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Parameters and scalings for dry and immersed granular flowing layers in rotating tumblers
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The scaling properties of the continuous flowing layer in a quasi-2D circular tumbler half filled with a
granular material are studied experimentally in the presence of three different interstitial fluids (air, water, and
glycerine). In the dry case, the dimensionless flowing layer thickness δ0/d scales with the dimensionless flow
rate Q∗

dry = Q/(d
√

gd), where Q is the flow rate, d is the particle diameter, and g is the acceleration due to
gravity, in agreement with previous studies. However, unlike previous studies, we show that the exponent for
the power-law relation between the two depends on the range of Q∗

dry. Meanwhile, the angle of repose increases
linearly with Q∗

dry. In the immersed case, the interstitial fluid changes the relevant time scales, which can be
accommodated by considering the fluid properties. The result is that there are two different expressions for the
dimensionless flow rate in the immersed flow; one corresponding to a free fall regime for a large Stokes number,
and one corresponding to a viscous regime at small Stokes number. On this basis, a single dimensionless flow rate
that incorporates both buoyancy and viscous friction is proposed. The effect of side walls is also investigated. For
dry flows and those immersed in water, the thickness of the flowing layer decreases while the slope of the free
surface increases as the gap separating the walls becomes smaller. For immersed granular flows with glycerine as
the interstitial fluid, however, the ratio of the thickness of the flowing layer to the bead diameter is independent
of the distance the between the side walls because viscous effects dominate.
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I. INTRODUCTION

Granular media are encountered in nature and in many
industries (e.g., formation of dunes, triggering of avalanches,
processing of grains, mixing of construction materials, and
pharmaceuticals) [1,2]. In the present work, we consider
noncohesive granular materials. Various aspects of the flow
of such materials have been explored in the past two decades
(see, e.g., [3–10]). A number of studies of dry granular flows
have focused on quasi-two-dimensional (quasi-2D) tumblers
because this system is a prototypical configuration that can
readily display a number of phenomena, including chaotic
mixing [5,7,11] and segregation (demixing) [12–15], the latter
occurring for bidisperse (or polydisperse) particles.

When a partially filled tumbler of radius R rotates, a thin
layer of fluidized material (the flowing layer), whose maximal
thickness (typically taken at its center) is denoted by δ0, forms
at the surface of the granular material (see Fig. 1). In quasi-2D
tumblers it is easy to set a steady flow rate Q by controlling
the rotation rate (angular velocity ω) of the device.

Orpe and Khakhar [16] have suggested that in this system,
the flowing layer thickness is essentially determined by two
parameters (see also [17]): the Froude number Fr = ω2R/g

and the ratio d/R, where g is the acceleration due to
gravity and d is the particle diameter. GDR MiDi [18], on
the other hand, using a portion of the data from [16,19]

*Present address: Department of Mechanical and Aerospace Engi-
neering, Princeton University, Princeton, New Jersey 08544, USA.
†To whom correspondence should be addressed; r-lueptow@

northwestern.edu

included herein as well as other data that is not directly
comparable, found a scaling relation between the thickness
of the flowing layer (measured in bead diameters) and an
appropriately dimensionless flow rate: δ0/d ∝

√
Q∗

dry, where

Q∗
dry = Q/(d

√
gd). The dependence of δ0/d on

√
Q∗

dry comes
about from estimating the flow rate from the shear rate as
Q ∝ γ̇ δ2

0 and γ̇ ∝ √
g/d [[18], Eq. (11)] in the portion of the

flowing layer with a streamwise velocity that is approximately
linear with depth. For the flow in a tumbler, Q∗

dry can be
shown to be a combination of Fr and d/R (see Sec. III). In
another set of experiments, however, Félix et al. [19] found
that δ0/d ∝ ωn, where n varies from 0.17 to 0.68 for R/d from
23.5 to 3700. This suggests a strong dependence of the flow on
the geometry, which is not accounted for by the dimensionless
parameters Fr and d/R. In fact, it is well known that side walls
have a significant impact on dry granular flows on a heap in
an inclined channel [20,21] and in rotating tumblers [22,23].

Determining the governing dimensionless parameters and
any existing scaling relationship between them, either theoreti-
cally or experimentally, is important when addressing scale-up
[24], that is, when one tries to extrapolate from experimental
results in the laboratory to industrial-scale granular flows.
Several studies have considered this issue [24–27], but most
have been restricted to dry conditions. Recently, there has
also been interest in the transition between dry, wetted, and
immersed granular flow [28], and the effect of the interstitial
fluid’s viscosity on the rate of mixing [29]. While scaling laws
have been proposed and verified for the dry case [18], we show
that they require modification in the immersed cases.

Jain et al. [30] studied the influence of the interstitial fluid on
the properties of granular flows in a quasi-2D tumbler. For large
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FIG. 1. Sketch of a half-full circular tumbler of radius R and
the flowing layer (its lower boundary denoted by the dashed curve),
which is characterized by its maximal thickness δ0 and its dynamic
angle of repose β0 (or free surface slope tan β0).

steel beads (d = 2 mm or 3 mm), they were able to collapse
the measured velocity profiles independently of the interstitial
fluid. For smaller steel beads (d = 1.2 mm), however, the
collapse under this scaling was not as good, indicating that
the interstitial liquid influences the flow of small beads. This
is consistent with results on granular avalanches in rotating
tumblers by Courrech du Pont et al. [31], who showed that the
different flow regimes for dry and immersed granular materials
can be characterized by a Stokes number and the grain
density–fluid density ratio. This approach accounts for the
properties of the fluid and the particles and has been extended
by Cassar et al. [32] to uniform flows down inclined channels.

In this study, we examine dry and immersed (wet) steady
granular flows in a quasi-2D tumbler of circular cross-section.
We perform experiments with air, water, and glycerine as the
interstitial fluid and over a broad range of particle diameters for
the monodisperse granular media. Our measurements focus on
the thickness of the flowing layer δ0 at the center of the tumbler
and on the dynamic angle of repose β0 (see Fig. 1) because
these two quantities are important in characterizing the flow.
For example, the thickness of the flowing layer combined with
the flow rate can be used to estimate the order of magnitude of
other important kinematic quantities such as the mean velocity
V ∼ Q/δ0 and shear rate γ̇ ∼ V/δ0. On the other hand, the
dynamic angle of repose is related to the properties of the
particles and the flow conditions (possibly on δ0 as well)
[20,21,33,34].

The goal of this paper is to highlight the similarities
and differences between dry and immersed granular flows.
In the process, we are able to develop a practical scaling
relationship for the flowing layer thickness in terms of the
system parameters. Additionally, we explore the effect of the
side walls on the proposed scaling relations.

II. EXPERIMENTAL METHOD

A. Setup

The experimental setup consists of a quasi-2D circular
tumbler of radius R = 11.4 cm with variable axial width:
W = 6.4 mm, 12.7 mm, 19 mm, or 25.4 mm. The tumbler
was half filled with particles and rotated about its axis by a

TABLE I. Characteristics of the particles used, where “g” stands
for glass and “s” for steel.

Batch Material ρp (g/cm3) d (mm)

g120 glass 2.5 0.119 ± 0.017
g370 glass 2.5 0.37 ± 0.037
g1 glass 2.5 1.16 ± 0.12
g2 glass 2.5 2.14 ± 0.07
s2 steel 7.5 2.49 ± 0.07

stepper motor with a gear drive controlled by a computer. The
device was capable of rotation rates ω from 0.0025 rpm up to
30 rpm. The tumbler was made of five plates in the following
order: one clear side wall, one chamber plate with a circular
cut-out used to set W , one clear side wall, one colored plate
(black or white), and one metal plate for mounting to a shaft.
For the side walls, we used static dissipative cast acrylic to
avoid electrostatic effects under dry conditions. The colored
plate was used to enhance the visualization of the free surface
of the flow. In the wet experiments, the chamber and the grains
were totally immersed in liquid, so silicone O-rings were used
to seal the chamber plate in order to avoid liquid leakage. The
tumbler was illuminated with a spotlight placed far enough
from the tumbler to prevent warming of the liquid inside.
Experiments were recorded with a JVC Everio X GZ-X900
camera at 30 frames/second with a resolution of 1920 × 1080
pixels.

We used glass and steel beads of different sizes with their
characteristics reported in Table I. Wet experiments were
performed using either water or glycerine as the interstitial
medium. The viscosity of glycerine changes with the ambient
temperature; for each experiment, the viscosity ηf was
measured with a falling ball viscometer and is reported in
Table II. We ensured that the viscosity did not change during
the course of an experiment. The fluid density ρf is less
sensitive to the ambient temperature and was measured once
with a 25 ml volumetric flask.

For each set of experiments, the rotation rate ω was
controlled so that the flow was in the rolling regime. The lowest
ω considered was the minimum rotation rate that still results
in a continuous flow (no intermittent avalanching). In the dry
case, the highest ω considered was the maximum rotation rate
giving a free surface that was at most weakly S-shaped. In the
immersed case, on the other hand, the upper limit on ω was
based on two different criteria. For very viscous fluids, the
maximum rotation rate was such that no particles were carried
off the flowing layer at its upstream end by the rotating wall;
that is, no particles were in suspension in the fluid in the top
half of the tumbler. Otherwise, the maximum rotation rate was
such that the free surface was weakly S-shaped or, in some
cases, such that no waves appeared on the free surface of the
flowing layer. Each experiment was repeated two or three times

TABLE II. Characteristics of the interstitial liquids considered.

Liquid ρf (g/cm3) ηf (cP)

water 0.998 ± 0.001 0.98 ± 0.03
glycerine 1.25 ± 0.01 840 ± 150
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in order to ensure reproducibility and provide error bars (one
standard deviation). Finally, for the smallest beads (g120),
a strip of waterproof sandpaper (with average roughness of
36 μm) was applied to the circumference of the tumbler to
prevent slippage of the particles with respect to the tumbler.
This did not alter the characteristics of the flowing layer.

B. Measurement technique

The flowing layer was characterized by its thickness δ0 and
the dynamic angle of repose β0, both measured at the center
of the tumbler. The thickness of the flowing layer was taken

FIG. 2. Illustration of the experimental measurement method for
W = 25.4 mm, g1 beads immersed in glycerin, and ω = 0.01 rpm.
(a) Single-frame exposure time �t = 1/30 s; no particles appear to
move. (b) Total exposure time �t = 70 s. The time-exposed motion
of the particles makes it possible to distinguish the flowing layer,
measure its thickness δ0, and find the free surface slope tan β0.

to be the distance between the free surface and the fixed point
in the laboratory frame of reference, which coincides with the
definition of Félix et al. [19]. To find the location of the fixed
point the total exposure time �t was increased numerically
by constructing an image in which pixel intensities are the
averages of pixel intensities from a sequence of N images [35]
giving �t = N × 1/30 s (see Fig. 2). This technique is useful
for visualizing streak lines [16] and is particularly suitable for
slow flowing layers because the exposure time can be easily
varied to match the flow. A similar approach was used by
Komatsu et al. [36] for visualizing creeping granular motion
on a heap and by Xu et al. [37] to measure the flowing layer
depth in a tumbler. Finally, the long-exposure image was used
to measure δ0 and β0 as shown in Fig. 2(b).

III. DIMENSIONAL ANALYSIS AND CHARACTERISTIC
TIME SCALES

Eight physical quantities characterize this system. The
tumbler is described by its axial width W , radius R, and
rotation rate ω. The particles’ properties are their diameter
d and density ρp. The interstitial fluid is characterized by its
dynamic viscosity ηf and its density ρf . Finally, the granular
flow is driven by gravity g. A dimensional analysis indicates
that five dimensionless parameters should uniquely describe
the properties of the flow.

Let us first restrict to a dry system in which ρp, ρf , and ηf do
not play a role. Then, one can form at most three dimensionless
groups, e.g.,

W

d
,

R

d
, Fr = ω2R

g
. (1)

As discussed in the Introduction, following GDR MiDi [18],
a dimensionless flow rate can be used instead of the Froude
number as the third parameter. The flow rate (per unit width)
in a quasi-2D circular tumbler is

Q = 1
2ω

(
R2 − δ2

0

) ≈ 1
2ωR2 (δ0 � R), (2)

where the last approximation holds for flowing layers with
small aspect ratios as is typically the case in the rolling
(continuous flow) regime [5]. The flow rate Q can be made
dimensionless by a quantity having units of length2/time. For
dry granular flow, all time scales must involve g so taking d

as the length scale, we have t = tdry = √
d/g. Therefore, the

dimensionless flow rate Q∗ is

Q∗
dry = (1/2)ωR2

d2/tdry
= (1/2)ωR2

d
√

gd
= 1

2
Fr1/2

(
R

d

)3/2

. (3)

Thus, a dry granular flow in a tumbler can be equivalently
characterized by either the parameters in Eq. (1) or

W

d
,

R

d
, Q∗

dry. (4)

For the immersed case, it is evident that a buoyancy
parameter �ρ/ρp = (ρp − ρf )/ρp must play a role [38]. In
addition, viscous effects must also be included. It has been
suggested [31,32] that dense granular flows immersed in a
liquid can be studied using the same framework as dry granular
flows by defining an appropriate characteristic time to be used
in making the flow rate dimensionless [recall Eq. (3)]. One
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way to gain insight into the relevant time scales is to consider
the force balance for an isolated particle falling vertically:

ρp

π

6
d3 dvp

dt
= �ρ

π

6
d3g + Fdrag. (5)

Here, vp is the velocity of the particle and Fdrag = −3πηf dvp

is the Stokes drag [[39], Sec. 4.9] experienced by the particle
[40]. Note that Eq. (5) differs from Courrech du Pont et al.
[[31], Eq. (1)], who use the apparent weight (π/6)�ρd3g sin β0

in order to describe macroscopic avalanches in a tumbler as
a succession of elementary falling processes in the direction
of the flow (hence, including sin β0). Equation (5) also differs
from Cassar et al. [[32], Eq. (3)], who express the first term on
the right-hand side in terms of a confining pressure instead of
the gravitational force.

The solution of Eq. (5) subject to vp(t = 0) = 0 is

vp(t) = d2g�ρ

18ηf

[
1 − exp

(
− 18ηf

d2ρp

t

)]
. (6)

For long times (t → ∞), the particle’s velocity is dominated
by the viscous drag, from which we see that

vp → d2g�ρ

18ηf

= d

tv
, tv = 18ηf

�ρgd
, (7)

giving us the viscous time scale tv . Now, notice that

18ηf

d2ρp

= tv
g

d

�ρ

ρp

= tv

t2
ff

, tff =
√

d

g

ρp

�ρ
, (8)

so tff can be considered as another characteristic time scale.
To understand its physical meaning, suppose that Fdrag = 0 in
Eq. (5); then

vp(t) = g�ρ

ρp

t. (9)

The time it takes to travel a distance d with this velocity vp

is such that vpt = d or t = √
dρp/(g�ρ) ≡ tff . Hence, tff

is the free fall time scale with no drag. For the dry system,
�ρ/ρp ≈ 1, and the free fall time scale reduces to the time
scale defined above Eq. (3): tff ≈ √

d/g = tdry.
Note that τ = t2

ff /tv = d2ρp/(18ηf ) can be considered as
a third time scale that governs the transition between a free fall
regime [Eq. (5) with Fdrag = 0] and a viscous regime [Eq. (5)
with only Fdrag on the right-hand side]. To determine which of
the two regimes the particle is in, we follow [31,32] and use a
ratio of time scales to define a Stokes number as

St = tff

tv
= d3/2

√
�ρgρp

18ηf

. (10)

From the definitions of tff and tv , we see that the flow regime is
free fall (no drag) if St > 1, whereas the regime is viscous (drag
dominated) if St < 1. Thus, Eq. (10) is similar to the definition
of the Stokes number in the multiphase flow literature [[41],
§1.2.5]; i.e., at low Stokes number the fluid–particle viscous
forces dominate, while at high Stokes number particle contact
forces dominate. The values of the dimensionless parameters
for our experiments are given in Table III.

Now, we can adapt the expression for the dimensionless
flow rate in Eq. (3) to an immersed granular flow in a tumbler.

TABLE III. The dimensionless parameters St and ρp/�ρ for the
particles and interstitial fluids used in our experiments. Elements of
the table are left empty when no experiments were carried out under
the corresponding conditions.

g120 g370 g1 g2 s2

air St 30 160 900 2300 8500
water St 0.45 2.4 14 34 150
glycerine St 0.01 0.04 0.18
air ρp/�ρ 1 1 1 1 1
water ρp/�ρ 1.7 1.7 1.7 1.7 1.15
glycerine ρp/�ρ 2 2 1.2

In the free fall regime (St > 1), we replace tdry by tff to obtain

Q∗
ff = ωR2ρ

1/2
p

2d3/2g1/2(�ρ)1/2
= 1

2
Fr1/2

(
R

d

)3/2(
ρp

�ρ

)1/2

, (11)

and, in the viscous regime (St < 1), we use tv to obtain

Q∗
v = 9ωR2ηf

�ρgd3
= 1

2
Fr1/2

(
R

d

)3/2(
ρp

�ρ

)1/2 1

St
. (12)

Note that the product Fr ρp/�ρ in Eqs. (11) and (12) also
appears in scaling relation for the transition to the centrifuging
regime in immersed granular flows in a tumbler [38]. We can
combine Eqs. (11) and (12) into a single dimensionless flow
rate:

Q∗ ≈ 1

2
Fr1/2

(
R

d

)3/2(
ρp

�ρ

)1/2(
1 + 1

St

)
. (13)

Clearly, Q∗ ≈ Q∗
v for St � 1, while Q∗ ≈ Q∗

ff for St � 1.
Of course, the analysis proposed here is simplistic. When

granular matter flows particles are not isolated, and we cannot
ignore the influence they have on each other. Furthermore, the
flow is confined meaning that the granular material acts as an
effective porous medium. Cassar et al. [32] take into account
the porosity of the medium by modifying the magnitude
of the drag force acting on a single grain. However, their
analysis does not immediately extend to tumblers; thus we do
not consider this effect. Nevertheless, this simplified analysis
based on the forces acting on a single sphere in an infinite
medium has been used successfully for other types of granular
flows [31,32], and, as we show below, it provides a useful
approach to analyzing our experimental data as well.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

A. Dry case

1. Thickness of the flowing layer

A number of studies in the literature report the thickness
of the flowing layer δ0 as a function of the various system
parameters. We have collected data from [16,19,30,42,43] to
supplement and compare to ours. The relevant parameters and
their ranges are summarized in Table IV.

From Eq. (1), we recall that the Froude number Fr = ω2R/g

is one parameter that can be used to describe the flow of a
granular material under dry conditions, and this parameter is
commonly used in the literature to classify the possible flow
regimes [5,44]. Figure 3 shows the dependence of δ0/d on
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TABLE IV. Experimental parameters under dry conditions for the present study and for the studies from the literature [16,19,30,42,43], the
data from which were used in generating Figs. 3 and 4.

Ref. Material d (mm) R/d W/d Fr × 104 Q∗
dry

[42] sugar balls 1.8 40 8 7–80 3–10
[42] BBs (steel) 4.5 15 3 70–200 3–6
[42] sugar crystals 1 70 15 10–40 10–20
[16] glass beads 2 20–80 10 20–640 5–130
[16] steel beads 2 20–80 10 20–640 5–90
[16] sand 0.8 50–200 10 20–640 8–360
[43] glass beads 1–3 50–140 3 0.4–4 1–10
[30] steel beads 1–3 50–120 3 0.4–4 1–13
[19] glass beads 0.07–2 25–3700 10–100 0.6–700 0.6–9500
here glass beads 0.012–2.1 53–960 5.5–210 0.03–155 1–500
here steel beads 2.49 46 10 0.3–63 0.9–12

Fr. For a given experiment (d, R, W fixed with ω as the
independent variable), δ0/d increases with Fr approximately
as a power law, δ0/d ∝ Frα , where α is between 0.07 and
0.33. However, there is a wide spread of the data, showing poor
collapse. Data from Félix et al. [19] have greater values of δ0/d

(up to ≈110, compared with ≈20 in our experiments) because
of the larger values of R/d considered therein (up to 3700 in
Ref. [19] compared with 960 in our experiments). Meanwhile,
the experiments of Orpe and Khakhar [16] not only give larger
values of δ0/d at high Froude number compared to our data,
but they also measure a greater slope of free surface. This
could be due to the fact that the data from [16] correspond to
a strongly S-shaped free surface at high Fr, whereas we have
limited our study to nearly flat free surfaces.

In the Introduction and in Sec. III, we discussed that the
dimensionless flow rate per unit width Q∗

dry = 1
2ωR2/(d

√
gd)

provides an alternative approach to plotting the data, as shown

10−6 10−5 10−4 10−3 10−2 10 −1

10
1

102

50

δ 0
/d

Fr

0.33

1

0.07
1

FIG. 3. Thickness of the flowing layer measured in bead diam-
eters δ0/d vs the Froude number Fr = ω2R/g. Data collected from
previous studies: (•) corresponds to [19], (�) corresponds to [30],
(�) corresponds to [16], (�) corresponds to [43], (�) corresponds
to [42]. Data obtained from the present study: (�) corresponds to
g120 beads, (◦) corresponds to g370 beads, (�) corresponds to g1
beads, (�) corresponds to g2 beads, and (♦) corresponds to s2 beads.
Data points for each configuration (only ω varies) are linked by a
dashed line to guide the eye. For clarity, error bars are not shown.

in Fig. 4. Similarly to Fig. 3, we observe that δ0/d increases
with Q∗

dry, but the collapse is much better in Fig. 4 than in
Fig. 3.

As with the Froude number, for a given set of experiments,
we observe a power-law trend δ0/d ∝ (Q∗

dry)α . This result is
in agreement with previous work on dry granular flows in
tumblers [18,45]. However, contrary to what is reported there,
we find that the exponent α of the power law is not always 0.5
but depends on the range of Q∗

dry. This result is not surprising
given that the square root dependence is based on assuming
that the shear rate is constant and independent of the flow
rate [18]. While this is the case for flow down a heap, the
rotation rate in a tumbler sets both the shear rate and the flow
rate. Consequently, there is a range of values for α depending
on Q∗

dry, as shown in Fig. 5 for individual data sets. In general,
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FIG. 4. The thickness of the flowing layer measured in bead
diameters δ0/d vs the dimensionless flow rate Q∗

dry = 1
2 ωR2/(d

√
gd).

Data collected from previous studies: (•) corresponds to [19], (�)
corresponds to [30], (�) corresponds to [16], (�) corresponds to [43],
(�) corresponds to [42]. Data obtained from the present study: (�)
corresponds to g120 beads, (◦) corresponds to g370 beads, (�)
corresponds to g1 beads, (�) corresponds to g2 beads, and (♦)
corresponds to s2 beads. Data points for each configuration (only
ω varies) are related by a dashed line to guide the eye. The inset
focuses on the lowest range of Q∗

dry for each source of data. For
clarity, error bars are not shown.
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0.6
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Q*
dry

α

FIG. 5. Range of values of the exponent α in the scaling δ0/d ∝
(Q∗

dry)α between the dimensionless flowing layer thickness and the
dimensionless flow rate for all dry data sets considered. The length
of each horizontal line corresponds to the range of validity of that
particular value of α. At the midpoint of each line, we have placed a
symbol consistent with those in Fig. 4 to identify the data set.

α increases with the range of Q∗
dry in which a flat, continuously

flowing layer occurs. Similarly, Chou and Lee [[46], Fig. 10]
considered a less than half full tumbler, and though this led
to a slightly different definition of Q∗

dry, their data also show
significant spread of α around 0.5. However, the best-fit value
of α was not discussed in Ref. [46].

Because many data sets in Fig. 4 are shown at low Q∗
dry,

we have added an inset showing only one set of data per
source. Each data set is selected so that the range of Q∗

dry is
the lowest available among the data from that source. All the
data at low Q∗

dry have a slope close to 0.15 except for the data
from [16], which may be related to the fact that the free surface
is strongly S-shaped in those experiments. At high Q∗

dry, on
the other hand, α is close to 0.65, though some of our g120
data suggest a lower value of α, perhaps due to electrostatic
effects or slippage at the outer tumbler boundary. This result
is in agreement with [19], where δ0/d follows a power law
δ0/d ∝ ωn with the exponent n being determined by the ratio
R/d.

Furthermore, as is evident from considering individual data
sets (such as those in Fig. 6, to be discussed shortly), a strict
power-law relationship is valid only for individual data, and
the value for α for a given data set depends on the range of Q∗

dry
covered (as shown in Fig. 5). Setting aside this point, one can
approximately fit a single curve through the entire collection
of data sets in Fig. 4 such that δ0/d ≈ A(Q∗

dry)α with α = 0.5
set a priori (even though α ranges from 0.12 to 0.68 for any
particular data set), finding A = 2.3. A more accurate fit is
α = 0.44 and A = 2.86.

2. Effect of side walls

The precise impact of side walls on the scaling of the
flowing layer thickness and an appropriate parameter to
collapse the data is unknown. For example, Orpe and Khakhar
[16] indicate that for W/d 	 5, the influence of the side walls
become negligible. Similarly, Félix et al. [19] indicate there
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FIG. 6. Thickness of the flowing layer measured in bead diam-
eters δ0/d vs the dimensionless flow rate Q∗

dry = 1
2 ωR2/(d

√
gd)

for different axial widths: (◦) W = 6.3 mm, (�) W = 13 mm, (♦)
W = 19 mm, (�) W = 25 mm and (a) g370 beads, (b) g1 beads,
and (c) g2 beads. The dashed lines are a guide to the eye. Error bars
represent one standard deviation, though they may not be visible in
some cases due to the size of the markers.

is no difference in the thickness of the flowing layer when
varying W/d from 3 to 30 for R/d = 50. However, other
studies have highlighted the importance of the side walls on
the flow [18,20–23]. Dury et al. [22] performed experiments
and simulations that show β0 increases with either d/W or ω

in a half-filled drum of circular cross-section; however, they
did not consider the scaling with respect to dimensionless
groups. Taberlet et al. [20] studied heap flows in a thin channel
using polydisperse granular materials and a range of wall
separations, showing the stability of the heap depends only on
the distance W between the side walls. A similar approach was
used by Jop et al. [21] to demonstrate that steady uniform flows
on a pile are entirely controlled by friction at the side walls.
For granular flows in a tumbler, Pohlman et al. [23] showed
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FIG. 7. Thickness of the flowing layer measured in bead diam-
eters δ0/d vs the dimensionless flow rate Q∗

dry = 1
2 ωR2/(d

√
gd):

(◦) g370 beads, (�) g1 beads, (�) g2 beads. In (a), open symbols
correspond to W = 16d − 17d . In (b), open symbols correspond to
W = 11d − 12d , while black symbols correspond to W = 6d . The
dashed lines are a guide to the eye. Error bars represent one standard
deviation.

the strong influence of side walls, specifically by measuring
that decreasing the gap between the side walls can result in a
factor of two increase of the streamwise velocity at the surface
of the flowing layer. Similarly, GDR MiDi [18] found that
the dynamic angle of repose β0 for granular flows in rotating
tumblers can increase dramatically as W is decreased.

Figure 6 focuses on the influence of the side walls on the
thickness of the flowing layer for three different sizes of beads
(g370, g1, and g2). Only a portion of the data from Fig. 4 is
displayed for clarity. In general, as the axial width W increases,
the thickness of the flowing layer increases, though in some
cases [e.g., W = 11d and W = 16d for g1 beads in Fig. 6(b)]
the ordering is imperfect.

In Fig. 7, we compare data with similar ratios W/d but dif-
ferent bead sizes. For the largest ratio W/d [Fig. 7(a)] the bead
size seems to play no role, while for smaller ratios [Fig. 7(b)]
the thickness of the flowing layer δ0/d depends on the size of
the beads. This suggests that δ0/d = f (W/d,Q∗

dry) only when
W/d is large enough, whereas δ0/d = f (R/d,W/d,Q∗

dry)
when the gap between the side walls is small. One way to
motivate this observation is to note that there is some “critical
value” of W beyond which the effect of the side walls on
the flow changes. For example, for W/R 
 0.5, Pohlman
et al. [23] observed that faster shear bands near the side walls
disappear. For heap flows, Courrech du Pont et al. [33] also

found that there is a value of W beyond which the influence
of the side walls is significantly weaker.

Our results can be understood by assuming a static friction
force balance approach to modeling the effects of side walls
for steady uniform flows [18,20,21] can be applied close to the
center of the tumbler. To this end, we can write [20]

δ0

W
= tan β0

μw

− μs

μw

, (14)

where μw is the Coulombic friction coefficient between the
grains and the walls, and μs is the friction coefficient between
the moving grains and the grains in the fixed bed. This equation
reflects an equilibrium force balance between the weight of the
grains that drives the granular flow and the friction that resists
motion at the walls (μw) along with the friction between the
moving grains and the fixed bed (μs).

In accordance with our experimental results (Figs. 6 and 7),
Eq. (14) shows that the flowing layer is thinner when the side
walls are closer together, given fixed friction properties (β0,
μs , and μw). However, the slope of the free surface tan β0 is
coupled to the flow (in addition to the particle properties) and
cannot be set independently of the flow properties (δ0 in this
case). Figure 8 shows that β0 increases linearly with Q∗

dry for
all of our data. This is different from flow down a heap, for
which the slope, tan β0, increases linearly with

√
Q∗

dry [18],
most likely because of differences in how particles enter the
flowing layer in a heap (from a single source at the top of
the heap) versus a tumbler (continuously along the bottom of
the upstream portion of the flowing layer). In addition, note that
β0 increases faster with Q∗

dry when the gap between the walls
is smaller. This is qualitatively in agreement with Eq. (14),
which can be rewritten as

tan β0 = μw

δ0

W
+ μs. (15)

Clearly, for constant β0, a smaller W requires a smaller δ0,
which scales with Q∗

dry. This relation also implies a single
value of β0, regardless of W , for each bead size when Q∗

dry = 0
(corresponding to δ0 = 0). While this is not strictly true for
the data in Fig. 8, the trend towards a similar value for β0 at
Q∗

dry = 0 is evident for each of the three bead sizes.
Figure 9, in which tan β0 is plotted versus δ0/W , clearly

illustrates the weaknesses of the relationship expressed by
Eq. (15). As expected from Eq. (15), tan β0 increases with
δ0/W . However, the relation between δ0/W and tan β0

depends on both the particle diameter d and the axial width
W . Furthermore, unlike the case for flow on a heap [20], the
relation is not linear, which is due to the fact that δ0 and β0

evolve differently with Q∗
dry. Clearly, the influence of side walls

in dry granular flows in a tumbler is not negligible: Friction
between grains and walls reduces the thickness of the flowing
layer. At the same time, because the flow rate per unit width
Q = δ0V ≈ 1

2ωR2 cannot change for fixed ω and R, a smaller
gap between the side walls must also lead to a larger average
velocity in the flowing layer.

Thus, while Eq. (14) gives a qualitative explanation of the
scalings observed, it does not capture all the characteristics of
the flowing layer and how it is influenced by the side walls.
Nevertheless, it is possible to obtain very rough estimates of the
coefficients of friction from it. The wall coefficient of friction

011304-7



FLORENT PIGNATEL et al. PHYSICAL REVIEW E 86, 011304 (2012)

0 20 40 60 80 100 120 140 160
20

25

30

35

40

45

50
β 0

 in
 °

0 10 20 30 40 50 60 70
20

25

30

35

40

45

50

β 0
 in

 °

0 2 4 6 8 10 12 14 16
20

25

30

35

40

45

50

β 0
 in

 °

Q *
dry

(a)

(b)

(c)

W = 5.5d

W = 22d

W = 16d

W = 11d

W = 17d

W = 69d

W = 51d

W = 34d

W = 5.9d

W = 12d

W = 8.9d

W

W

W

FIG. 8. The dynamic angle of repose β0 vs the dimensionless
flow rate Q∗

dry = 1
2 ωR2/(d

√
gd) for different axial widths: (◦)

corresponds to W = 6.3 mm, (�) corresponds to W = 13 mm,
(♦) corresponds to W = 19 mm, (�) corresponds to W = 25 mm;
(a) g370 beads, (b) g1 beads, (c) g2 beads. The dashed lines are a
linear fit of the data showing that β0 increases linearly with Q∗

dry. The
error bars are smaller than the symbols and cannot be seen in most
plots.

in most cases is μw ≈ 1, though some of the steeper slopes are
nearly 3, and the more shallow slopes are as small as ≈0.2.
The intercept with the vertical axis, which corresponds to μs ,
ranges from ≈0.1 to ≈0.4. Obviously, the nonlinear nature of
the curves makes it difficult to obtain accurate values for μw

and μs in this way.

B. Immersed case

1. Thickness of the flowing layer

Carrying out the experiments with a viscous liquid (rather
than in air) as the interstitial fluid requires a substantially
slower rotation rate to maintain continuous flow with a flat
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FIG. 9. Relation between the free surface slope tan β0 and the
thickness of the flowing layer measured in axial gap lengths δ0/W

for different axial widths and different bead sizes: (�) corresponds to
g120 beads, (◦) corresponds to g370 beads, (�) corresponds to g1
beads, and (�) corresponds to g2 beads. Values for W are shown for
g1 beads only. The dashed lines are a guide to the eye.

free surface. The thickness of the flowing layer is shown as a
function of the Froude number in Fig. 10 for air, water, and
glycerine. Like in the dry case (Fig. 3), the thickness of the
flowing layer increases with the Froude number following a
power-law trend δ0/d ∝ Frα . In general, with our experimental
set-up, the order of magnitude of δ0/d when the grains are
immersed in a fluid is close to the dry case: δ0/d is roughly
between 4 and 20. Yet, the data are widely spread. Furthermore,
for a given δ0, the data for more viscous liquids systematically
correspond to a range of smaller Froude numbers.

Plotting δ0/d as a function of the dimensionless flow rate
Q∗

dry in Fig. 11 results in less scatter, particularly between water
and air, but it is clear that the data from the experiments with

10−8 10−6 10−4 10−2

Fr

10

δ 0
/d

20

3

FIG. 10. Thickness of the flowing layer measured in bead
diameters δ0/d vs Fr = ω2R/g for all of our data: (�) corresponds
to g120 beads, (◦) corresponds to g370 beads, (�) corresponds to g1
beads, (�) corresponds to g2 beads, and (♦) corresponds to s2 beads.
Data points for each configuration (only ω varies) are linked by a
dashed line to guide the eye. For clarity, error bars are not shown.
Open symbols: dry; gray symbols: water; black symbols: glycerine.
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FIG. 11. Thickness of the flowing layer measured in bead diame-
ters δ0/d vs Q∗

dry = 1
2 ωR2/(d

√
gd) for all of our data: (�) corresponds

to g120 beads, (◦) corresponds to g370 beads, (�) corresponds to g1
beads, (�) corresponds to g2 beads, and (♦) corresponds to s2 beads.
Data points for each configuration (only ω varies) are linked by a
dashed line to guide the eye. For clarity, error bars are not shown.
Open symbols: dry; gray symbols: water; black symbols: glycerine.

glycerine do not collapse onto the data corresponding to air and
water. To remedy this, we can use the more general expression
for the dimensionless flow rate Q∗ given by Eq. (13) derived
in Sec. III. The dimensionless parameters for the regimes
of immersed flow for each kind of particle are reported in
Table III. In glycerine, St � 1 so the regime is always viscous.
In water, the Stokes number is just below 1 for the g120 beads
and just above 1 for the g370 beads, whereas it is much
larger for the bigger beads (g1, g2, and s2), which clearly
lie in the free fall regime. Using Q∗ as given by Eq. (13)
accounts for both the buoyancy and viscous effects in all
cases.

Figure 12 shows δ0/d as a function of Q∗ for all cases.
The data gather fairly well considering that the size of the
beads varies from d = 0.1 mm to d = 2 mm, both glass and
steel beads are included, and the interstitial fluid’s viscosity
varies from ≈10−3 to ≈1 Pa · s. Very general trends can be
outlined: δ0/d ∝ (Q∗)α where α = 0.12 ± 0.05 in glycerine,
α = 0.20 ± 0.08 in water, and α = 0.18 ± 0.03 in air. The
differences in α between glycerine and water must be taken as
only qualitative since we were unable to carry out experiments
with the small beads (g120 and g370) in glycerine because,
in this case, the beads quickly became suspended even at low
rotational rates. Note that for the g120 beads in water, the
viscous time scale might be overestimated because the curve
appears a bit too far to the right. Nevertheless, it is evident
that the transition from a viscous regime to a free fall regime
is around a Stokes number of one. The general trend for the
data in Fig. 12, independent of the interstitial fluid, is δ0/d ∼
5.1(Q∗)0.20. Of course, the collapse of the data is not as good
as in Fig. 4, and the approximate trend applies to a smaller
range of Q∗. However, this smaller value of α (≈0.2 versus
≈0.5) is consistent with the low Q∗ values in the exponent
scatter plot in Fig. 5.
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10

1
10
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0.2

1

FIG. 12. Thickness of the flowing layer measured in bead
diameters δ0/d vs Q∗ for all of our data, where Q∗ is given by
Eq. (13). Symbols: (�) corresponds to g120 beads, (◦) corresponds to
g370 beads, (�) corresponds to g1 beads, (�) corresponds to g2 beads,
and (♦) corresponds to s2 beads. Data points for each configuration
(only ω varies) are linked by a dashed line to guide the eye. For clarity,
error bars are not shown. Open symbols: dry; gray symbols: water;
black symbols: glycerine.

2. Effect of side walls

Figure 13 shows the dependence of δ0/d on Q∗ for the g1
beads with different axial widths W and the three interstitial
fluids [the data for the dry case is reproduced from Fig. 6(b)].
This figure is typical of the results for all particle sizes we
considered, and it illustrates the influence of the side walls
on the flow with a liquid as the interstitial fluid. For flows
immersed in water, the thickness of the flowing layer generally
increases with W just as it does in air. Surprisingly, when the
grains are immersed in glycerine, the thickness of the flowing
layer does not vary significantly when W is increased from
5.5d to 22d. This suggests that the walls have little impact on

100 101 102

10
1

δ 0
/d

Q*

FIG. 13. Thickness of the flowing layer measured in bead diame-
ters δ0/d vs Q∗ for g1 beads, where Q∗ is given by Eq. (13). Symbols:
(◦) W = 6.3 mm (5.5d), (�) W = 13 mm (11d), (♦) W = 19 mm
(17d), (�) W = 25 mm (22d); and empty symbols: dry case; gray
symbols: water; black symbols: glycerine. The dashed lines are a
guide to the eye. Error bars represent one standard deviation.
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FIG. 14. The dynamic angle of repose β0 vs the dimensionless
flow rate Q∗ given by Eq. (13). Symbols: (◦) W = 6.3 mm, (�)
W = 13 mm, (♦) W = 19 mm, (�) W = 25 mm; (a) g370 beads,
(b) g1 beads, (c) g2 beads. The dashed lines are a guide to the eye.
Error bars represent one standard deviation.

the thickness of the flowing layer in viscous regime, at least
for this range of W , possibly as a consequence of lubrication
at the walls.

Figure 14(a) shows the dynamic angle of repose β0 for the
g370 beads in air [reproduced from Fig. 8(a)] and water as
a function of the dimensionless flow rate Q∗. The dynamic
angle of repose β0 increases with Q∗ in both cases, but it
is greater and grows faster in water than in air. Similar to
the dry case, β0 for the flow immersed in water is greater and
increases faster with Q∗ when the side walls are closer, though
the dependence of β0 on Q∗ is not linear. Figures 14(b) and
14(c) are for the g1 and g2 beads, respectively, and also include
data for glycerine as the interstitial fluid. The dynamic angle
of repose β0 increases with Q∗ in all three fluids. For an equal
axial width W , β0 is greater and increases more quickly in

glycerine vs water and in water vs air. Finally, in glycerine and
in water, β0 is greater and increases faster with Q∗ for smaller
gaps between the side walls, just as in the dry case.

In the dry case, the model based on a static force [recall
Eq. (14)] was able to qualitatively capture the influence of the
side walls. Similar reasoning can provide an explanation for
the apparent range in the experimental data shown in Fig. 14.
To do so, note that when the interstitial fluid is a viscous liquid,
it exerts an additional drag on the particles in the flowing layer
and at the free surface. Doppler et al. [34] studied the influence
of a counterflow applied along the free surface of a granular
flow occurring in a Hele-Shaw cell and found that the slope
is increased and the granular flow is slowed down by this
additional shear stress. However, the nature of our apparatus
makes it difficult to quantify these additional stresses.

3. Connection to the μ(I) rheology

It is also tempting to interpret Fig. 14 as being equivalent
to a plot of an effective friction coefficient μ as a function of a
shear rate γ̇ made dimensionless as, e.g., the inertial number
I = γ̇ d/

√
P/ρp, where P is a confining pressure. Such an

interpretation would allow a comparison to the μ(I ) approach
to the rheology of dense granular media [8], which has recently
been extended by Boyer et al. [47] to cover both the dry and
immersed cases. However, there are two problems with this
interpretation. First, it is difficult to compute I for our tumbler
flow because P is hard to measure or estimate. The second
problem, as is evident from Fig. 9, is that the friction coefficient
is difficult to extract because it depends on the particle
size, distance between side walls, and other experimental
variables.

Nevertheless, in Fig. 15 we attempt to test this idea
by plotting tan β0, a measure of the friction coefficient,
as a function of a crude estimate of the inertial number:
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FIG. 15. The free surface slope tan β0 (a measure of the friction
coefficient of the grains) vs a dimensionless shear rate (inertial
number) for all of our data. Symbols: (�) corresponds to g120 beads,
(◦) corresponds to g370 beads, (�) corresponds to g1 beads, (�)
corresponds to g2 beads, and (♦) corresponds to s2 beads. Data points
for each configuration (only ω varies) are linked by a dashed line to
guide the eye. For clarity, error bars are not shown. Open symbols:
dry; gray symbols: water; black symbols: glycerine.
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I ≈ Iv = γ̇ tv or I ≈ Iff = γ̇ tff (depending on the regime as
in Ref. [32], i.e., St ≶ 1), where tv and tff are given in Eqs. (7)
and (8), respectively, and γ̇ is estimated from the flow rate
as V/δ0 ≈ (Q/δ0)/δ0 ≈ 1

2ωR2/δ2
0 [48]. In these plots, tan β0

increases monotonically with I for both dry and immersed
flows. However, there is no collapse of the data across different
experimental conditions.

Though Fig. 15 supports the idea that μ (in both dry and
immersed flows) depends on the shear rate [8,18,32,47], there
are two reasons why the μ(I ) approach is not immediately
applicable to the tumbler geometry. First is the significant
effect of wall friction (as in Refs. [21,31]). Second is the spatial
variation in the shear rate: Namely, there is a logarithmic
decay of the streamwise velocity into the bulk [30,43], even
though it is common to take the shear rate in the flowing
layer to be constant to a good approximation. The latter is
known to lead to problems in the application of the μ(I )
rheology, necessitating a nonlocal extension of the theory [49].
Therefore, at this time, we cannot reconcile our experiments
with either the “classical” dry μ(I ) rheology [8,18,32] or its
extension to the immersed case [47].

V. CONCLUSION

We have derived and validated through experiments new
scaling relations for dry (air) and immersed (water or glycer-
ine) granular flowing layers in quasi-2D rotating containers.
In the dry case, the flowing layer thickness δ0 and the dynamic
angle of repose β0 scale with the dimensionless flow rate Q∗

dry.
Unlike the results of GDR MiDi [18] and Renouf et al. [45]
for which δ0/d ∝ (Q∗

dry)α with α = 0.5, we found that α can
vary significantly around 0.5, similarly to what Félix et al. [19]
reported. The scaling has two well-defined regimes: one for
low Q∗

dry, and the other for high Q∗
dry (recall Fig. 4). In our

experiments, the best fit across the entire available data set is
δ0/d = 2.86(Q∗

dry)0.44. The value for α is surprisingly close to
0.5, which can be obtained by estimating the flow rate based
on a constant shear rate [[18], Eq. (11)]. The dynamic angle of
repose of the free surface, on the other hand, increases linearly
with Q∗

dry. Side walls play an important role for granular flows
in tumblers. When the gap between the side walls decreases,
the thickness of the flowing layer decreases, but the free surface
slope increases. This is a consequence of the increasing effect
of wall friction on the flow.

For granular flows immersed in a viscous liquid, the
dimensionless flow rate Q∗ must be modified, i.e., made
dimensionless using the appropriate time scale for the flow
regime, to take into account the properties of the interstitial
fluid. Extending recent approaches [31,32,38,50] on such
scalings for immersed flows, we identified two regimes in
immersed granular flows in tumblers: a free fall regime
characterized by a Stokes number St > 1 and a viscous regime
when St < 1. These regimes have different time scales, which

leads to different expressions for the dimensionless flow rate.
To bridge these two regimes, we proposed a dimensionless flow
rate that accounts for both buoyancy in the free fall regime and
viscous friction in the viscous regime:

Q∗ ≈ 1

2
Fr1/2

(
R

d

)3/2(
ρp

�ρ

)1/2(
1 + 1

St

)
. (16)

We found that δ0/d = 5.1(Q∗)0.20 is the best-fit expression for
the depth of the flowing layer (based on the entire set of data
in Fig. 12).

Side walls also play an important role in the immersed
flows, and we can again distinguish two different regimes
of how the thickness of the flowing layer scales. In the
free fall regime, when the gap between the walls increases,
the thickness of the flowing layer increases as it does in
the presence of air as the interstitial fluid. On the contrary,
we did not observe such a dependence with the axial width W

in the viscous regime. This is likely due to lubrication at the
side walls. In all cases, the free surface slope tan β0 increases
with decreasing axial width W . Furthermore, the increase of
the free surface slope with Q∗ is stronger in glycerine than in
water and air, indicating that the stresses acting on the grains
are more important for very viscous interstitial fluids.

The experimental results reported in this study can be used
for future work aimed at modeling dry and immersed granular
flows. Specifically, this study provides useful scaling laws for
granular flows in tumblers, which are frequently used practical
systems for studying phenomena such as mixing, segregation,
and pattern formation [51]. These scaling relationships could
also be used to shed light on the practical significance of the
theoretical limit of a vanishingly thin flowing layer discussed
recently in connection with some new mechanisms of granular
mixing [52,53]. Félix et al. [54] have suggested that the thick-
ness of the flowing layer in a bidisperse granular flow in a tum-
bler is relevant for determining the time scale of segregation.
Thus, another important question that the present approach can
be used to address in the future is whether the characteristic
time scales for tumblers defined in Sec. III can provide further
understanding of, for example, the void-filling mechanism of
segregation in gravity driven flows [55] or the “spot diffusion
model” of how granular materials rearrange dynamically
during flow [56]. Indeed, recent work [50] has suggested that a
combination of a dimensionless flow rate and a Stokes number
can provide a parameter that determines whether segregation
occurs in granular slurries in rotating tumblers.
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