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Haloing in bimodal magnetic colloids: The role of field-induced phase separation
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If a suspension of magnetic micrometer-sized and nanosized particles is subjected to a homogeneous magnetic
field, the nanoparticles are attracted to the microparticles and form thick anisotropic halos (clouds) around them.
Such clouds can hinder the approach of microparticles and result in effective repulsion between them [M. T. López-
López, A. Yu. Zubarev, and G. Bossis, Soft Matter 6, 4346 (2010)]. In this paper, we present detailed experimental
and theoretical studies of nanoparticle concentration profiles and of the equilibrium shapes of nanoparticle clouds
around a single magnetized microsphere, taking into account interactions between nanoparticles. We show that at
a strong enough magnetic field, the ensemble of nanoparticles experiences a gas-liquid phase transition such that a
dense liquid phase is condensed around the magnetic poles of a microsphere while a dilute gas phase occupies the
rest of the suspension volume. Nanoparticle accumulation around a microsphere is governed by two dimensionless
parameters—the initial nanoparticle concentration (φ0) and the magnetic-to-thermal energy ratio (α)—and the
three accumulation regimes are mapped onto a α-φ0 phase diagram. Our local thermodynamic equilibrium
approach gives a semiquantitative agreement with the experiments on the equilibrium shapes of nanoparticle
clouds. The results of this work could be useful for the development of the bimodal magnetorheological fluids
and of the magnetic separation technologies used in bioanalysis and water purification systems.
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I. INTRODUCTION

Bimodal colloidal mixtures of nanoparticles and micropar-
ticles may show different phase behaviors depending on the
interparticle interactions and on the volume fractions of both
species. If the nanoparticles bear a relatively strong electric
charge and the microparticles are weakly charged, then the
suspension experiences a phase transition from a colloidal gel
to a stable fluid and back to a colloidal gel with increasing
nanoparticle concentration [1]. The stabilization of such a
binary mixture was attributed to the formation of thin shells
(halos) with a high local nanoparticle concentration around
the microparticles; such a stabilization phenomenon is being
referred to as haloing. Monte Carlo simulations and theoretical
studies based on integral equations have shown that the haloing
effect appears as a result of the interplay between a strong
electrostatic repulsion between nanoparticles and a weak
colloidal attraction of nanoparticles to large microparticles
[2–5].

In the above cited studies the haloing phenomenon was
governed by the competition between electrostatic and van
der Waals interactions. Any additional interaction between
microparticles and nanoparticles is expected to strongly affect
the phase behavior of the mixture, especially if this interaction
is long ranged. This is the case of bimodal suspensions
composed of magnetizable microparticles and nanoparticles,
whose colloidal stability has been studied in Refs. [6,7]. The
addition of a few volume percent of magnetite nanoparticles
to the initial suspension of carbonyl iron microspheres has
been found to avoid aggregation of microspheres under van
der Waals forces and, consequently, to considerably decrease
their sedimentation. At the same time, nanoparticle clouds of
a thickness of the order of 0.1D were observed around the
microspheres (here D is the microsphere diameter). The halo
appearance was qualitatively explained by the competition

between steric repulsion between oleate-coated nanoparticles
and weak magnetic attraction between the microsphere and
the surrounding nanoparticles, which occurs due to the
remnant magnetization of the former. In the presence of an
external magnetic field, the microspheres get magnetized and
attract each other, forming field aligned structures, while the
presence of magnetic nanoparticles can either enhance or
weaken the mechanical properties of the mixture depending
on the nanoparticle size. In the case of relatively small
nanoparticles (with a diameter d<10 nm), the magnetic
attractive force between two microspheres is enhanced by
a factor equal approximately to the magnetic permeability
of the nanoparticle phase of the bimodal suspension [8]. In
the case of larger nanoparticles (d>15 nm), nanoparticle-
nanoparticle and nanoparticle-microsphere interactions be-
come strong enough to induce a significant migration of
nanoparticles towards the microspheres, resulting in thick
nanoparticle clouds that hinder the approach of the two
microspheres and create an effective repulsion between them
[9]. Clearly, if the addition of nanoparticles leads to a strong
increase in the intersphere gap, the force required to separate
two microspheres could be significantly reduced, which will
lead to a decrease of the magnetorheological effect of the
suspension. Therefore, a deep understanding of the effects
of nanoparticle size and volume fraction is crucial for the
development of magnetorheological fluids based on bimodal
magnetic suspensions.

For a better understanding of this phenomenon, a more
detailed investigation of the field-induced halo formation
around a single microsphere is highly desirable. This problem
approaches the well-studied phenomena of the diffusion
and accumulation of magnetic nanoparticles around either
a magnetized wire or a spherical magnetic microparticle,
both modeling the collector unit of high gradient magnetic
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separators. These devices are being extensively used in the ore
beneficiation industry [10], in the separation of magnetically
labeled biological molecules or cells [11], as well as in
recent laboratory experiments on magnetically assisted water
purification systems [12]. The existing theoretical studies were
mostly carried out under an approximation of noninteracting
magnetic nanoparticles. They report concentration profiles of
the magnetic nanoparticles [13,14], as well as the size and
shape of the nanoparticle cloud (region with a high particle
volume fraction) around a magnetized wire [15–17]. Ac-
cording to these theories, the static equilibrium concentration
profiles follow the Boltzmann statistical distribution while the
nanoparticle static cloud around a magnetized collector is sim-
ply considered as a region where the particle volume fraction
(given by the Boltzmann distribution) exceeds the maximum
packing fraction of about 0.6. Clearly, the approximation of
noninteracting nanoparticles is irrelevant for predictions of
the shape and the size of closely packed particle buildups.
Furthermore, even at the initial stage of the particle capture
without any buildup around the collector, the nanoparticles
of a size as small as 15–20 nm may already exhibit a rather
strong attraction between them and even show a condensation
phase transition above some critical magnetic field and volume
fraction [18–20]. A few attempts have been made to take into
account the interactions between nanoparticles in magnetic
separation systems [15,21,22]. However, they seem to be
very approximate, and the effect of interparticle interactions
on the nanoparticle capture efficiency was poorly analyzed.
A rigorous equilibrium thermodynamic approach needs to
be employed for these systems, and, consequently, eventual
phase transitions need to be considered. Furthermore, only a
few visualization experiments on nanoparticle accumulation
around a magnetized wire have been reported [23,24]. These
studies are restricted to some limited sets of experimental
parameters (external magnetic field, nanoparticle size, elapsed
time) and do not allow a quantitative comparison with the
theories.

In the present paper, we report a systematic experimental
and theoretical study of the magnetic nanoparticle accumula-
tion around a single magnetic microsphere in the presence of an
external magnetic field. The experimental part focuses on the
effect of the nanoparticle size (d), the initial volume fraction
(φ0), and the external magnetic field (H0) on the redistribution
of nanoparticle concentration and, particularly, on the size
and shape of the concentrated regions of nanoparticles—the
so-called nanoparticle clouds—around a microsphere. As in
the study of phase separation in magnetic colloids [18,25], the
theoretical approach of these effects is based on the local ther-
modynamic equilibrium approach, in which the dipole-dipole
and hard-sphere potentials acting between the nanoparticles
are naturally introduced in the thermodynamic functions of the
magnetic nanoparticle suspension. The constitutive equations
of state of the nanoparticle suspension (osmotic pressure
and chemical potential as a function of the nanoparticle
concentration) are formulated. The gas-liquid phase transition
in the nanoparticle suspension is then studied and the binodal
curves separating different phases are calculated. The particle
concentration profile around a microsphere is found from
the condition of the uniformity of the chemical potential
of nanoparticles across the suspension, taking into account

the eventual phase transitions. The nanoparticle clouds are
expected to correspond to regions of the condensed liquid state
of the ensemble of nanoparticles around a microsphere, rather
than to regions of closely packed nanoparticles, as follows
from the existing theories. The present theory and experiments
will allow us to establish an important fundamental and prac-
tical result: We shall find the threshold parameters (d,φ0,H0),
above which the thermodynamic equilibrium between the
nanoparticle liquid phase (nanoparticle cloud) and gas phase
(the rest of the nanoparticle suspension) is not possible
anymore, meaning that the clouds grow infinitely, adsorbing
all the surrounding nanoparticles. This study is motivated
by practical applications in both magnetorheological smart
technologies and magnetic separation techniques.

The present paper is organized as follows. In Sec. II,
we shall describe the experimental setup and characterize
the synthesized nanoparticle suspensions. Section III will be
devoted to the experimental results on the visualization of
the accumulation of nanoparticles around a microsphere. In
Sec. IV, we shall present the local thermodynamic equilibrium
approach and calculate the concentration profiles and the shape
and size of the nanoparticle clouds. In the same section we
shall compare our theory to experimental results. In Sec. V,
the concluding remarks will be outlined and perspectives for
further investigations will be discussed.

II. EXPERIMENT

A. Experimental setup

The experimental cell used for the visualization of the
redistribution of the magnetic nanoparticle concentration
around a magnetized microsphere is shown schematically in
Fig. 1. First, a bimodal aqueous suspension of magnetite
nanoparticles and nickel microspheres was prepared by a
dilution of a primary concentrated ferrofluid up to a desired
nanoparticle volume fraction (ranging from φ0 = 0.005%
to 0.16%) with the subsequent addition of an extremely
small quantity of nickel micropowder. Nickel microparticles
possessed a well-defined spherical shape and a narrow size
distribution with a mean diameter of D ≈ 5 μm. Magnetite

FIG. 1. (Color online) Experimental cell used for visualization of
nanoparticle accumulation around microspheres.
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TABLE I. Properties of the primary ferrofluids and particle size characteristics.

Sample Density, Particle Saturation Initial Particle size
ρ volume magnetization magnetic by TEM Particle (cluster) size by DLS

(g/cm3) fraction Ms(kA/m) susceptibility χ Volume mean Volume mean z-average Polydispersity
φ (%) diameter d43(nm) diameter (nm) diameter (nm) index

(I) 1.045 1.07 4.38 0.077 11 18 25 0.27
(S) 1.175 4.2 21.9 0.78 13 62 82 0.20

nanoparticles (or rather aqueous ferrofluids) were synthesized
by two different methods described in Sec. II B. A drop
of the bimodal suspension was then sandwiched between
two glass plates separated by a gap of 0.13–0.17 mm. This
fixture was then placed under a transmitted light optical
microscope (Carl Zeiss Photomicroscope III) equipped with a
camera PixelInk PL-B742U equipped with a complementary
metal oxide semiconductor (CMOS) color image sensor. An
external magnetic field, parallel to the glass plates, of an
intensity ranging from H0 = 0 to 16 kA/m, was generated
by a pair of Helmholtz coils placed around the microscope.
Iron yokes were introduced into Helmholtz coils in order
to reinforce the magnetic field. Nevertheless, measurements
showed that the magnetic field was homogeneous, within a few
percent tolerance, in the location of the bimodal suspen-
sion drop. Therefore, nickel microspheres did not migrate
towards one or another coil during 3 h of experiments.
A 50-fold objective (Olympus LMPlanFl 50 × 0.50) was
used for observation of the suspension. Once the magnetic
field was applied, nickel microspheres were magnetized and
the magnetite nanoparticles started to migrate towards the
microspheres such that their volume fraction increased in
the vicinity of the magnetic poles of microspheres forming
clouds extended along the direction of the external magnetic
field. Such a redistribution of nanoparticle concentration was
detected by the change in contrast of the suspension. Pictures
of the observed microsphere with its nanoparticle clouds were
taken every 30 s for 30 min, starting from the moment when
the magnetic field was applied. The sequence of pictures was
then analyzed using IMAGEJ software to extract the geometrical
parameters of the nanoparticle clouds (longitudinal size). In
some experiments, the formation of nanoparticle clouds was
a relatively long process and the duration of the observation
was increased up to 3 h. To avoid water evaporation from
the nanoparticle suspension during long-time experiments,
between two glass plates we sandwiched a ring pattern of
a mixture of poly(methyl methacrylate) (PMMA) microbeads
(Microbeads Spheromers

R©
CA) with acyanocrylate glue and

introduced a drop of the magnetic suspension with the help
of a microneedle inside the so-formed ring seal. In these
specific experiments, the monodisperse PMMA beads of
diameter 31 μm served as well-calibrated separators between
the two glass plates. The quantity of nickel microspheres in the
suspension was small enough such that they were sufficiently
spaced from each other, their dipolar interactions were weak
enough, and they did not attract each other. The nanoparticle
clouds of neighboring microspheres did not interact with each
other, so the experimental conditions were close to the case

considered in our theory—a single microsphere placed in an
infinite volume of a nanoparticle suspension.

B. Nanoparticle synthesis and characterization

We used two kinds of magnetite in water solutions
(ferrofluids) with different nanoparticle sizes. Both samples
were prepared by a coprecipitation of ferrous and ferric
salts in an alkali medium [26]. Magnetite nanoparticles were
subsequently stabilized by either electrostatic (ionic [27]) or
entropic (steric double layer [28]) repulsion; these two samples
are hereinafter denoted by (I) and (S), respectively.

Both kinds of magnetite nanoparticles and their aqueous
solutions were characterized by transmission electron mi-
croscopy (TEM, JEOL JEM 1400), dynamic light scatter-
ing (DLS, Malvern ZetaSizer Nano ZS), pH measurements
(Mettler Toledo GmBH Seven Easy pH), conductivity and
ζ -potential measurements (Malvern ZetaSizer Nano ZS), and
vibrating sample magnetometry (VSM 4500 EG&G Princeton
Applied Research). Some physical properties of both primary
ferrofluids are summarized in Table I.

The TEM pictures of both samples are shown in Fig. 2 and
the corresponding nanoparticle size distribution is shown in
Fig. 3(a). Both samples (I) and (S) have a size distribution
extended from 4 to about 20 nm with volume mean diameters
dTEM

43 equal to 11 and 13 nm, respectively. The nanoparticles
of the sample (I) seem to be weakly aggregated while those of
the sample (S) are gathered in irregularly shaped clusters with
a mean size estimated to be of the order of 50–70 nm. Such an
aggregation of oleic-acid stabilized nanoparticles has already
been reported in Ref. [28] but its cause remains unexplained.
The appearance of the clusters in the sterically stabilized
ferrofluid (S) did not affect its sedimentation stability for
at least half a year but improved considerably their capture

FIG. 2. TEM images of the two ferrofluid samples: (a) ionic sta-
bilization; (b) steric stabilization with a double-layer oleic surfactant.
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FIG. 3. Nanoparticle size distribution obtained from transmission electron microscopy (a) and dynamic light scattering (b): The dashed
line is the ferrofluid sample (I), and the continuous line is the ferrofluid sample (S).

efficiency compared to that of quasi-isolated nanoparticles
of the ferrofluid (I). The particle size distribution obtained
by DLS (for diluted ferrofluids at a particle volume fraction
φ = 0.005%) is shown in Fig. 3(b) and the volume mean
diameter for sample (I), dDLS = 18 nm, appears to be about 1.6
times the one obtained from TEM pictures. This corroborates
a weak particle aggregation revealed by TEM [Fig. 2(a)]. The
sample (S) shows a much more pronounced difference between
the TEM and the DLS size distributions: The DLS volume
mean diameter, dDLS = 62 nm, appears to be about five times
the TEM diameter and corresponds approximately to the mean
size of the nanoparticle clusters observed by TEM.

The results of the measurements of the particle ζ potential
and of the electric conductivity of (I)- and (S)-type dilute
suspensions are summarized in Table II for particle volume
fractions φ = 0.005% and φ = 1.6%, covering the concentra-
tion range used in the visualization experiments. As expected,
the (I) samples have an acidic pH, and their nanoparticles bear
a positive electric charge characterized by a relatively high
ζ potential, ζ ∼ +50 mV, which is approximately the same
within the particle concentration range considered. On the
contrary, the conductivity and, consequently, the ionic strength
of (I)-type suspensions decreases six times with a decrease

in particle concentration from φ = 0.16% to φ = 0.005%.
This can be explained by a decrease of concentrations of
H3O+ and Fe3+ ions when the nanoparticle suspension is
progressively diluted. In any event, the suspension ionic
strength is low enough (I < 20 mM) to avoid a significant
screening of electric charges on the particle surface. Using
the classical Derjaguin-Landau-Verwey-Overbeek (DLVO)
theory [29] completed with magnetic dipolar interactions, we
have estimated the potential energy of the resultant interaction
between the two particles in the case when their magnetic
moments are aligned along the line connecting the particle
centers. The value Umax ∼ 4kT of the potential barrier does
not seem to be high enough to provide long-time stability of
the suspension, even though the secondary minimum of the
potential energy appears to be quite small: Umin ∼ −0.5kT .
This likely corroborates the weak aggregation state revealed
by TEM and DLS measurements. However, the sedimentation
tests show that, in the considered concentration range, the (I)
suspensions remain stable for at least half a year.

On the other hand, the stability of the relatively large
nanoclusters of the (S)-type suspensions is not evident. The
oleic-based surfactant double layer as thin as 1 or 1.5 nm
[31,32] cannot by itself avoid aggregation, as follows from the

TABLE II. Electrostatic properties of the nanoparticles/nanoclusters surface.

Particle volume Suspension Suspension electric ζ potential Ionic strength Debye length Potential barriera

Suspension fraction φ(%) pH conductivity σ (μSm/cm) (mV) I (mM) κ−1 (nm) Umax/kT

(I) 0.005 4.0 170 + 47 2.6 6.1 8.3(4.5)b

(I) 0.16 3.1 990 + 49 15 2.5 7.4(4.1)b

(S) 0.005 8.3 280 −59 4.2 4.8 83c

(S) 0.16 9.5 450 −57 6.8 3.8 72c

aThe potential energy versus interparticle separation was estimated with the help of the DLVO theory [29] using the linear superposition
approximation for the electrostatic interaction (with the ζ -potential values used for the surface potential ψ0) and the classical Hamaker
approximation (with the nonretarded Hamaker constant for the magnetite-water system AH ≈ 33 × 10−21 J [30]).
bThe mean diameter of isolated nanoparticles was taken from TEM measurements: d = 11 nm. The values in parentheses are estimated taking
into account the magnetic interactions between nanoparticles with magnetic moments aligned along the line connecting the particle centers.
cThe mean diameter of nanoclusters was taken from DLS measurements: d = 62 nm. Estimations are done for zero magnetic field.
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estimation of the van der Waals interaction potential between
two nanoclusters of a mean diameter d = 62 nm at a separation
equal to 2–3 nm. Hopefully, the clusters with their double
layers bear a relatively high negative charge corresponding
to a ζ potential of about − 60 mV. The conductivity and
the ionic strength of the both tested (S) suspensions are
relatively low (I<10 mM), so the electrostatic repulsion is
again favored, providing a potential barrier in the absence of
the magnetic field of about Umax ∼ 70 kT and a negligible
secondary minimum of Umin ∼ −0.01kT . In the presence of
the magnetic field, nanoclusters get magnetized and their
dipolar attraction lowers substantially the potential barrier
level, and a pronounced secondary minimum appears. For
instance, at a magnetic field H = 48 kA/m (as the one in
the vicinity of the magnetic microspheres in our experiments),
the resultant interaction between two nanoclusters is strongly
attractive (with Umin ∼ −50 kT ) at any interparticle separation
that is larger than the thickness of the surfactant double
layer. This corresponds to a strong field-induced aggregation
of nanoclusters observed in experiments at magnetic fields
H>10 kA/m. However, the reversible character of this
aggregation proves the efficiency of the surfactant double
layer: At high magnetic fields, the electrostatic repulsion is not
strong enough to separate the nanoclusters but the surfactant
layer avoids close contact between them; when the magnetic
field is switched off, the overlapping electric double layers
of nanoclusters repel each other and reestablish the initial
dispersion state of the suspension, which does not lose its
sedimentation stability after switching off of the magnetic
field. Such a combined steric-electrostatic mechanism of the
stabilization of aqueous solutions of magnetite nanoparticles
covered with an oleate double layer has been reported in
Ref. [33], where it was shown that the absolute value of
the nanoparticle ζ potential increased gradually with the
growth of sodium oleate adsorbed on the particle surface
and became quasi-insensitive to the suspension pH, providing
good colloidal stability in a wide pH range.

Magnetization M(H ) curves of both primary concentrated
ferrofluids are shown in Fig. 4, with H being the magnetic
field intensity and M the magnetization. The time steps of the

FIG. 4. Magnetization curve of both synthesized ferrofluids: The
solid line corresponds to the sterically stabilized (S) sample and the
dashed line to the ionically stabilized (I) sample.

measurements were sufficiently long to ensure an equilibrium
structure of the ferrofluid at each imposed magnetic field
intensity H . The magnetization saturation MS of the ferrofluids
(see Table I) was found by an extrapolation of the M

vs 1/H dependencies to zero value of 1/H in a range
of high values H/M � 1 [26]. The magnetization of the
nanoparticles was simply estimated as the ratio of ferrofluid
saturation magnetization to the particle volume fraction φ of
ferrofluids, Mp = MS/φ, and was found to be close to the
saturation magnetization of bulk magnetite (480–520 kA/m)
for both samples. The shape of the M(H ) curves was
essentially similar for both ferrofluids (I) and (S) without
a distinguishable hysteresis. Nevertheless, the magnetization
mechanism is expected to be rather different because the
(S) sample experienced a reversible phase separation under
applied magnetic field, while the (I) sample did not, as
follows from optical microscopy. A relatively dilute (I) sample
(φ = 1.07%) composed of quasi-isolated superparamagnetic
particles should presumably follow the Langevin magneti-
zation law [26] M = MS[coth(μ0mH/kT ) − kT /(μ0mH )],
where μ0 = 4π × 10−7 H/m is the magnetic permeability
of vacuum, m = MpVp is the particle magnetic moment,
Vp = πd3/6 is the particle volume, d is the mean particle
diameter, k = 1.38 × 10−23 J/K is the Boltzmann constant,
and T ≈ 300 K is the absolute temperature of the suspension.
The mean particle size d of the sample (I) was estimated by
fitting the experimental magnetization curve to the Langevin
function, which gave a value of dmagn ≈ 9 nm, which is close
to the one obtained by TEM.

The (S) sample was composed of nanoparticle clusters of a
mean diameter of 60–70 nm. Each individual cluster contains a
few dozen closely spaced nanoparticles at an internal volume
fraction of the order of φint ∼ 0.5, as estimated from TEM
pictures. Clearly, in the presence of an external field, the
magnetization of these clusters should be strongly affected by
many-body interactions between fluctuating magnetic dipoles
of each superparamagnetic nanoparticle. Therefore, we expect
a strong deviation of the nanocluster magnetization from
the Langevin law. Furthermore, upon application of a strong
enough magnetic field, the nanoclusters are assembled into
long columns aligned with the field lines. Thus, the ferrofluid
magnetization will depend, among other things, on its internal
structure. Searching for a theoretical magnetization law for
the clustered ferrofluid sample (S) becomes a difficult task.
However, for the interpretation and the modeling of the
nanocluster capture process, we do not need a precise form
of the magnetization law of the primary ferrofluid but rather
of the initial magnetic susceptibility χc of the nanoclusters.
This magnitude is more easily estimated from measurements
of the magnetization of a compacted dry extract of the primary
ferrofluid. These measurements give a value of χc ≈ 9 for the
nanocluster susceptibility.

III. OVERVIEW OF OBSERVATION RESULTS

Most of the visualization experiments were carried out
with the (S)-ferrofluid sample because the nanoclusters of
this sample were sufficiently large and experienced a rather
strong interaction with microspheres—the most important
case for practical applications. A sequence of pictures
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FIG. 5. (Color online) Influence of the initial volume fraction of nanoparticles φ0 on the size of the nanoparticle clouds. The nanocluster
concentration is related to the nanoparticle concentration through the relation �0 = φ0/φint, with φint ≈ 0.5 being the internal volume fraction
of nanoclusters. The magnetic field intensity is H0 = 16 kA/m; the image sequence from the top to the bottom corresponds to different elapsed
times: 0, 5, 10, 15, and 20 min.

illustrating the nanocluster accumulation around a magnetic
microsphere is shown in Fig. 5 for an external magnetic
field of H0 = 16 kA/m, for different initial concentrations
of the nanoparticles φ0 and for different times after the
onset of the magnetic field. As we see in these pictures,
the nanoparticle clouds have a lobe shape and show an
axial symmetry with respect to the microsphere axis that is
parallel to the external magnetic field. Such anisotropy of the
nanoparticle clouds comes from the anisotropy of magnetic
interactions between the nanoclusters and the microsphere:
This interaction is attractive within the regions where the
magnetic field H is higher than the external field H0 while
it is repulsive in the regions where H<H0. The attractive
regions are therefore formed in the vicinity of the two magnetic
poles of the microsphere and the repulsive region is adjacent
to the microsphere equator, where magnetite nanoclusters
never accumulate. Figure 5 also shows that the volume of
the nanoparticle clouds increases both with elapsed time and
with an initial concentration of the nanoparticles φ0 in the
suspension. The latter effect is explained by stronger dipolar
interactions between the nanoclusters in a more concentrated
suspension. This enhances their response to the applied
magnetic field and ensures a stronger attraction to the magnetic
microsphere. The transmitted light intensity and, consequently,
the nanoparticle concentration inside the clouds seem to
increase considerably with φ0: At concentrations φ0 � 0.04%,
a large part of the cloud becomes opaque, which makes it
impossible to measure the concentration profiles by means of
image processing. As we shall see in the next section, the
theory suggests that, starting from some critical initial volume
fraction φ0, the local nanocluster concentration reaches high
enough values, and a condensation phase transition takes place
in the proximity of the magnetic poles of the microsphere.
Therefore, the opaque regions of the nanoparticle clouds
at φ0 � 0.04% could be interpreted as a liquid-state phase
with a high (but not necessarily closely packed) nanocluster
concentration.

The effect of the intensity of the external magnetic field on
the cloud formation is shown in Fig. 6 for an initial nanoparticle
concentration of φ0 = 0.04%. As is seen in this figure,

the nanoparticle clouds become larger, thicker, and more
extended along the magnetic field lines, as the magnetic field
intensity increases. This is simply interpreted by increasing
the magnetic interactions between the nanoclusters and the
microsphere as well as between the nanoclusters themselves.
The latter effect could favor the condensation phase transition
around the microspheres. Again, the opaque zones of the
clouds near the microsphere at H0 � 12 kA/m likely stand
for the liquid-state phase of the nanocluster ensemble. The
concentration and magnetic field effects on the cloud size and
shape are studied in more detail in Sec. IV C, in conjunction
with the theory.

It should be pointed out that, in short-time experiments
presented in Figs. 5 and 6, we observed a rather smooth
transition between a concentrated, presumably, liquid-state
phase of the nanocluster ensemble and a dilute gas-state
phase outside the cloud. The absence of a sharp boundary
between both phases may come from a polydispersity of the
nanocluster suspension: Larger nanoclusters are accumulated
in the vicinity of the microsphere, forming a dense liquid-state
phase, while smaller nanoclusters form sparse clouds around
the latter. In addition to it, nanocluster accumulation is likely
a long process hindered by Brownian motion. To check if
the equilibrium was reached, we have conducted long-time
experiments (3 h), taking special care to avoid degradation
of the sample. First, we remark that the distinct boundary
between the liquid and the gas phases has only been observed
for the most concentrated sample with φ0 = 0.16%. Second,
the nanocluster accumulation process seems to be achieved for
the most dilute sample [φ0 = 0.005%, Fig. 7(a)], resulting in
relatively small and transparent clouds. For more concentrated
suspensions [φ0 = 0.08% and φ0 = 0.16%, Figs. 7(b) and
7(c)], the nanoparticle clouds did not cease to grow, at least
for 3 h. We also observed the formation of field-induced rodlike
aggregates in the bulk of the concentrated suspensions, while
these aggregates were not detected in a dilute suspension.
Such a phase separation in the two last samples is a long-time
process (several hours), and its time scale is similar to the
one for the nanocluster accumulation. After a certain elapsed
time, sufficient for the formation of long enough aggregates,
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FIG. 6. (Color online) Influence of the magnetic field intensity H0 on the formation of the nanoparticle clouds in the sterically stabilized (S)
nanoparticle suspension. The initial nanoparticle volume fraction is φ0 = 0.04%; the image sequence from the top to the bottom corresponds
to different elapsed times: 0, 5, 10, 15, and 20 min.

we observed the motion of these aggregates towards the
microsphere such that the nanoparticle clouds continued to
grow, absorbing the neighboring aggregates. Thus, the cloud
growth process could have been stopped only if all the
ferrofluid aggregates were absorbed by the clouds, leading
to very large clouds whose size depends on the total quantity
of nanoclusters in the initial ferrofluid. Such a tendency could
be discerned in Fig. 7(c) for a suspension with φ0 = 0.16%.
In the limit of infinite volume of the nanocluster suspen-
sion, the clouds are expected to grow infinitely around the
microspheres without reaching thermodynamic equilibrium
with ambient suspension. These observations allow us to
suppose that infinite cloud growth is associated with the
field-induced structuring of the initial nanocluster suspension,
while, in the absence of structuring at lower concentrations or
magnetic fields, clouds of finite size are expected. Our theory,

which is developed in the next section, fully confirms this
hypothesis.

In order to understand the influence of the nanoparticle and
nanocluster size on their accumulation around microspheres,
in Fig. 8 we compared the pictures taken for both (I) and
(S) types of synthesized nanoparticles at the same external
magnetic field, H0 = 16 kA/m, and at the same initial volume
fraction, φ0 = 0.16%. The small quasi-isolated nanoparticles
of the (I) sample with a mean diameter of about d ≈ 10 nm
build very small halos in the vicinity of the magnetic poles
of the microsphere, extended to a distance of about 0.1D

from the microsphere surface, with D ≈ 5 μm being the
microsphere diameter. On the contrary, the larger nanoclusters
of the (S) sample with a mean diameter of about d ≈ 60 nm
build large clouds extended along the magnetic field lines
to a distance equal to several microsphere diameters. Such

FIG. 7. (Color online) Long-time (3 h) observation of the nanoparticle clouds of the samples (S) at the external magnetic field intensity
H0 = 8 kA/m and initial volume fractions φ0 = 0.005% (a), 0.08% (b), and 0.16% (c).
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FIG. 8. (Color online) Influence of the nanoparticle (nanocluster)
size on the cloud formation at the magnetic field H0 = 16 kA/m and at
the initial volume fraction φ0 = 0.16%. The left column corresponds
to the small size (I)-type nanoparticles (dDLS = 11 mm), and the
right column stands for the bigger (S)-type nanoclusters (dDLS = 62
mm). The image sequence from the top to the bottom corresponds to
different elapsed times: 0, 5, 10, 15, and 20 min.

a difference comes from the fact that the energy of both
nanoparticle-microsphere and nanoparticle-nanoparticle mag-
netic interactions is proportional to the nanoparticle volume,
thus to d3; these interactions are much more pronounced for
bigger (S)-type nanoclusters, leading to a condensation phase
transition of nanoclusters in the vicinity of the microspheres.

As a short demonstration of the stabilization of a bimodal
non-Brownian magnetic suspension [by the dispersion of
micrometer-sized magnetic particles in a dilute (0.16%) aque-
ous solution of (S)-type nanoclusters], in Fig. 9 we show two
nickel microspheres subjected to an external magnetic field,
H0 = 16 kA/m, which remained separated from each other
at a distance of about ten microsphere diameters thanks to the
effective repulsion between overlapping nanoparticle clouds.
As already mentioned, such an effect was first discovered
by Lopez-Lopez et al. [9] and was observed in a relatively
concentrated ferrofluid at a nanoparticle volume fraction of
about a few percent. In the present work, we reproduced this

FIG. 9. Effective repulsion between two nickel microspheres
subjected to an external magnetic field of an intensity H0 = 16 kA/m
and parallel to the line connecting the centers of both microspheres.
The volume fraction of the (S) nanoclusters is 0.16%.

effect with a dilute ferrofluid composed of large nanoclusters,
the ferrofluid being stable to sedimentation.

IV. THEORY AND DISCUSSION

We now develop a thermodynamic theory allowing the
prediction of the concentration profiles as well as the size
and the shape of the nanoparticle clouds, taking into account
interparticle interactions and the eventual gas-liquid phase
transition. The thermodynamic state of the nanocluster sus-
pension at each its point is described by a set of intensive ther-
modynamic variables, such as temperature, particle volume
fraction, osmotic pressure, magnetic field intensity, and chem-
ical potential. If the local thermodynamic equilibrium holds,
the relationships between these variables (equations of state)
do not depend on their space distribution around a microsphere.
Therefore, they can be determined by considering an infinite
volume of the nanoparticle suspension subjected to an external
uniform magnetic field. Using this approach, in Sec. IV A we
find the chemical potential and the osmotic pressure of the
suspension as functions of the nanocluster volume fraction and
the magnetic field intensity. Then, in Sec. IV B, we use these
relations to study a gas-liquid phase transition. After that, in
Sec. IV C, on the basis of the obtained equations of state and
phase diagrams, we calculate the equilibrium concentration
profiles of nanoclusters around the microsphere and compare
the theory to experimental results. Finally, in Sec. IV D, we
develop a pressure balance model and estimate the size and
the shape of the clouds in the case of a finite volume of the
nanocluster suspension.

A. Thermodynamic variables

Let us consider an infinite volume of homogeneous suspen-
sion of sterically stabilized spherical magnetic nanoclusters
at a volume fraction � = φ/φint, subjected to an external
uniform magnetic field of intensity H0 (as previously, φ and
φint ∼ 0.5 stand for the volume fraction of the nanoparticles
in the suspension and the volume fraction of the nanoparticles
inside nanoclusters, respectively). We look for the chemical
potential of the nanoclusters, ξ (�,H0), and for the osmotic
pressure of the suspension, p(�,H0). These variables will be
found under the following considerations.

(1) The nanoclusters interact with each other via elec-
trostatic and steric repulsion, van der Waals attraction, and
magnetic dipolar interactions. Estimations of the intercluster
potentials show that the first three interactions are short ranged
and the magnetic interaction is long ranged. This allows
us to apply a simple approach, in which the nonmagnetic
and magnetic interaction potentials give additive and com-
pletely independent contributions to the total free energy of
the colloid. The contribution of all nonmagnetic terms is
therefore approximated by the hard-sphere repulsion that is
described by the radial distribution function not altered by
the magnetic field, while the magnetic contribution follows
from the continuum electrodynamics. Such an approach was
successfully used to predict phase transitions in ferrofluids [34]
and magnetorheological fluids [35].

(2) We neglect the change in free energy associated with the
formation of chains of nanoclusters. This assumption should
not seriously contradict the formation of rodlike aggregates
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observed experimentally. These aggregates are relatively thick
and can, in the simplest case, be regarded as elongated, highly
concentrated liquid drops composed of closely spaced but
individual nanoclusters [36]. Although the appearance of these
aggregates can affect the phase diagram, we shall see in
the following that this approximation gives a good enough
representation of nanoparticle capture.

(3) For the sake of simplicity, we neglect the size distribu-
tion of the nanoclusters and consider all of them to be of the
same diameter d, which is taken to be equal to the mean volume
diameter, dDLS ≈ 62 nm, measured by DLS. Strictly speaking,
this assumption is not verified in experiments, so it may induce
some errors on the calculated concentration profiles and cloud
shapes. The possible effects of the nanocluster polydispersity
are briefly discussed below, in conjunction with a comparison
of the theory versus the experiments.

Under these approximations, the free energy of a homo-
geneous suspension composed of N magnetic nanoclusters
dispersed in a volume V at a temperature T and subjected to a
uniform magnetic field H is given by the following constitutive
relation:

F =
[
NkT ln

(
N3

V

)
− NkT

]
+ NkT �

4 − 3�

(1 − �)2

−μ0

∫ H

0
m · dH, (1)

where  is the thermal de Broglie wavelength of the nanoclus-
ter and m is the magnetic moment of the whole suspension.
The first term on the right-hand side of this equation represents
the free energy of an ideal gas of spherical nanoclusters
[37], the second term stands for the hard-sphere repulsion
between nanoclusters and follows from the Carnahan-Starling
theory [25,38], while the last term is the magnetic contribution
to the free energy [39], which includes both nanocluster-
external field and nanocluster-nanocluster magnetic interac-
tions. The calculation of this term requires further approxima-
tions.

(4) As has been stated in Sec. II B, the magnetic nan-
oclusters, composed of a large number of superparamagnetic
nanoparticles, are expected to be paramagnetic, i.e., not
having any permanent magnetic moment but being reversibly
magnetized by an external magnetic field. Estimations show
that the magnetic susceptibility χc of the nanoclusters changes
by about only 20% within the range of magnetic fields used
in our experiments. Therefore, in the first approximation,
we consider χc to be independent of the applied field and
equal to the initial magnetic susceptibility estimated from
magnetization measurements, χc ≈ 9.

(5) Since the magnetic susceptibilities of the nanoclusters
and of the suspension (χc and χ , respectively) are considered
to be isotropic and field independent, the magnetic moment,
m = χHV , of the nanocluster suspension is collinear with the
magnetic field vector H and proportional to the magnetic field
intensity such that the last term in Eq. (1) takes the following
form: −μ0

∫ H
0 m · dH = −(1/2)μ0χH 2V , with H = |H|.

(6) The full definition of the free energy requires a specific
expression for the magnetic susceptibility χ of the colloid
as a function of its concentration, which should correctly
account for magnetic interactions between nanoclusters. A

great number of effective medium theories have been proposed
for calculations of the effective dielectric and magnetic
properties of composite materials (see, for instance, Refs. [40]
and [41]). The most popular Maxwell-Garnett theory was
found to strongly underestimate the magnetic susceptibility
of composites at high concentrations. Therefore, we choose
the theory of Looyenga-Landau-Lifshitz [39,42], which was
initially derived for composites with a low dielectric and
magnetic contrast but found to be reasonably accurate for the
dielectric and magnetic inclusions with a moderate suscepti-
bility (generally less than ten) in a wide concentration range
(see Ref. [43] and Table 6 in Ref. [41]). This theory gives the
following expression for the magnetic susceptibility χ of the
nanocluster suspension:

(χ + 1)1/3 = �(χc + 1)1/3 + (1 − �)(χs + 1)1/3, (2)

where χs ≈ 0 is the magnetic susceptibility of the solvent
(water).

Finally, using the standard thermodynamic relations, we
derive the following equations for the chemical potential ξ

and the osmotic pressure p of the suspension:

ξ =
(

∂F

∂N

)
T ,V,H

= Vc

(
∂(F/V )

∂�

)
T ,H

= kT

[
ln

3

Vc

+ ln � + �
8 − 9� + 3�2

(1 − �)3
− α

∂χ

∂�

]
, (3)

p = −
(

∂F

∂V

)
T ,N,H

= −F

V
+ �

(
∂(F/V )

∂�

)
T ,H

= kT

Vc

[
�

1 + � + �2 − �3

(1 − �)3
− α�2 ∂(χ/�)

∂�

]
, (4)

with Vc = πd3/6 being the nanocluster volume and α =
(μ0H

2Vc)/(2kT ) the magnetic field parameter characterizing
the ratio of the nanocluster magnetic energy to the thermal
energy. While deriving the last two equations, we took into
account that the number density of nanoclusters is related
to their volume fraction via the expression N/V = �/Vc.
The last terms in brackets on the right-hand sides of Eqs. (3)
and (4) stand for the magnetic contributions to the chemical
potential and the osmotic pressure, respectively, and are easily
obtained by replacing the magnetic susceptibility χ by the one
found from Eq. (2), which yields ∂χ/∂� = 3y(1 + �y)2 and
�2∂[χ/�]/∂� = y2�2(3 + 2�y) with y = (χc + 1)1/3 − 1.

B. Phase transition

Beyond some critical magnetic field, the concentration
dependencies of the chemical potential [Eq. (3)] and of the
osmotic pressure [Eq. (4)] appear to be nonmonotonically
increasing. They have an N shape with a decreasing branch
at intermediate concentrations, similar to that of the van der
Waals gas and inherent for a gas-liquid phase transition. The
equilibrium phase behavior in the nanocluster suspension
will be governed by the equality of temperatures, chemical
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FIG. 10. α-� phase diagram of the suspension of magnetite
nanoclusters. The two curves divide the phase diagram into four
regions (L, liquid state; G, gas state; L + G, gas-liquid mixture; and
S, supercritical state), at which no condensation phase transition
occur whatever is the particle volume fraction. The dashed curve
corresponds to the critical magnetic field αc ≈ 2.3; this curve is
similar to the critical isotherm of a van der Waals gas.

potentials, and osmotic pressures in both phases [29,37].
Thus, in our isothermal nanocluster suspension, the binodals
(curves corresponding to the coexistence of both phases) of
the gas-liquid equilibrium will be defined by the following
transcendental equations:

ξ (�L,α) = ξ (�G,α), (5a)

p(�L,α) = p(�G,α), (5b)

where the subscripts L and G stand for the liquid and gas
phases, respectively.

The system of two equations (5) is solved numerically with
respect to the two unknowns, �L and �G, and both binodal
concentrations are found as functions of the magnetic field
parameter α. The α-� phase diagram is plotted in Fig. 10
for nanoclusters with a magnetic susceptibility of χc = 9.
The critical point is identified as the minimum of the binodal
curve and corresponds to the magnetic field parameter αc

≈ 2.3 and to the nanocluster volume fraction �c ≈ 0.13.
Similar to the case of the van der Waals gas, both the binodal
curve and the curve α = αc divide the phase diagrams into
four regions corresponding to a gas phase, a liquid phase, a
gas-liquid mixture, and a supercritical state existing at low
magnetic fields, 0 � α � αc, at which the condensation phase
transition does not occur. As is seen in Fig. 10, the left branch
of the binodal curve has a relatively small slope such that
the gas-liquid phase transition may occur at relatively low
volume fractions of nanoclusters, � < 10−4 = 0.01%, at the
parameter α > 4 corresponding to magnetic fields as small as
H > 14.5 kA/m.

C. Nanoparticle clouds: The thermodynamic model

Consider now a magnetizable microsphere of radius a,
introduced into an infinite volume suspension of sterically

FIG. 11. (Color online) Sketch of the problem geometry. Distri-
bution of the magnetic field intensity [according to (6)] around a
microsphere is shown schematically by different colors.

stabilized nanoclusters and subjected to an external uniform
magnetic field H0, as depicted in Fig. 11. The polar coordinate
system (r ,θ ) is introduced in such a way that its origin
coincides with the microsphere center and the angle θ is
counted in the counterclockwise direction from the magnetic
field vector H0.

We look for the concentration profile �(r ,θ ) of the
nanoclusters around the microsphere as well as for the shape
of the nanocluster cloud, using the following assumptions and
considerations.

(1) The microsphere is supposed to be made of a magneti-
cally soft material of high magnetic susceptibility, χms ∼ 100
(as nickel in our experiments). The magnetic susceptibility
χ of the medium surrounding the microsphere varies from
point to point as a function of the nanocluster concentration
�. It takes the maximum value in the vicinity of the magnetic
poles of the microsphere and minimum near the microsphere
equator. Using Eq. (2), these values are estimated to be
χmax ≈ 4 and χmin ≈ 0. Thus, the magnetic contrast between
the microsphere and the surrounding medium remains very
high at any point of the latter, which allows us to neglect, at
the first approximation, the spatial variation of the magnetic
susceptibility χ and to apply the well-known relations for the
magnetic field distribution around a magnetized sphere [26]:

Hr = H0

(
1 + 2β

r3

)
cos θ, Hθ = −H0

(
1 − β

r3

)
sin θ,

(6)
H =

√
H 2

r + H 2
θ ,

where β = (χms − χ )/(χms + 2χ + 3) ≈ 1 is the magnetic
contrast factor approximately equal to unity. Using the last
equations, we can assign the magnetic field parameter α(r,θ ) =
[μ0H (r,θ )2Vc]/(2kT ) to any point (r ,θ ) around a microsphere.

(2) At local thermodynamic equilibrium, the chemical
potential ξ and the osmotic pressure p are defined at any
point of the nanocluster suspension as functions of the local
concentration �(r ,θ ). These functions are given by Eqs. (3)
and (4) for any thermodynamic state of the suspension except
for the gas-liquid mixture. The latter is characterized by the
so-called condensation plateau, for which both the osmotic
pressure and the chemical potential are independent of the
nanocluster concentration at a given fixed magnetic field
intensity H . For a better understanding, we plot two curves
of the constant magnetic field (α = 3 and α = 3.90) in the
ξ -� phase diagram in Fig. 12(a). These curves show an initial
increase of the chemical potential with concentration in the
gas phase, a condensation plateau in the gas-liquid mixture
region, and a final steep increase in the liquid phase, whose
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FIG. 12. Determination of the critical field along the cloud boundary with the help of the phase diagrams ξ -�. (a) corresponds to the
situation where the initial nanocluster concentration �0 is too low to induce the phase transition in the nanocluster suspension at infinity from
the microsphere. Nevertheless, the magnetic field near the microsphere is high enough to induce condensation of the nanoclusters and the
formation of a dense liquid-state phase around the microsphere. (b) corresponds to the initial nanocluster concentration �0 that is high enough
to induce the phase separation at infinity from the microsphere. Infinite clouds are expected in infinite volume nanocluster suspension. In reality,
finite volume clouds will appear in a large but finite volume suspension, and their shape is defined by the pressure balance model (Sec. IV D).

shapes are qualitatively similar to the ones of the van der Waals
isotherms.

(3) The nanocluster suspension reaches local thermo-
dynamic equilibrium when its chemical potential becomes
homogeneous over the whole volume, ξ (r,θ ) = const [37].
In the infinite volume suspension, the concentration of nan-
oclusters at infinity from the microsphere remains unchanged
and is equal to the initial concentration �0 in the absence
of the magnetic field. This explicitly determines the chemical
potential at infinity, ξ0 ≡ ξ (�0,α0), and allows one to calculate
the nanocluster concentration �(r ,θ ) at any point by the
following relation:

ξ (�(r,θ ),α(r,θ )) = const = ξ (�0,α0), (7)

with α0 = (μ0H
2
0 Vc)/(2kT ) being the magnetic field parame-

ter at infinity, corresponding to the external magnetic field H0.
The concentration �(r ,θ ) is obtained by a numerical solution
of Eq. (7) together with Eqs. (6) and (3) for both gas and liquid
phases of the nanocluster ensemble.

Dense nanoparticle clouds around a microsphere are as-
sociated with the liquid phase of the nanocluster ensemble,
while the dilute regions around the clouds correspond to the
gas state. To find the shape of the nanoparticle cloud or rather
the interface between the liquid and the gas phases, we should
state the difference between the two following cases: (1) The
condensation phase transition does not occur at infinity from
the microsphere but does at some finite distance from the
microsphere; and (2) the condensation phase transition occurs
at infinity. As we shall see, in the former case, finite-sized
nanoparticle clouds are formed, while in the latter case, the
local thermodynamic equilibrium cannot be achieved since
phase separation can occur everywhere in the suspension and
the drift of the condensed domains towards the microparticle
is too slow to reach equilibrium. The second case is considered
in more detail in Sec. IV D. Now, we shall focus on the

first case, for which the magnetic field intensity H0 and the
nanocluster initial concentration �0 are not high enough to
induce condensation at infinity from the microsphere, so the
nanocluster ensemble is in the gas state there.

When approaching the magnetic poles of the microsphere,
the magnetic field intensity H increases progressively until
some critical value Hc at which the gas-liquid transition
occurs. Of course, both the magnetic field and the osmotic
pressure are not continuous on the interface between the gas
and liquid phases (cloud surface) because of the difference in
magnetic susceptibilities of these phases. So, the condition
of the mechanical equilibrium of both phases [Eq. (5b)]
should contain a magnetic pressure jump, which depends
on the magnetic field orientation relative to the interface. Thus,
the osmotic pressure should vary from point to point along the
interface. The problem becomes computationally complicated
and requires a simultaneous solution of the Maxwell equations
for the magnetic field distribution and the phase equilibrium
equations for the unknown gas-liquid interface. Therefore, in
the frame of this model, we neglect the magnetic field jump and
the pressure jump on the cloud interface that nevertheless will
allow us to obtain a reasonable semiquantitative agreement
with experimental results (some improvement on the model
taking into account the magnetic pressure jump will be
presented in Sec. IV D). The interface between the gas and
liquid phases (the surface enclosing the nanoparticle cloud)
is defined as the surface of the constant absolute value of the
critical magnetic field Hc corresponding to the phase transition.
The latter can be found from the condition of the equality of
the chemical potential at infinity and on the cloud surface:

ξ (�L(αc),αc) = ξ (�0,α0), (8a)

ξ (�G(αc),αc) = ξ (�0,α0), (8b)

011404-11



C. MAGNET et al. PHYSICAL REVIEW E 86, 011404 (2012)

where αc is the magnetic field parameter corresponding to the
critical magnetic field Hc, and �L(αc) and �G(αc) are the
nanocluster concentrations at the internal and external sides of
the cloud interface, respectively (in the liquid phase and in the
gas phase). Since the chemical potential is the same in both
phases, the two last equations are completely equivalent and
one of them must be solved with respect to αc. As a result, the
critical magnetic field αc is found as a function of the initial
concentration �0 and the external magnetic field α0.

The critical field can also be determined graphically from
the ξ -� phase diagram plotted in Fig. 12(a). First, from �0

and α0, we calculate ξ 0, the chemical potential far from the
microsphere. The values �L and �G are then found by the

intersection of the ξ = ξ 0 curve [the dashed horizontal line
in Fig. 12(a)] with the binodal curves, and αc is the value
of α = const curve, whose condensation plateau coincides
with the ξ = ξ 0 line. The difference �L − �G represents
the concentration jump on the cloud surface. This surface is
symmetric with respect to the microsphere axis parallel to
the external magnetic field vector H0 and is described by a
geometric locus [R(θ ),θ ] in the polar coordinates. The function
R(θ ) can be found from the critical magnetic field with the
help of the expression α(R(θ ),θ ) = αc(�0,α0). Substituting
Eq. (6) with β = 1 for the magnetic field distribution into the
last expression, we find the equation of the cloud surface in its
final form:

R(θ ) =
[

1 + 3 cos2 θ

(1 − 3 cos2 θ ) + [(1 − 3 cos2 θ )2 + (1 + 3 cos2 θ )(αc/α0 − 1)]1/2

]1/3

. (9)

The shape, R(θ ), of the nanoparticle cloud around a micro-
sphere, found numerically from Eq. (9), is presented in Fig. 13
for the initial nanocluster concentration �0 = 0.08% (corre-
sponding to the nanoparticle volume fraction φ0 = �0φint ≈
0.04%), and the external magnetic fields H0 = 4 and 12 kA/m.
At the lowest magnetic field, H0 = 4 kA/m, the nanoparticle
cloud appears to be very small, extending to a distance about
0.2a from the microsphere surface. At a higher magnetic field,
H0 = 12 kA/m, the cloud is much larger and extends to a
distance of 1.7a from the collector. For the given parameters,
the calculated cloud shape qualitatively reproduces the shape
observed in experiments (cf. the first and third columns of
Fig. 6).

FIG. 13. Shape of nanoparticle clouds calculated by the thermo-
dynamic model [Eq. (9)]. The initial volume fraction of nanoclusters
is �0 = 0.08%, corresponding to the nanoparticle volume fraction
φ0 = 0.04%.

The nanocluster concentration profiles along and across
the direction of the applied magnetic field are presented
in Figs. 14(a) and 14(b), respectively, at the same set of
parameters, H0 = 4 and 12 kA/m, �0 = 0.08%. We see that,
at H0 = 12 kA/m, when moving away from the microsphere
along the magnetic field direction, the concentration decreases
quasilinearly inside the cloud (liquid phase), then it drops
significantly on the cloud interface down to � = 0.7%, and
decreases gradually outside the cloud (gas phase), tending
asymptotically to the initial value �0 = 0.08% at infinity
[Fig. 14(a)]. At the magnetic field H0 = 4 kA/m, the
concentration profile is smoother and the concentration jump
on the cloud interface appears to be much smaller than
for H0 = 12kA/m. This is explained by the fact that the
condensation plateau at smaller magnetic fields is closer to
the critical point and therefore is shorter, giving a smaller
concentration jump �L − �G [cf. Fig. 12(a)]. Figure 14(b)
reveals that the nanocluster concentration near the microsphere
equator is lower than the initial concentration �0 at infinity.
This is easily explained by a repulsive magnetic interaction in
this region. When moving apart from the microsphere surface
in the direction perpendicular to the applied magnetic field, the
magnetic field intensity increases progressively from zero on
the microsphere equator to H0 at infinity [cf. Eq. (6)] such that
the nanocluster concentration also increases with the distance r

in this direction [Fig. 14(b)]. The concentration exhibits a more
rapid increase at lower magnetic field, H0 = 4 kA/m, because
the repulsive magnetic interaction between nanoclusters and
the microsphere is smaller for this field, compared to the one
for H0 = 12 kA/m.

The contour plot of the calculated two-dimensional (2D)
concentration profiles is shown in Fig. 15 for the nanocluster
concentration �0 = 0.08% and for the external magnetic
field H0 = 12 kA/m. To compare with experiments, we add
the corresponding optical microscopy picture at the bottom
of the figure. The intensity of the transmitted light of the
experimental picture could serve as a qualitative measure of
the nanoparticle concentration. As already mentioned, it was
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FIG. 14. (Color online) Concentration profile of the nanocluster suspension near the magnetic collector: (a) along the direction of the
applied magnetic field; (b) perpendicularly to the direction of the applied field. The initial volume fraction of the nanoclusters is � = 0.08%,
corresponding to the nanoparticle volume fraction φ0 = 0.04%.

impossible to establish reliable relationships between the light
intensity and the concentration because of the opacity of the
high concentration regions where the Beer-Lambert law does
not apply. We can compare theoretical and experimental con-
centration profiles only qualitatively. According to our theory,
at a high enough magnetic field intensity, the concentration
inside the cloud appears to be one to two orders of magnitude
higher than the concentration outside the cloud, so a sharp
and well-defined cloud border is predicted. However, in the
experiments, the particle concentration seems to vary smoothly
without substantial jumps, even though opaque regions near
the microsphere surface are well distinguishable. Such an
inconsistency could probably come from the polydispersity
of the nanocluster suspension: As already stated, larger

FIG. 15. (Color online) Calculated nanocluster concentration
profile around a microsphere for the initial nanocluster concentration
�0 = 0.08% (nanoparticle concentration φ0 = 0.04%) and the external
magnetic field H0 = 12 kA/m. The color legend corresponds to the
local nanocluster concentrations �(r ,θ ) shown in absolute values (not
in percent). The nanoparticle cloud observed experimentally at the
same parameters, �0 and H0, is shown on the bottom of the figure.

nanoclusters are accumulated in the vicinity of the micro-
sphere, forming a dense, liquidlike phase, while smaller
nanoclusters form sparse clouds around the latter. So, taking
into account the nanocluster polydispersity in the model could
improve the agreement between theory and experiments.

To quantify the cloud size and provide a quantitative
comparison between the experiments and the theory, we define
the longitudinal cloud size as the length of a line segment
between the microsphere surface and the point along the z axis
(Fig. 11) where the transmitted light intensity was 10% smaller
than the mean intensity far from the cloud. The concentration
dependence of the cloud longitudinal size is reported in
Fig. 16(a) for the magnetic field H0 = 14–16 kA/m, and
the magnetic field dependence of the cloud size is shown
in Fig. 16(b) for the initial nanoparticle volume fraction
φ0 = 0.04% corresponding to the nanocluster concentration
�0 = φ0/φint ≈ 0.08%. Both experiment and theory show an
increase in cloud size with the initial particle concentration
and the magnetic field intensity. This is easily explained by
concentration and field enhancement of the dipolar interactions
between nanoclusters, leading to their condensation around a
microsphere. As is seen in Figs. 16(a) and 16(b), the theory
reveals a divergence of the cloud size at high enough magnetic
fields and nanoparticle concentrations. This corresponds to
an infinite growth of clouds starting from some threshold
values of H0 and φ0. Such a divergence is also confirmed in
experiments. For example, the experimental cloud size exhibits
a drastic jump from L/a ≈ 5 at φ0 ≈ 0.08% to L/a ≈ 25 at
φ0 ≈ 0.16% [the last point is not shown in Fig. 16(a)]. Beyond
the threshold values of H0 and φ0, the cloud sizes and shapes
cannot be found by the present model anymore, and another
approach will be developed below for their determination.

D. Nanoparticle clouds: The pressure balance model

At high enough external magnetic fields and nanocluster
volume fractions, the condensation phase transition in the nan-
ocluster suspension may occur at an infinite distance from the

011404-13



C. MAGNET et al. PHYSICAL REVIEW E 86, 011404 (2012)

FIG. 16. Theoretical (solid curve) and experimental (points) dependencies of the cloud longitudinal size on the initial particle volume
fraction at H0 = 16 kA/m (a) and on the magnetic field intensity at φ0 = 0.04% (b). The experimental points correspond to an elapsed time of
20 min.

magnetic microsphere. As already mentioned, this phase tran-
sition is manifested by the appearance of rodlike aggregates
composed of ferrofluid nanoclusters, with these aggregates
often being considered as elongated concentrated ferrofluid
droplets. If the applied magnetic field is spatially uniform,
the coexistence between the concentrated phase (droplets) and
the dilute phase (isolated nanoclusters) is possible in the whole
volume of the nanocluster suspension, provided that the droplet
size distribution is governed by the free energy minimum [44].
However, in the case of an inhomogeneous magnetic field
around a microsphere, all the droplets will precipitate to the
regions of the higher magnetic fields and coalesce into a
single large concentrated drop around the microsphere. Thus,
infinitely large nanoparticle clouds are expected to form in an
infinite volume of the nanocluster suspension.

If the nanocluster suspension volume is not infinitely large,
the amount of nanoclusters condensed around a magnetic
microsphere will depend on the total amount of nanoclusters
in the initial suspension, i.e., on its volume and initial volume
fraction. We shall now estimate the volume and shape of the
nanoparticle clouds around a single microsphere placed in
a large but finite volume V of the nanocluster suspension ex-
hibiting a gas-liquid phase transition far from the microsphere.
This situation is realized in visualization experiments when a
drop of a bimodal mixture of the magnetic microspheres with
nanoclusters is sandwiched between two glass plates. If the
volume fraction φms of microspheres is known, the nanocluster
suspension volume per one microsphere is V1 = Vms/φms,
where Vms = 4πa3/3 is the microsphere volume.

In this model, we shall take into account the magnetic
pressure jump on the cloud surface. As already mentioned,
the exact solution of this problem requires simultaneous
determination of the magnetic field distribution, of the phase
equilibrium conditions on the cloud interface, and of the cloud
volume that necessitates substantial numerical efforts. At this
stage, we restrict our analysis to estimations made under the
following approximations and considerations.

(1) Once the external magnetic field is applied, the
nanocluster droplets appear in the whole suspension volume
and begin to migrate towards the microsphere. During time,
the volume of the liquid phase around a microsphere increases
and the concentration of the dilute gas phase outside the cloud
decreases, keeping the total amount of nanoclusters constant.
The migration of droplets will stop when the nanocluster
concentration in the dilute phase becomes small enough to
prevent condensation (and, consequently, the formation of
droplets) outside the cloud. The concentrations �G and �L

in the dilute and the dense phases are estimated as the binodal
concentrations at the two extremities of the condensation
plateau at the external field H0 [or α0; cf. Fig. 12(b)]. The
values �L(α0) and �G(α0) are found by numerical solution of
the system of Eqs. (5a) and (5b).

(2) The cloud volume is calculated by an iterative pro-
cedure. At the first iteration, we neglect the concentration
variations and assume that the nanocluster concentration is
equal to �L(α0) and �G(α0) at any point inside the cloud
(dense phase) or outside the cloud (dilute phase), respectively.
Since the total volume of the nanoclusters is kept constant, the
cloud volume is defined by the following relation:

VL = V1
�0 − �G

�L − �G

. (10)

(3) Now we shall take into account the concentration
variation inside the cloud. The shape of the cloud surface
is found from the condition of its mechanical equilibrium,
assuming continuity of the normal stress across the surface
[45]. The stress tensor in the dense phase of the nanocluster
suspension is given by the following equation [46]:

σik = −
{
P + μ0

∫ H

0

[
M − �

(
∂M

∂�

)
T ,H

]
dH

}
δik

− 1

2
μ0H

2δik + HiBk = −ptotδik − 1

2
μ0H

2δik + HiBk,

(11)
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where M = χH is the magnetization of the nanocluster
suspension, δik is the delta Kronecker, P = −(∂F0/∂V )T is
the pressure in the nanocluster suspension defined through
the nonmagnetic term F0 of the free energy and including both
contributions from the solvent molecules and the nanoclusters,
ptot is a so-called total pressure of the suspension equal to the
sum of the pressure P , and the magnetic osmotic pressure (the
integral term in curly brackets).

From now, we shall neglect a small nanocluster concen-
tration outside the cloud. So, neglecting magnetic properties
of the dilute phase as well as the capillary pressure, the
pressure jump across the cloud surface follows directly from
Eq. (11) [46]:

ptot G − ptot L = 1
2μ0M

2
n = 1

2μ0χ
2H 2

n , (12)

with ptotG and ptotL being the total pressure in the gas and
liquid phases (outside and inside the cloud, respectively), Mn

and Hn are the normal components of the magnetization and
of the magnetic field on the internal side of the cloud interface,
and χ = χ (�) is the magnetic susceptibility on the internal
side of the cloud surface, whose concentration dependency
will be defined below.

Since we neglect the nanocluster concentration �G outside
the cloud, the total pressure ptotG in the dilute phase is
considered to be constant at any point outside the cloud. The
total pressure ptotL in the dense phase varies from point to
point according to the following equation [46]:

∇ · σ = 0 ⇒ ∇ptot L = μ0M∇H, (13)

which gives, after the integration along the cloud surface,

ptot L − p∗
tot L = μ0

∫ H (r,θ)

H∗
MdH = μ0

∫ H (r,θ)

H∗
χHdH,

(14)

where p∗
tot L and H ∗ are the total pressure and the magnetic

field intensity in the liquid phase at some reference point on
the cloud surface, chosen to be on the microsphere surface,
i.e., at r = 1 and θ = θ∗ (the angle θ∗ will be found later);
H (r,θ ) is the magnetic field intensity at any other point (r ,θ )
on the internal side of the cloud surface.

We suppose that the cloud surface intersects the micro-
sphere surface at a right angle. On the other hand, on the
surface of a strongly magnetized microsphere, the magnetic
field lines also make a right angle with its surface. Both of these
conditions indicate that the pressure jump across the cloud
surface at the reference point (1,θ∗) is zero, p∗

tot G − p∗
tot L = 0,

as follows from Eq. (12). Thus, combining this last result with
Eqs. (12) and (14), we arrive, after some rearrangement, to the
following expression:

−
∫ H (r,θ)

H ∗
χHdH = 1

2
χ2H 2

n . (15)

In this last equation, the magnetic susceptibility χ = χ (�)
on the internal side of the cloud interface depends on the
nanocluster volume fraction � on the interface, and conse-
quently on the magnetic field intensity on the cloud surface.
As explained previously, the concentration is found from the
equilibrium of the chemical potential at any point of the cloud

surface with the chemical potential at infinity:

ξ (�,α) = const = ξ (�0,α0). (16)

Note that the chemical potential at infinity is defined in this
case by the condensation plateau in the ξ -� phase diagram
[Fig. 12(b)]. Equation (16) should be solved with respect to �,
which gives the concentration �(α,α0,�0) as a function of a
certain magnetic field α on the cloud surface, the magnetic field
α0 at infinity, and the initial concentration �0. The magnetic
susceptibility χ (α) [or, equivalently, χ (H )] is then found as a
function of the magnetic field α (or H ) upon replacing � in
Eq. (2) by �(α,α0,�0).

Let R(θ ) be the equation describing the geometrical shape
of the nanoparticle cloud. We suppose that the magnetic field
distribution inside the cloud is still given by Eq. (6). Using
this equation for the magnetic field intensities H ∗ and H (r ,θ )
and expressing the normal component of the magnetic field
Hn(r,θ ) = Hrnr + Hθnθ through the components of the unit
vector n normal to the cloud surface, we arrive at the following
differential equation for the cloud surface:

− 2

χ2

∫ h

h∗
χ (h)hdh = (hr − hθR

′/r)2

1 + (R′/r)2
, (17)

where the following notations are introduced: R′ ≡ dR/dθ ,
h∗ = H ∗/H0 = 3 cos θ∗, hr = Hr/H0 = (1 + 2/r3) cos θ ,
hθ = Hθ/H0 = −(1 − 1/r3) sin θ , h = H/H0 =

√
h2

r + h2
θ .

Equation (17) should be solved with respect to the function
R(θ ) under the initial condition R(θ∗) = 1 and with χ (h)
defined above with the help of Eq. (16). The last unknown
parameter, the angle θ∗, is found from the previously defined
cloud volume [cf. Eq. (10)] using the following relation:

VL = 2
2π

3

∫ θ∗

0
sin θ [R3(θ ) − 1]dθ, (18)

where the factor 2 before 2π/3 stands for the two clouds
attached to the north and the south magnetic poles of the
microsphere.

The nanocluster concentration profile inside the cloud is
calculated using the condition of homogeneity of the chemical
potential, i.e., solving Eq. (7) with respect to � at a given
position (r ,θ ) inside the cloud. At the second iteration, we
recalculate the volume of the cloud VL by replacing the
concentration �L in Eq. (10) by the mean value 〈�L〉 =
(1/VL)

∫
�dV of the concentration inside the cloud, issued

from the first iteration. The iterations on VL are pursued until
convergence.

The concentration profile and the cloud surface calculated
numerically from Eqs. (16)–(18) are shown in Fig. 17 for
the external magnetic field H0 = 16 kA/m (α0 = 4.9) and
the initial nanoparticle volume fraction φ0 = 0.16% (�0 ≈
0.32%). The nanoparticle cloud observed experimentally at
the same parameters, φ0 and H0, is shown on the bottom of
Fig. 17.

Using Eq. (10), we estimate the volume of the clouds around
a microsphere to be about 11 times the microsphere volume.
Both the calculated and the experimentally observed shapes of
the nanoparticle clouds appear to be strongly extended along
the magnetic field lines trying to minimize their magnetostatic
energy. The quantitative agreement between the theory and
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FIG. 17. (Color online) Concentration profile �(r ,θ ) and shape of
the nanoparticle cloud calculated by the pressure balance model [Eqs.
(16)–(18)]. The initial volume fraction of nanoclusters is �0 = 0.32%
(nanoparticle volume fraction φ0 = 0.16%) and the external magnetic
field intensity is H0 = 16 kA/m. The color legend corresponds
to the local nanocluster concentrations �(r ,θ ) shown in absolute
values. The nanoparticle cloud observed experimentally for the same
parameters, φ0 and H0, is shown on the bottom of the figure.

experiments may be likely improved by exact computations of
the magnetic field distribution inside and outside the clouds
by a solution of the Maxwell equations with a free surface
boundary condition [Eq. (17)] for the cloud interface.

Note that the iterative computations [Eqs. (10) and (16)–
(18)] of the cloud surface and volume may be substantially
simplified for relatively long clouds (extended along the z axis
at a distance higher than 6–7 microsphere radii). In this case,
we can neglect concentration variations along the cloud surface
and consider that the concentration is approximately equal to
the value �L(α0) at infinity. So, the magnetic susceptibility χ

is also supposed to be constant and is found using Eq. (2): χ =
const ≈ χ (�L). The problem reduces to a single differential
equation with respect to the cloud shape R(θ ):

h∗2 − h2 = χ
(hr − hθR

′/r)2

1 + (R′/r)2
. (19)

Analysis shows that Eq. (19) gives only a few percent deviation
for the cloud shape as compared to the full system of
Eqs. (16)–(18).

V. CONCLUDING REMARKS

Both visualization experiments and the local thermody-
namic equilibrium model have allowed us to reveal the extreme
importance of the condensation phase transition on the sizes
and shapes of nanoparticle clouds formed around a magne-
tized microsphere. Depending on the initial concentration of
nanoparticles φ0 (or nanoclusters, �0) on their size and on
the intensity of an external uniform magnetic field H0, there
can be three different regimes of nanoparticle accumulation
around the microsphere, governed by the two dimensionless
parameters α0 = (μ0H

2
0 Vc)/(2kT ) and �0. These regimes

occupy certain areas in the phase diagram α0-�0, shown
in Fig. 18. In the first regime, at relatively low parameters
α0, the nanoclusters do not condensate to a liquid state
and their ensemble is in the gas state in all points around
the microsphere. In this case, the nanocluster concentration

FIG. 18. (Color online) α0-�0 phase diagram showing the three
regimes of nanoparticle and nanocluster accumulation around a
spherical magnetic collector. In regime I, the nanocluster suspension
is in the gas state at each point; in regime II, the suspension is in the
gas state at infinity but is condensed into a liquid state in the vicinity
of the microsphere; in regime III, a gas-liquid phase separation takes
place in the whole volume of the nanocluster suspension.

around a microsphere varies smoothly with distance and is
generally not very different from the initial concentration
�0, so the concentration field can be easily found with
the help of the Boltzmann distribution. This regime, with
negligible interactions between particles, was extensively
studied previously (see, for instance, Ref. [14]) and is not
considered in the present work. In the second regime, magnetic
interactions between the nanoclusters become strong enough
to induce a condensation phase transition near the microsphere,
the nanocluster ensemble still being in the gas state far from
the microsphere. In this regime, the nanoclusters are condensed
into finite-sized “clouds” in an infinite volume suspension, and
the cloud size increases progressively with both the initial
concentration �0 and the parameter α0 (or, alternatively,
with the external field intensity H0 and the nanoparticle and
nanocluster size). In the third regime, magnetic interactions
become quite strong so that the condensation phase transition
occurs not only in the vicinity of the microsphere but also
at infinity from it, where highly concentrated and elongated
droplets of nanoclusters appear. In an infinite volume suspen-
sion, the migration of these droplets towards the microsphere
is an infinite process resulting in an infinite growth of the
nanocluster clouds around the microsphere without reaching
local thermodynamic equilibrium. In a real situation of a large
but finite volume suspension, the migration of nanoclusters
stops when the surrounding medium becomes sufficiently
dilute and the thermodynamic equilibrium is established
between the dilute (outside the cloud) and the concentrated
(inside the cloud) phases.

We have proposed two different theoretical models to
describe the concentration distribution and the nanoparticle
cloud size and shape for the last two regimes. Both models
consider phase transitions in the nanocluster ensemble in
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slightly different ways. The local thermodynamic equilibrium
approach was employed for the second regime, for which the
gas-liquid phase equilibrium was calculated along the whole
cloud interface. In this approach, we neglected the magnetic
pressure jump on the gas-liquid interface such that the cloud
surface corresponded to the surface of a constant magnetic
field, at which the phase transition occurs. The pressure
balance model was proposed for the case of finite volume
nanocluster suspension in the third regime. We included
the magnetic pressure jump into this model but neglected the
presence of nanoclusters outside the cloud when calculating its
shape. This second model captures reasonably well the highly
elongated shapes of nanoparticle clouds. However, the quan-
titative agreement between theory and experiments remains
rather poor. Nevertheless, the models allow us to predict the
essential feature of the magnetic haloing phenomenon—the
existence of the regimes of finite and infinite growth of
nanoparticle clouds as well as a set of parameters (α0,�0)
at which the transition between these regimes occur. Further

improvements of the theory will be done by a combination of
the thermodynamic and the pressure balance model as well as
by the establishment of a more precise equation of state which
would correctly account for chains or droplet formation in a
bulk nanocluster suspension.

The results of the present paper could be useful for the fur-
ther development of bimodal magnetorheological fluids used
in smart hydraulic devices and of magnetic separation tech-
nologies used in bioanalysis and water purification systems.
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