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Nonequilibrium condensation and coarsening of field-driven dipolar colloids
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In colloidal suspensions, self-organization processes can be easily fueled by external fields. Here we consider
monolayers of particles with permanent dipole moments that are driven by rotating external fields. In recent
experiments, it has been shown that the particles in such systems self-organize into two-dimensional clusters.
Here we report results from a computer simulation study of these pattern forming systems. Specifically, we employ
Langevin dynamics simulations, Brownian dynamics simulations that include hydrodynamic interactions, and
Wang-Landau Monte Carlo simulations of soft spheres interacting via dipolar potentials. We investigate at which
field strengths and frequencies clusters form and explore the influence of hydrodynamic interactions. We also
examine the phase behavior of the equilibrium system resulting from a time average of the colloidal interactions
in the rotating field. In this way we demonstrate that the clustering described in the driven system arises from a
first-order phase transition between a vapor and a condensed phase.
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I. INTRODUCTION

Self-assembly and self-organization processes of colloidal
particles are topics that have recently been receiving much
attention. Indeed, such systems display a multitude of equilib-
rium and nonequilibrium self-assembled structures, examples
being lane formation [1,2], shear banding [3], the coiling
up of magnetic chains [4], and the wide range of patterns
observed in particles immersed in liquid crystals [5]. Here,
we are particularly interested in colloidal systems involving
dipolar interactions. Prime examples of the resulting self-
assembled structures include chain formation in constant
external fields [6–8], layer formation in rotating fields [7–10],
and the structure formation of colloidal particles in triaxial
fields [11–13].

Until recently, most works on self-organization under the
influence of time-dependent external fields focused on induced
dipolar particles. A noteworthy exception is a paper by
Murashov and Patey in which layer formation of rotationally
driven colloidal particles carrying a permanent dipole moment
was investigated [14].

A particularly interesting self-organization process occurs
when colloidal particles are exposed to rotating fields in a
quasi-two-dimensional geometry. In this situation, the external
fields are found to induce the formation of two-dimensional
clustered structures. Not only does this work for particles
in which a dipole moment can be induced [15–17], but
also for particles carrying a permanent dipole moment. This
was recently shown by Weddemann and coworkers in an
experimental study [18,19].

In the present paper, we want to pick up on this phenomenon
and provide a novel interpretation of the two-dimensional
cluster formation process. Specifically, we will show that this
self-organization process is a consequence of an equilibrium
phase transition between a vapor and a condensed phase.

We investigate the colloidal system by making use of
different computer simulation techniques. In these simulations,
we use dipolar particles in a quasi-two-dimensional geometry
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to model the system. This means that the dipoles can rotate
freely in all the spatial directions while the translational motion
is restricted to a two-dimensional plane. We use Langevin
dynamics simulations to understand the dynamical properties
of the system and Wang-Landau Monte Carlo simulations
to look into its phase behavior. Additionally, to assess the
influence of the solvent on the system, we take it implicitly
into account by employing Brownian dynamics simulations
that include hydrodynamic interactions.

This paper is organized as follows: After introducing the
model and the different simulation techniques, we first discuss
the full nonequilibrium “phase” diagram indicating the region
of cluster formation in the domain of frequency and strength
of the external field at constant equilibrium thermodynamic
parameters. In a next step, we investigate the influence of
hydrodynamic interactions on the formation of clusters. Then
we present the principal point of this paper: We show that the
nonequilibrium cluster formation is essentially an equilibrium
phase transition. To do this, we calculate an equilibrium phase
diagram, in the construction of which an effective non-time-
dependent interparticle interaction is used, and examine the
growth of the characteristic domain size of the clusters. The
paper is then closed with a brief summary and conclusions.

II. MODEL AND SIMULATION METHODS

To model the (dipolar) colloidal particles in our simulations
we use a dipolar soft sphere (DSS) potential, which is
comprised of a repulsive part U rep and a point dipole-dipole
interaction part UD:

UDSS(rij ,μi ,μj ) = U rep(rij ) + UD(rij ,μi ,μj ). (1)

In Eq. (1), rij is the vector between the positions of the particles
i and j , rij its absolute value, and μi is the dipole moment of
the ith particle. The dipolar and repulsive interaction potentials
are given by

UD(rij ,μi ,μj ) = −3(rij · μi)(rij · μj )

r5
ij

+ μi · μj

r3
ij

(2)
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and

U rep(r) = USS(r) − USS(rc) + (rc − r)
dUSS

dr
(rc), (3)

respectively. Here, U rep is the shifted soft sphere potential,
where

USS(r) = 4ε

(
σ

rij

)12

(4)

is the unshifted soft sphere (SS) potential for particles of
diameter σ .

Note that we use the DSS potential to model the dipolar
particles instead of the frequently used Stockmayer potential
(see, e.g., [20]). The latter has an additional short-ranged
isotropic, attractive part, modeling the van der Waals interac-
tion, which has a considerable influence on the phase behavior
of the system. In particular, it can induce a vapor-liquid
phase transition [21,22] that has so far not been found in
dipolar systems lacking a spherically symmetric, attractive
interaction [23]. Here we are interested in the effects of the
dipolar interactions on the phase behavior alone, which is why
we discard the short-ranged attractive part.

We investigate the system by making use of different
simulation techniques. First, we employ Langevin dynamics
(LD) simulations [14,24]. The corresponding equations of
motion for particles of mass m and moment of inertia I are

mr̈i = FDSS
i − ξT ṙi + FG

i , (5)

I ω̇i = TDSS
i + Text

i − ξRωi + TG
i , (6)

where ξT and ξR are the translational and rotational friction
coefficients, respectively, and

FDSS
i = −∇UDSS

i , (7)

TDSS
i = −μi × ∇μi

UDSS
i , (8)

Text
i = μi × B. (9)

Consistent with earlier simulation studies of ferrofluidic
particles [10,14], ξT = 13.5

√
mε/σ 2, ξR = 0.45

√
mεσ 2, and

I = 0.0025mσ 2 were used. Furthermore, ωi is the angular
velocity of particle i, FG

i and TG
i are random Gaussian forces

and torques with zero mean〈
FG

iα(t)
〉 = 0, (10)

〈
T G

iβ (t)
〉 = 0, (11)

whose variance is related to the friction coefficients via〈
FG

iα(t)FG
jβ(t ′)

〉 = 6kBT ξT δij δαβδ(t − t ′), (12)

〈
T G

iα (t)T G
jβ(t ′)

〉 = 6kBT ξRδij δαβδ(t − t ′) (13)

(α,β = x,y) [14]. In Eq. (9), the external field B is homoge-
neous, rotates in the plane of the dipolar monolayer, and is
given by

B(t) = B0(ex cos ω0t + ey sin ω0t), (14)

where ω0 is the frequency of the field and B0 its strength. The
equations of motion (5) and (6) were integrated with a leapfrog

algorithm [25] using a time step of 	t = 0.0025(mσ 2/ε)1/2

and 4900 or 1225 particles, respectively.
Further, to investigate the influence of a solvent within our

implicit model, we use a Brownian dynamics (BD) simulation
that includes hydrodynamic interactions between the particles.
These interactions are incorporated up to third order in
the diffusion tensor for the translation-translation coupling,
the rotation-rotation coupling, and the translation-rotation
(and vice versa) coupling [26,27]. The tensor describing
the translation-translation coupling is the well known Rotne-
Prager tensor. The other couplings incorporate the influence
of the additional rotational degrees of freedom. The time
evolution equations that were used can be found in [27] and
we used 324 particles in these simulations.

Finally, to investigate the equilibrium phase behavior of
the system [based on a time-averaged potential, see Eq. (16)],
we use Monte Carlo (MC) simulations in the grand canonical
ensemble. In general, first-order phase transitions are plagued
by a large free energy barrier separating both phases, making
unbiased sampling very inefficient. In order to overcome the
barrier we use an extension of a method proposed by Wang and
Landau [28]. In the standard Wang-Landau method the entire
density of states is sampled, which is infeasible in dipolar
systems due to the computational cost. To account for this we
fix the temperature and chemical potential in our simulations
to limit the number of accessible states. Furthermore, we
introduce an additional weight function to the Metropolis MC
sampling algorithm. This function is computed on the fly and
adapted in such a way that it improves the sampling of states
which have not been visited sufficiently often. This allows us to
sample both phases efficiently despite them being separated by
a free energy barrier. Details of the method applied to dipolar
systems in two dimensions can be found in [29].

In the case of LD and MC simulations we deal with
the long-ranged dipolar interactions by using the Ewald
summation method [30]. In our BD simulations (with and
without hydrodynamic interactions included), on the other
hand, we only consider a single simulation box filled
with dipolar particles. This suffices to investigate the in-
fluence of the hydrodynamic interactions on the cluster
formation.

III. RESULTS

In this section, we present numerical results from the
various simulation techniques described in Sec. II. We begin
with results from the Langevin dynamics simulations, the
goal being to determine the conditions (i.e., frequencies,
field strengths) for which cluster formation occurs. We also
introduce the equilibrium model resulting from a time-average
of the interactions in the driven system. In Sec. III B, we
focus on the influence of hydrodynamic interactions in the
field-driven system. Sections III C and III D are then devoted
to the question of whether the clustering phenomenon is indeed
related to a condensation transition of the equilibrium model.
To this end we determine a phase coexistence curve [Sec. III C]
and, as a final step, investigate the growth of domain sizes
(within the two-phase region of the phase diagram) as function
of time.
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FIG. 1. Snapshots showing a system (ρσ 2 = 0.3, kBT /ε = 1.0)
in (a) zero field and (b) exposed to a rotating field of strength
(ε/σ 3)1/2B0 = 50.0 and frequency (mσ 2/ε)−1/2ω0 = 20. Snapshot
(b) was taken at time t = 375(mσ 2/ε)1/2 after the start of the
simulation. 4900 particles were used. Note that the configuration
shown in (b) is not in equilibrium [cf. Sec. III C].

A. Synchronization and cluster formation

A snapshot of a quasi-two-dimensional system (ρσ 2 = 0.3,
kBT /ε = 1.0) of strongly coupled dipolar particles (λDD =
μ2/kBT σ 3 = 9) at zero field is shown in Fig. 1(a). As is typical
for such dipolar systems the particles align in a head-to-tail
configuration, which, in a two-dimensional geometry, results
in the formation of chains and rings [31].

If we expose such a strongly coupled system to a rotating
in-plane field of sufficient strength and frequency, we observe
that the particles agglomerate into two-dimensional clusters.
An example of this can be seen in Fig. 1(b). The observed
clustering behavior already indicates that there are attractive
interactions in the system, which play a crucial role. The origin
of these interactions can be rationalized as follows: Assume
that the particles do not move in space and that they rotate
synchronously with the field, i.e., follow the field at constant
phase difference δ:

μi(t) = μj (t) = μ(ex cos(ω0t + δ) + ey sin(ω0t + δ)). (15)

Averaging the dipolar interaction potential over one rotational
period of the field then yields [32]

U ID(rij )

= ω0

2π

∫ t0+2π/ω0

t0

UD(rij ,μi(t),μj (t))dt = − μ2

2r3
ij

. (16)

Clearly, for (16) to be a good approximation to the true
interparticle interaction, it is crucial that essentially all the
particles follow the field. An extensive analysis of this
synchronization behavior of the dipolar particles with the field
in three dimensions can be found in [10,33].

To systematically investigate the appearance of synchro-
nization and clustering we scanned a wide range of frequencies
and field strengths in a system containing 1225 particles.
We consider a system as clustered if the particles have on
average more than 2.3 neighbors within a distance of 1.7σ

from their center. The latter value was used, since it is slightly
larger than the typical distance between neighboring particles
in a clustered system at high frequencies of the field. This
was found by looking at the first minimum of respective pair
correlation functions. The fact that we require 2.3 neighbors on
average ensures that two-dimensional aggregates are counted

-
-

-

FIG. 2. Synchronization behavior and cluster formation depend-
ing on frequency ω0 and strength B0 of the field. The density and
temperature of the system used were ρσ 2 = 0.2 and kBT /ε = 1.0,
respectively.

as clusters while chainlike structures are disregarded. Using
larger values for the required number of neighbors results in a
shift of the boundary between the synchronous region and the
clustered region to higher frequencies. Responsible for this is
the fact that the clusters become tighter with rising frequencies
due to the effective interaction between the particles becoming
more isotropic.

The results of this investigation of the space of the field
parameters can be seen in Fig. 2. Depicted are three distinct
regions, denoted “synchronous–not clustered,” “synchronous-
clustered,” and “not synchronous–not clustered.” The first
region is comprised of systems in which the particles rotate
synchronously with the field but do not form clusters. Within
this region, chains in the direction of the field can be observed
at low frequencies while spatial inhomogeneities, i.e., very
loose clusters, begin to appear at slightly larger frequencies.
As also becomes apparent here, a minimal B0 is required for
the field to align the particles with itself.

In the second region, the synchronous rotation continues
but is now accompanied by the formation of two-dimensional
clusters. This indicates that the effective interparticle potential
becomes sufficiently isotropic within this region to be reason-
ably described by the averaged dipolar potential (16).

In the third region, we find neither synchronization nor
cluster formation. Clearly, the lack of synchronization is
the direct cause of the breakdown of cluster formation
[cf. Eq. (16)]. The loss of synchronization occurs, since the
torques on the particles due to the external field become unable
to overcome the torques due to the rotational friction (similarly
to what is seen in three dimensions [10]).

In a previous publication [10], we have presented a similar
diagram for layer formation of rotationally driven dipolar
particles in three dimensions. The mechanism leading to the
formation of layers is quite similar to the one described here
resulting in a ω0-B0 diagram that resembles the one depicted
in Fig. 2. Synchronization breaks down at high frequencies
close to a critical frequency ωc(B0) (cf. [10]), leading to the
breakdown of layer formation and cluster formation. Also,
the strength of the field needs to be sufficiently high to align
the particles with itself. A difference can be found in the
minimal driving frequency that is required for the respective
pattern formation to occur: Layers in three dimensions appear
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at smaller frequencies than clusters do in two dimensions. This
implies that symmetry breaking perpendicular to the field is
less dependent on the frequency of the field than within its
plane.

B. Influence of hydrodynamic interactions

Given the clustering scenario and our explanations so far,
it is important to ask to which extent the LD simulations
can describe the dynamics of the real colloidal system. The
latter includes, by definition, a solvent. The rotating external
field, which constantly generates rotational motion of the
particles, will create flow fields that can result in considerable
motion of the particles. This might influence the cluster
formation phenomenon due to the following reason: The
averaged potential (16) is only valid as an approximation to
the true interparticle interaction if the translational motion of
the particles during one rotational period of the field is small.

Hence, in order to find out whether cluster formation
persists when hydrodynamic interactions are present, we
perform BD simulations that take these into account. However,
to restrict the numerical effort, we consider here a system
without periodic boundaries; i.e., the particles are confined to
a single simulation box. The particles interact with the walls
of the simulation box via a repulsive, soft wall potential [34].
The influence of the walls on the hydrodynamic interactions
is neglected.

We considered a number of state points (ρσ 2 = 0.1,0.2,0.3,
kBT /ε = 1.0,1.8 at ω0σ

2/D0 = 250, B0(σ 3/ε)1/2 = 80) in
our BD simulations with and without hydrodynamic inter-
actions included. Note that the frequency was reduced with
the diffusion constant D0 in these simulations, which makes
a comparison to the frequencies used in the LD simulations
difficult. As usual, D0 is given by D0 = kBT /3πησ , where
η is the viscosity of the solvent. Further a very high field
strength was chosen to ensure synchronization of the particles
with the field [see Fig. 2]. We found that cluster formation
occurs both with and without hydrodynamic interactions at all
the considered densities and temperatures, with a single cluster
eventually forming in the simulation box. This can be seen in
Fig. 3, where we show snapshots of the time evolution of a
rotationally driven system. The snapshots in the top row show
a system in which hydrodynamic interactions are not taken
into account, while hydrodynamic interactions are present in
the snapshots in the lower row with the systems being identical
otherwise. In both cases, no periodic boundary conditions were
used. Another important point that is illustrated by Fig. 3 is
that the cluster formation process is considerably accelerated
by the hydrodynamic interactions. At the intermediate time
(t ′ = tD0/σ

2 = 10.8), only a single cluster remains in the
hydrodynamically interacting system [Fig. 3(e)], while it takes
much longer for the not hydrodynamically interacting system
to reach the same state [cf. Figs. 3(b) and 3(c)].

Accelerated cluster formation is a direct consequence
of both the translation-translation and rotation-translation
coupling. A particularly important role in this context is played
by the translation-translation coupling. This can be inferred
from selectively switching off the different hydrodynamic
couplings. Further, note that if hydrodynamic interactions are
present, the cluster rotates rapidly around its center, which

FIG. 3. Snapshots of a system ((εσ 3)1/2μ = 3, kBT /ε = 1.0,
ω0σ

2/D0 = 200, B0(σ 3/ε)1/2 = 80) at different times without (top)
and with (bottom) hydrodynamic interactions. The snapshots in the
first column were taken at t ′ = tD0/σ

2 = 2.5 and the ones in the
second column at t ′ = 10.8 after the start of the simulation. The ones
in (c) and (f) correspond to the state of the system at t ′ = 138.5 and
43, respectively. These simulations do not include periodic boundary
conditions. Instead, the particles are confined to a simulation box that
is very large compared to the space that the particles are initially put
into, ensuring minimal particle-wall interactions. Consequently, the
snapshots do not show the entire simulation box but are centered on
the clusters.

is not the case if these interactions are absent. Here, the sole
cause is the hydrodynamic rotation-translation coupling. Thus,
we can conclude that the hydrodynamic interactions affect the
(rotational) cluster motion but do not hinder the particles in
the cluster formation process.

C. Relation to condensation

Now we ask to what extent the clustering behavior of the
nonequilibrium, yet fully synchronized, field-driven system
can be understood by that of a system interacting via Eq. (16),
i.e., the effective potential U ID. At sufficiently high strengths
and frequencies of the field, this potential can be expected to
describe the interaction between the particles very well without
including an explicit time dependence. This allows us to
test the following hypothesis: The observed cluster formation
in the driven system stems from an equilibrium, first-order
phase transition between a vapor and a condensed phase that
arises due to the effective interparticle interaction U ID. To
this end, we perform Wang-Landau Monte Carlo simulations
of a system interacting via the effective potential U ID [35]
combined with the repulsive potential U rep [see Eq. (3)].

The key result we obtained from these simulations is the
phase diagram presented in Fig. 4. The presence of the binodal
in the phase diagram confirms our hypothesis: The nondriven
system does indeed have an equilibrium phase transition
between a vapor and a condensed phase.

Now we compare this phase diagram with the thermody-
namic state point of the driven nonequilibrium system that
is shown in Fig. 1(b). We find that the latter cannot be
directly placed into Fig. 4, since its temperature is smaller
than the ones displayed. However, the temperature of the state
point (ρσ 2 = 0.3, kBT /ε = 1) is considerably smaller than
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FIG. 4. Phase diagram in the T -ρ domain of a system interacting
via the effective potential U ID [see Eq. (16)] and the repulsive
potential U rep [see Eq. (3)] at (εσ 3)1/2μ = 3. The symbol Tc

(indicated by the triangular mark) denotes the critical temperature,
the dots correspond to the most often sampled densities, and the error
bars to the width of the sampled distributions (cf. Ref. [29] for details).
The solid line corresponds to the binodal representing coexisting gas
and liquid states.

the critical temperature Tc, while its density is very close to
the one of the critical point. This implies that the state lies well
within the two-phase region of the phase diagram. Note that
there are very few particles in between the clusters in Fig. 1(b).
However, this is simply due to the temperature being low in
relation to the critical temperature Tc. These findings suggest
that the cluster formation observed in the (fully synchronized)
field-driven system is in fact spinodal decomposition. We will
come back to this point in Sec. III D.

Given our equilibrium binodal in Fig. 4, it is interesting
to briefly compare our results with corresponding ones from
a recent MC study of Smallenburg and Dijkstra [36]. These
authors calculated full phase diagrams of systems of particles
interacting via the effective potential U ID in three dimensions.
Consistent with our findings in two dimensions, the authors
found a vapor-liquid coexistence region.

Additionally, Smallenburg and Dijkstra uncovered an ad-
jacent vapor-solid coexistence region [36]. We suspect that
a corresponding region also exists in our two-dimensional
system, although this is not easily shown without free energy
calculations. We also suspect that the type of coexistence
(vapor-liquid or vapor-solid) would influence the structure
of the clusters within the two-phase region. To investigate
this, we performed test simulations of systems (interacting
via U ID) at several state points within the binodal of the
phase diagram [Fig. 4]. Two exemplary snapshots are given
in Fig. 5. Visual inspection suggests a solid-like (hexagonal)
order at a temperature of kBT /ε = 0.7 [Fig. 5(a)], but not
at kBT /ε = 1.5 [Fig. 5(b)]. To measure the degree of order
quantitatively, we have calculated the hexagonal bond order
parameter

ψ6 = 1

N

N∑
n=1

1

|Nn|

∣∣∣∣∣
∑
k∈Nn

exp(i6πφnk)

∣∣∣∣∣ (17)

for these two systems. For the one at kBT /ε = 0.7, we found
ψ6 ≈ 0.78, which is substantially higher than ψ6 ≈ 0.53,
which we found for the kBT /ε = 1.5 system. In Eq. (17),

FIG. 5. Snapshots of (parts of) systems interacting via the
effective potential U ID at two different temperatures and density
ρσ 2 = 0.3. The temperature of the system depicted in (a) is kBT /ε =
0.7, the one of the system in (b) kBT /ε = 1.5. The snapshots were
taken at time t = 262.5(mσ 2/ε)1/2 after the start of the simulation.

N is the number of particles in the simulation box, Nn is the
set of neighbors of particle n, and φnk is the angle between
a fixed but arbitrary axis and rnk . Further, two particles are
considered neighbors if rnk is smaller than the distance at
which the first minimum of the pair correlation function is
located. The relative difference in hexagonal order between
the two systems indicates that the one at kBT /ε = 0.7 is
indeed inside a vapor-solid coexistence region, while the lack
of order in the kBT /ε = 1.5 system points to it still being
within the vapor-liquid coexistence region. The temperature
kBT /ε = 1.0 discussed before [Figs. 1 and 2] lies somewhere
in between. However, more precise statements on the location
of the triple point (or the very existence of a stable liquid
phase) are impossible at this point.

D. Dynamic coarsening

We now come back to our conjecture in Sec. III C
that the clustering process observed in the driven system
corresponds to spinodal decomposition. To test this hypothesis,
we investigated the time evolution of the cluster sizes �. For
phase separating systems it is well established that � exhibits
power law behavior [37], i.e., � ∝ tα , with the corresponding
exponents depending on the growth stage. Such a behavior
is also seen in molecular dynamics (MD) simulations. In
particular, domains with growth proportional to t1/2 [38,39]
and t [40] have been identified.

These power laws are universal in MD simulations but they
do not necessarily apply to LD simulations with their modified
equations of motion. This was shown, e.g., by Lodge and Heyes
for the case of BD [41]. At the same time, however, the clusters
in Ref. [41] were still found to grow with a power law. To
check for the existence of cluster growth with a power law in
non-overdamped BD simulations, i.e., LD simulations, we first
investigated a “reference system” whose equilibrium behavior
is well studied. Specifically, we considered a two-dimensional
Lennard-Jones system at σ 2 = 0.3, kBT /ε = 0.45 with the
critical point being at ρσ 2 ≈ 0.335, kBT /ε ≈ 0.533 [42].
Investigating the domain size, we did indeed find a power
law dependence � ∝ tα with α ≈ 0.30. Note that the cluster
size was obtained by measuring the distance at which the pair
correlation function assumes a value of one for the first time if
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FIG. 6. Cluster growths for a system interacting via the effective
potential and a system that is driven by an external rotating field
at density ρσ 2 = 0.3 and temperature kBT /ε = 1.5 (state inside
the coexistence region of Fig. 4). The strength and frequency of
the external field are (ε/σ 3)1/2B0 = 50 and (mσ 2/ε)−1/2ω0 = 20,
respectively.

the radial bins are taken to be larger than the particle diameters
(cf. Ref. [43]).

Similarly, we checked the cluster growth for a driven
dipolar system and a system interacting via the potential
U ID. In the simulations we used 4900 particles and a density
and temperature of ρσ 2 = 0.3 and kBT /ε = 1.5, respectively,
which put the systems well inside the coexistence region of
Fig. 4. The domain sizes over time that were extracted from
the simulations are shown in Fig. 6. As can be seen, the cluster
sizes of these two systems are very similar at any given time
(on average the values deviate about 10% from each other). In
particular, the characteristic domain sizes grow with a power
law � ∝ tα with α being equal to 0.36 in both cases. We note
that this is almost identical to the Lifshitz-Slyozov growth law
(� ∝ t1/3) [37].

From these two results we conclude that the nonequilibrium
system does indeed undergo spinodal decomposition. First,
the cluster growth proceeds with a power law, which is
typical within the spinodal region. Second, the growth behavior
remains unchanged even if the interactions between the driven
dipoles are replaced with the effective ones. This emphasizes
the similarity between those two systems and indicates that
the phase diagram for the effective system in Fig. 4 remains
significant for the driven and synchronized system.

Note that hydrodynamic results are not included in Fig. 6.
As pointed out in Sec. III B, we did not use periodic
boundary conditions in these simulations. This makes an
accurate determination of the cluster growth in the presence of
hydrodynamic interactions very difficult.

IV. SUMMARY AND DISCUSSION

In this paper we have investigated the formation of two-
dimensional aggregates in monolayers of dipolar particles that
are driven by rotating external in-plane fields. The first result
of this paper is a nonequilibrium “phase” diagram, which
shows the regions of synchronization and cluster formation
in the ω-B0 domain. At high frequencies the synchronization
of the particles with the field breaks down, which results
in a breakdown of cluster formation. Similarly, we do not
find cluster formation at low frequencies. Here, the effective

interaction between the particles is not well enough described
by U ID, since the particles move considerably during one
rotational period of the field. This changes in between those
frequencies, where the particles rotate synchronously and
sufficiently fast, which leads to the formation of clusters.

Next, we investigated the stability of the clustering phe-
nomenon when hydrodynamic interactions are present. In our
simulations, we found the phenomenon to persist despite
these interactions. In fact, the cluster formation seems to
proceed at an even faster pace with these interactions included.
We attribute this to a combination of the hydrodynamic
translation-translation and rotation-translation coupling. The
former seems to accelerate the formation of clusters while
the latter leads to the quick formation of a single cluster
in the center of the simulation box.

Test simulations indicate that these interactions have ad-
ditional consequences: Compared to a nonhydrodynamically
interacting system, they seem to allow for the formation of
clusters at lower driving frequencies and therefore affect the
nonequilibrium “phase” diagram in Fig. 2. To study the precise
influence of the hydrodynamic interactions is outside of the
scope of this paper, but would be very illuminating in its own
right.

We concluded our analysis with the main result of this
study: We established the clustering phenomenon to be a
consequence of a phase transition between a vapor and a
condensed phase. This was done in two steps: We began by
uncovering a phase transition via Wang-Landau MC simula-
tions in a system interacting via the effective potential U ID.
Recall that this potential describes the interactions between
the particles very well in the driven system at sufficiently high
frequencies of the field. In a next step we examined the domain
growth of the driven system within the binodal region of the
phase diagram. As expected for spinodal decomposition, we
found the characteristic cluster size to grow with a power
law. Additionally, it essentially agrees with the domain growth
of the nondriven system interacting via the effective potential
U ID. These facts lead us to conclude that the clustering process
corresponds to the pattern formation occurring inside the
coexistence region of a vapor-liquid phase transition.

Given these findings, it is interesting to compare them
to recent experimental results. Indeed, cluster formation in
monolayers resulting from a rotating external field has been
observed multiple times [15–19]. In most of these publications
induced dipolar particles are brought to self-assemble into
two-dimensional aggregates. The only paper in which particles
with a permanent dipole moment were used (Ref. [18]) features
a dipole-dipole coupling strength (λDD = μ2/kBT σ 3) that
is dominated by the dipole-field coupling strength (λDF =
μB0/kBT ). There, the ratio λDF/λDD is about 6, which is larger
than the largest ratio that appears in Fig. 2. Consequently, we
expect the particles in [18] to rotate synchronously with the
field, resulting in the effective interaction U ID and the observed
cluster formation.

The clusters found in the literature are typically hexagonally
ordered. In our simulations this becomes more and more
true with increasing frequency and strength of the field as
well as with decreasing temperature. The main reason for the
difference between simulations and experiment is likely the
difference in particle size: Micrometer-sized particles were
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used in Refs. [15,17–19], resulting in large dipole-dipole
coupling strengths λDD. This reduces the significance of
the thermal motion compared to particles of smaller size,
which usually have smaller coupling strengths. Indeed, at low
temperatures, considerable hexagonal order [cf. Fig. 5] can
be observed in our simulations. To have a full phase diagram
of the effective system would be very helpful in this context:
It would allow for a precise determination of the onset of
hexagonal order in the system and the general structural order
of the colloidal suspension at any given state point (cf., e.g.,
Ref. [36] for details on how to determine the phase diagram via
free energy calculations). This will be the subject of a future
study.

Further, the driving frequencies used in the publications
[15,17–19] are considerably smaller than the ones used here.
This can once again be explained by the size of the particles:
Larger particles typically have larger friction coefficients,
which, as test simulations show, result in cluster formation at
lower frequencies of the field. In fact, if we assume the particles
to be about 1 μm in diameter with a density of 5 g/cm3, we find
a driving frequency of ω∗

0 = 10 to correspond to a frequency
of about 10 kHz at room temperature (T = 293 K).

In this paper, we used specific friction coefficients
in our Langevin simulations (ξT = 13.5

√
mε/σ 2, ξR =

0.45
√

mεσ 2). As suggested in the previous paragraph, the
occurrence of cluster formation is, however, not exclusive
to those. Indeed, in test simulations we found clusters
at a multitude of different friction coefficients (e.g., at
ξT = 13.5

√
mε/σ 2, ξR

√
1/mεσ 2 = 0.1,0.45,1,5 and ξR =

0.45
√

mεσ 2, ξT

√
σ 2/mε = 5,13.5,20,50,67.5). These sim-

ulations indicate that the larger the translational friction
coefficient, the smaller the frequency at which clusters begin

to form. Increasing the rotational friction coefficient, on the
other hand, seems to shift the breakdown of layer formation to
lower frequencies of the field.

The coarsening process investigated in this paper can
universally be observed in phase separating systems. Con-
densation transitions and spinodal demixing in binary fluids
or metallic alloys are popular examples of this. The process
reported in this study is exceptional, however, in that the
existence of a liquid-vapor phase transition in ordinary dipolar
soft and hard sphere systems without additional (van der Waals
like) attraction is still a hotly debated topic and one of the big
unresolved questions regarding these particles [23,44,45]. But
as shown here, such a phase transition can be induced via an
external time-dependent field.

The system considered in this study is driven and, con-
sequently, inherently in a nonequilibrium state. The dynamic
coarsening observed in spinodal decomposition, on the other
hand, is a process typically associated with nondriven systems.
It is, however, not unique to those. Two examples are active
Brownian swimmers performing a “run-and-tumble” motion
such as E. coli bacteria [46] and self-propelled rods [47], both
of which exhibit clustering behavior. With the ongoing and
rising interest in dynamics and nonequilibrium processes we
expect an increasing amount of systems to be uncovered that
are driven into cluster or pattern formation with behaviors
similar to the one described here.
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