, giving rise to the
formation of ordinary DLA clusters in pure two dimensions.
For α = 1, at the other limiting side, the 3D ARW is the same
as the ordinary 3D RW and we get back the ordinary 3D DLA
patterns.
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FIG. 5. (Color online) Cluster mass M as a function of the radius
of gyration RG of the 3D growing clusters formed around the seed
placed on the attractive plane for different values of α.

We empirically found that for 1 < α < 1.2, the thickness of
3D clusters on either side of the attractive plane never exceeds
a 35-particle diameter, even for clusters of size up to M = 105.
Also, for α > 1.2, the height of the tallest tower in the cluster
never reaches 10. Based on this experimental evidence, similar
to that of the 2D case, the simulation box can technically be
divided into two distinct volumes to reduce the memory: an
inner volume, i.e., with −35 � z � 35 for 1 < α < 1.2 and
−10 � z � 10 for α > 1.2, where the cluster can form, and
an outer volume where the particle moves freely without an
extra check to look for an occupied nearest-neighbor site.
We applied this fact in the structure of our program-
ming codes and found that it considerably speeds up the
simulations.

The quantity of interest is again the gyration radius RG for
clusters of different mass M . Figure 5 shows our results of
cluster mass for 3D clusters as a function of their gyration
radius for different attraction strength α. Each point in Fig. 5
is averaged over an ensemble of 90 independently grown
samples. The mass of clusters is in the range 500 � M �
32 000. Error bars for both RG and M are visible in the plot.
We found a perfect scaling behavior for α � 2, whereas for
1 < α < 2 our data fit a power law with higher uncertainty
(this is also evident from the inset of Fig. 6). One can also see
that for a constant cluster mass, the gyration radius increases
upon increasing the attraction strength, which is due to the
elongation of the growing cluster within the attractive plane.
As mentioned above, the thickness d of the clusters along the
z axis never exceeds a 70-particle diameter even for clusters of
size up to M = 105. This implies a considerably small relative
thickness, defined as d/RG  1, for the patterns and thus an
indication of the formation of quasi-2D clusters. This will be
confirmed in the following section, where we compute the
fractal dimension of the grown patterns.

III. FRACTAL DIMENSION OF 2D
AND 3D ADLA CLUSTERS

In this short section we compute the fractal dimension of the
clusters as a measure characterizing the statistical complexity
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FIG. 6. (Color online) Fractal dimension Df of the attracted
diffusion-limited aggregation clusters grown in two and three di-
mensions, represented by open circles and squares, respectively,
as a function of the attraction strength α. The inset shows the
corresponding error bars within which the power-law behavior Eq. (3)
holds.

of the grown fractal patterns in both two and three dimensions.
The fractal dimension of the clusters can easily be calculated
from the data given in Figs. 2 and 5 by examining the scaling
relation (3).

In Fig. 6 we compile our data for the fractal dimensions
of 2D and 3D clusters, which are represented by the open
circles and squares, respectively. For both 2D and 3D clusters,
the fractal dimension significantly depends on the strength
of attraction α, especially for α < 2. The smaller the α, the
denser the clusters are. For larger α, the fractal dimensions
in both cases are less dependent on α, rapidly converging to
the value Df ≈ 1.72, which, within the statistical errors, is
almost in accord with that of the ordinary DLA clusters in two
dimensions with Df ≈ 1.71.

As discussed before, the overall intermediate fractal be-
havior seems to be dominated by the two crossover limits in
the statistical behavior of the underlying diffusion process,
i.e., the crossover of the 3D ARW to the ordinary 3D
RW and 2D RW for α = 1 and α → ∞, respectively. For
α = 1 the 2D clusters have a compact structure of dimension
≈2 and for the 3D clusters we obtain a fractal dimension
Df ≈ 2.53 very close to the expected value for the ordinary
3D DLA [19].

IV. CONCLUSION

We introduced a model of aggregation based on an ex-
tension of diffusion-limited aggregation where the underlying
diffusion process is a 3D Brownian motion (or a random walk
on the lattice) that is attracted by a plane with strength α.
The seed particle is placed on the attractive plane. In two
dimensions, the fractal properties of the aggregated cluster are
shown to be dependent on the attraction strength giving rise
to the formation of patterns with 1.71 � Df � 2. The two
limiting values for the fractal dimension Df in the scaling
region are discussed to be governed by the crossover of the
3D ARW to the ordinary 3D RW for α → 1 from one side

and its convergence to the ordinary 2D RW on the other side
with α → ∞, which leads to ordinary 2D DLA patterns of
Df � 1.71.

In three dimensions, the rotational symmetry, which is
present in the ordinary 3D DLA clusters with α = 1, is
broken by the attractive plane with α > 1 and the model
leads to the formation of clusters with 1.71 � Df � 2.53. For
intermediate α, we obtain quasi-2D clusters whose relative
thickness, defined as the thickness of a cluster perpendicular
to the attractive plane rescaled by its radius of gyration, is
relatively small. Our results indicate a scaling region with
α � 2, in which the fractal structure of the clusters can
be characterized by a single fractal dimension Df ≈ 1.72,
independent of α.

Recently, there has been growing attention and frequent
reports on the fact that the morphology of self-assemblies
can be controlled by tuning various physical parameters such
as the packing fraction φ and the attraction strength. This is
especially important for the handling of soft materials and
food processing. In our study we found that a crossover
from ramified, fractal clusters to compact aggregates occurs
upon decreasing the attraction strength α at the limit of
small attraction strength. For the two-dimensional clusters the
threshold is found to be αc = 1.15. As a result, in our model
the morphologies of the growing clusters can be controlled by
tuning the attraction strength α.

In a recent study of aggregation of hard spheres [20], a
similar crossover from a compact to ramified aggregation is
found; in the former regime the scaling relation fails, while in
the latter case the scaling holds. The crossover from compact to
fractal clusters happens upon increasing the packing fraction φ.
The threshold is found to be at φ = 0.55, which is very close to
the glass transition point at φg = 0.58. Therefore, in this case,
the structure of aggregations can be controlled by the packing
fraction φ. Zhang et al. [21] report results of experiments
on colloidal suspensions with short-range attraction and long-
range repulsion. They show that the morphology of the clusters
can be controlled by tuning either the attraction strength or
the packing fraction φ resulting in an elongated-to-branched
crossover.

These reports imply that the compact-to-ramified crossover
may be considered a universal property of the aggregation of
particles. Consequently, this suggests the possibility of propos-
ing a single phase diagram that captures such behavior for
different systems with different underlying physical processes
and interparticle interactions.

Possible future work for constructing a much more realistic
model of a diffusive layer may be an extension of the present
model by considering a number of mobile seed particles on the
attractive plane for which the growth of each can be given by
our implemented procedure. In that case, the growing clusters
can stick together upon contact.
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