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Negative thermophoresis of nanoparticles in the free molecular regime
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Negative thermophoresis is a phenomenon of particle transport induced by a temperature gradient, by which
small particles migrate from low to high temperatures. In gas media, it depends strongly on the gas-particle
interaction and temperature. In this paper, we show that negative thermophoresis is possible in the free molecular
regime and a theoretical criterion is derived. On the basis of a general gas-particle interaction potential, an
empirical necessary condition for negative thermophoresis that the potential parameters should satisfy is also
obtained. Finally, the temperature ranges for the occurrence of negative thermophoresis are determined for a
series of gas-particle interaction parameters.
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I. INTRODUCTION

Thermophoresis in gases is an important transport mecha-
nism of small particles caused by temperature gradients [1].
The force acting on the particles is called the thermophoretic
force, which has been widely used for manipulating particles
in a variety of areas, including material synthesis, micro-
and nanofabrication, and environmental science [2–5]. The
direction of the thermophoretic force can be in or against the
direction of the temperature gradient, depending on various
parameters. Compared with the particle transport in aqueous
solutions where the physics of thermophoresis is relatively
known [6,7], thermophoresis in gases is far from being well
understood, although extensive theoretical and experimental
studies have been conducted to understand the nature of
thermophoresis [8–11]. The unclear physical picture might be
caused by the complexity of solving the Boltzmann transport
equations and the difficulty in understanding the atomic
interaction between gas molecules and particles.

In gas media, the thermophoretic force, acting on a
suspended particle, depends on the flow regime, which is
characterized by the Knudsen number Kn = λ/L, where λ is
the mean free path of the gas and L is the characteristic length
of the particle. The theoretical treatment of thermophoresis
usually involves solving the Boltzmann equations. This is very
difficult in the continuum (Kn � 1) and transition (Kn ∼ 1)
regimes where the velocity distribution of the gas molecules
is greatly affected by the motion of the particle. Although
a few analytical approaches have been developed based on
different approximation methods [12–18], the theories in these
two regimes are far from complete. In the free molecular
regime (Kn � 1), the problem can be greatly simplified by
assuming that the presence of the particle does not affect the
velocity distribution of gas molecules, and pair collisions of
gas molecules dominate. In this case, the Chapman-Enskog
gas kinetic theory [19,20] for dilute gases in nonequilibrium
states can be used to obtain the thermophoretic force.

In the free molecular regime, it has long been assumed
that the thermophoretic force is in the opposite direction of
the temperature gradient, i.e., particles move from high to
low temperatures, which is called positive thermophoresis.
For microparticles, this has been predicted by the Waldmann
equation of thermophoretic force on the basis of gas kinetic

theory. Waldmann studied the particle thermophoresis under
the assumption of rigid-body collisions, i.e., the gas-particle
intermolecular interactions are neglected, which is valid for
microparticles, and derived the thermophoretic force FT as [8]

FT = − 8

15

√
2πmg

kBT
κR2∇T , (1)

where mg is the mass of the gas molecule, kB is the Boltzmann
constant, κ is the thermal conductivity of the gas, R is the
particle radius, and T is the temperature. Equation (1) has been
confirmed by experiments [5,10,21,22], and the explanation
of positive thermophoresis in Eq. (1) is that, for rigid-body
collisions, the gas molecules at the hot side carry higher
kinetic energy than those at the cold side, and therefore, the
momentum transfer at the high temperature is larger than that
at the low temperature.

Fundamentally, thermophoresis is similar to thermal dif-
fusion. Although in the literature, thermophoresis has been
frequently used as a substitute for thermal diffusion, it is well
accepted, especially in gas media, that thermal diffusion is a
molecular phenomenon, which describes the collective and
statistical behaviors of one component in a mixture under
temperature gradients, whereas, thermophoresis describes the
kinetic behavior of isolated particles induced by temperature
gradients in a fluid [7,23–31]. In gases, Eq. (1) predicts
that micro- or larger particles can only move from high to
low temperatures (positive thermophoresis). For molecules
(particles of molecular size), the Chapman-Enskog theory of
thermal diffusion indicates that they can transport from low to
high temperatures (negative thermal diffusion) [19,20,24–26].
Therefore, as the particle size decreases from micro- to molec-
ular scale, there exists a critical particle size, below which,
negative thermophoresis becomes possible. This critical parti-
cle size might be in the nanoscale and is of great importance
in practical applications. However, it is not easy to obtain the
critical size because it depends on the gas-particle interaction.

In this paper, we derive a theoretical criterion for the nega-
tive thermophoresis in the free molecular regime. For practical
applications, an empirical necessary condition is developed
on the basis of a general gas-particle interaction potential. In
addition, the temperature ranges for negative thermophoresis
are suggested for a series of potential parameters.
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II. CRITERION FOR NEGATIVE THERMOPHORESIS

As the particle size decreases, the molecular interactions
between the gas molecules and the particle can be important,
the rigid-body collision assumed by Waldmann becomes
questionable, and Eq. (1) may fall apart. By considering
the gas-particle intermolecular interaction, we derived the
thermophoretic force for nano- and subnanoparticles based
on a rigorous gas-kinetic analysis [11],

FT = −8

3

√
2πmr

kBT
κR2∇T

(
6

5
�(1,2)∗ − �(1,1)∗

)
, (2)

where mr = mgmp/(mg + mp) is the reduced mass of the
gas molecule and particle, �(1,1)∗ and �(1,2)∗ are the reduced
collision integrals, which depend on the temperature T and
gas-particle interaction potential [11,20,23] as discussed later.
For rigid-body collisions, �(1,1)∗ = �(1,2)∗ = 1, and Eq. (2)
is reduced to Eq. (1), considering that mp � mg . Therefore,
Eq. (1) is a special case of Eq. (2).

In Eq. (2), it is seen that the direction of the thermophoretic
force depends on the value of (6�(1,2)∗/5 − �(1,1)∗). In most
cases, (6�(1,2)∗/5 − �(1,1)∗) > 0, and positive thermophoresis
is guaranteed. However, (6�(1,2)∗/5 − �(1,1)∗) could be nega-
tive, depending on the temperature and gas-particle interaction.
A general form of �(1,1)∗ and �(1,2)∗ is given by [11,23]

�(1,q)∗ = 2
∫ ∞

0 γ 2q+3e−γ 2
Q(g)dγ

(1 + q)!πR2
, q = 1,2, (3)

where g is the relative velocity between the gas molecules
and particle, γ = g

√
mr/2kBT , and Q is the collision cross

section, which depends on how gas molecules are reflected
upon collisions with the particle. Specular and diffuse scatter-
ings are the two limiting cases [11,20]. Specular scattering has
been reported to be dominant for particles smaller than a few
nanometers in diameter [32,33]. For specular scattering,

Qs(g) = 2π

∫ ∞

0
(1 − cos χ )b db, (4)

where b is the impact parameter for gas-particle collisions and
χ is the angle of scattering (see top panel in Fig. 1) given by

χ = π − 2b

∫ ∞

rm

dr

r2
√

1 − b2

r2 − 2�(r)
mrg2

, (5)

where r and �(r) are the center-to-center distance and
interaction potential between the gas molecules and the particle
and rm is the distance of the closest encounter.

In Eqs. (3)–(5), it is seen that �(1,1)∗ and �(1,2)∗ are com-
plex functions of the gas-particle interaction potential �(r)
and temperature T [34]. Although (6�(1,2)∗/5 − �(1,1)∗) < 0
represents a criterion for negative thermophoresis, it does not
offer a clear picture. To fundamentally understand negative
thermophoresis, we scale the temperature T , relative velocity
g, and collision cross section Q by proper quantities as
T ∗ = kBT /ε, g∗2 = mrg

2/(2ε), and Q∗ = Q/(πR2), where
ε is the gas-particle binding energy as introduced later. Using
these reduced parameters, the reduced collision integrals can
be expressed as

�(1,1)∗ = 1

T ∗3

∫ ∞

0
g∗5e−g∗2/T ∗

Q∗(g∗)dg∗ and

b
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FIG. 1. (Color online) Collision scenarios between a gas
molecule and a small particle. Top panel: trajectories of the gas
molecule at different temperatures (the dashed line represents the
case at a relatively lower temperature). b is the impact parameter, χ

is the angle of scattering, and ḡ is the mean relative velocity. Middle
panel: a trajectory at very high temperatures where the potential
is unimportant for momentum transfer. Bottom panel: a trajectory at
very low temperatures where the potential is dominant in determining
the trajectory of the molecule.

�(1,2)∗ = 1

3T ∗4

∫ ∞

0
g∗7e−g∗2/T ∗

Q∗(g∗)dg∗. (6)

It is easy to find that �(1,1)∗ and �(1,2)∗ can be related to each
other through

�(1,2)∗

�(1,1)∗ = 1 + 1

3

d ln �(1,1)∗

d ln T ∗ , (7)

by which (6�(1,2)∗/5 − �(1,1)∗) can be written as(
6

5
�(1,2)∗ − �(1,1)∗

)
= �(1,1)∗

[
1

5
+ 2

5

d ln �(1,1)∗

d ln T ∗

]
. (8)

Considering that �(1,1)∗ > 0 [11,20], Eq. (8) suggests that
negative thermophoresis requires

�(1,1)∗ = a(T ∗)−s , with s > 1
2 , (9)

where a is a constant. In Eq. (9), −s is nothing but the slope
of the ln �(1,1)∗ curve as a function of ln T ∗.

Equation (9) provides an alternative theoretical cri-
terion for negative thermophoresis. Compared with
(6�(1,2)∗/5 − �(1,1)∗) < 0, Eq. (9) reveals a clearer physical
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picture. Fundamentally, �(1,1)∗ is strongly related to the
momentum transfer of gas molecules during collisions with
a particle [20]. For rigid-body interactions, �(1,1)∗ = 1 and
s = 0 for which negative thermophoresis will not occur.
However, if the collisions are nonrigid, �(1,1)∗ changes with
temperature T . For appropriate �(r), Eq. (9) may be satisfied
in certain ranges of T ∗ because s basically measures how
�(1,1)∗ varies with T ∗. Figure 1 illustrates the collisions
between a gas molecule and a small particle (ḡ represents the
mean relative velocity corresponding to the temperature of the
gas). The top panel shows two possible trajectories at different
temperatures. At a relatively lower temperature (smaller ḡ,
dashed line), the angle of scattering χ becomes larger, which
leads to a higher momentum transfer, and consequently, the
force acting on the cold side of the particle is larger than
that on the hot side. However, such a case is only valid in
a certain range of temperatures and depends on �(r). If the
temperature is very high or low, as shown in the middle and
bottom panels of Fig. 1, the collisions tend to be rigid, and
positive thermophoresis takes place. It is worth mentioning
that the velocity of gas molecules follows a certain distribution.
For a given temperature, whether negative thermophoresis
occurs or not depends on the overall momentum transfer of gas
molecules with velocities in a wide range. If the contribution
to the momentum transfer from gas molecules experiencing
the collision in the top panel of Fig. 1 dominates, negative
thermophoresis will occur. At very high or low temperatures,
the collision scenario in the middle or bottom panel in Fig. 1
dominates, and negative thermophoresis is not observable.
Therefore, Eq. (9) and Fig. 1 suggest that it is possible to
have negative thermophoresis if �(r) and T are varied.

III. NECESSARY CONDITION AND TEMPERATURE
RANGES FOR NEGATIVE THERMOPHORESIS

As a quick test, we compute the collision integrals by
using the simple Lennard-Jones (LJ) 12-6 potential �(r) =
4ε[(σ/r)12 − (σ/r)6], where ε is the aforementioned binding
energy and σ is the collision diameter. Figure 2 shows
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FIG. 2. (Color online) The values of (6�(1,2)∗/5 − �(1,1)∗) and s

as a function of the reduced temperature T ∗ for the LJ potential.
For negative thermophoresis, (6�(1,2)∗/5 − �(1,1)∗) < 0 is required,
which is equivalent to s > 0.5.
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FIG. 3. (Color online) (a) s versus T ∗ for different α and β values
of the LJ α − β potential. (b) The critical value of β, βcr as a function
of α. The solid line in (b) is the exponential fit for the data.

(6�(1,2)∗/5 − �(1,1)∗) and s as a function of T ∗. It is seen
that negative thermophoresis takes place when the reduced
temperature T ∗ is roughly in the range of 0.45 < T ∗ < 0.95,
where s > 0.5 as predicted by Eq. (9). The LJ potential used
in Fig. 2 is well accepted for describing the van der Waals
interaction of gas molecules. It may not be suitable for the
interaction between gas molecules and particles. However,
the gas-particle interaction can be viewed as the overall
effect of the LJ interactions between the gas molecules and
each constituent atom of the particle. In this sense, the
gas-particle interaction potential will retain a similar shape
as the LJ potential. This approach actually has been employed
to develop the potentials between gas molecules and various
nanomaterials and between graphitic solids [24,35,36]. Hence,
the gas-particle interaction can be modeled by a general LJ type
potential,

� (r) = ε[c1 (σ/r)α − c2 (σ/r)β], (10)

where c1, c2, α, and β are potential parameters. The format
of Eq. (10) is consistent with the LJ 12-6 potential as the
particle size approaches molecular scale. If c1ε and σ are used
to scale �(r) and r [note that T ∗ = kBT /(c1ε) in this case],
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FIG. 4. (Color online) The bounds of the temperature range T ∗
min
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are linear fits for the data, and their slope is equal to α/(α − β) = 2.

the dimensionless form of the potential is written as

�∗(r∗) = (r∗)−α − c(r∗)−β, (11)

where �∗ = �/(c1ε), r∗ = r/σ , and c = c2/c1. Hereafter, the
potential in Eq. (11) will be referred to as the LJ α − β

potential.
Using the LJ α − β potential, we calculate the exponent s in

Eq. (9). For c = 1, the values of s are depicted in Fig. 3(a). It is
seen that negative thermophoresis does depend on the potential
parameters. For a given α, there exists a critical value of β, βcr,
below which, negative thermophoresis becomes possible and
takes place in a range of temperatures. The term involving β

in Eq. (11) corresponds to the attractive interaction, which is
dominant for r∗ � 1 (usually α > β). As β is increased, the
attractive interaction weakens, and the potential approaches
the rigid-body collision for which, negative thermophoresis
is not observable as predicted by Eq. (1). It is noted that βcr

is independent of c. This is because the potential �(r) in
Eq. (10) can be reduced to a c-independent format �∗(r∗) =
(r∗)−α − (r∗)−β if �(r) and r are scaled by εc1c

α/(α−β) and
σc1/(β−α), respectively. In Fig. 3(b), βcr is plotted as a function
of α, which suggests a necessary condition for the occurrence
of negative thermophoresis,

β < 4.8 + 18.8 exp (−α/5.05) , α ∈ (9,24) . (12)

If Eq. (12) is satisfied, negative thermophoresis is expected
to occur in a certain temperature range (T ∗

min, T ∗
max). Figure 4

depicts the bounds of the temperature range T ∗
min and T ∗

max for
different α and β values as a function of c. It is found that the
temperature bounds are linearly related to c in the logarithmic
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FIG. 5. (Color online) T 0
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max as a function of β for different
α values. Solid lines are guides to the eye.

plot, and extensive investigations show that T ∗
min and T ∗

max can
be expressed as

T ∗
min(max) = T 0

min(max)c
α/(α−β). (13)

Therefore, the temperature range for negative thermophoresis
can be determined using Eq. (13) if the coefficients T 0

min and
T 0

max are known. Due to the complexity of the intermolecular
interaction, it is not easy to find simple expressions for T 0

min
and T 0

max. By varying the values of α and β under the condition
of Eq. (12), we obtain T 0

min and T 0
max. Figure 5 illustrates their

values as a function of β for several values of α. With the
help of Fig. 5, for a given gas-particle interaction, whether
negative thermophoresis will occur or not can be predicted
using Eqs. (12) and (13).

IV. CONCLUSIONS

To summarize, we have studied the negative thermophoresis
of small particles in dilute gases. Based on the previous
theoretical analysis, a criterion for negative thermophoresis
is proposed. By using a general format of the gas-particle
interaction potential, an empirical necessary condition for
the occurrence of negative thermophoresis is developed.
Finally, the temperature ranges for negative thermophoresis
are suggested for a series of potential parameters.
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[29] L. Mädler and S. K. Friedlander, Aerosol Air Qual. Res. 7, 304

(2007).
[30] S. K. Friedlander, Smoke, Dust, and Haze: Fundamentals of

Aerosol Dynamics (Oxford University Press, New York, 2000).
[31] J. F. de la Mora and J. M. Mercer, Phys. Rev. A 26, 2178 (1982).
[32] Z. Li and H. Wang, Phys. Rev. E 68, 061207 (2003).
[33] Z. Li and H. Wang, Phys. Rev. Lett. 95, 014502 (2005).
[34] Note that the collision cross section for diffuse scattering Qd is

different from Eq. (4). It can be found in Ref. [11].
[35] R. Y. M. Wong, C. Liu, J. Wang, C. Y. H. Chao, and Z. Li,

J. Nanosci. Nanotechnol. 12, 2311 (2012).
[36] L. A. Girifalco, M. Hodak, and R. S. Lee, Phys. Rev. B 62, 13104

(2000).

011201-5

http://dx.doi.org/10.1103/PhysRevE.72.061201
http://dx.doi.org/10.1103/PhysRevE.74.036306
http://dx.doi.org/10.1103/PhysRevE.82.036325
http://dx.doi.org/10.1063/1.1732584
http://dx.doi.org/10.1016/0021-8502(95)00047-G
http://dx.doi.org/10.1016/0021-8502(95)00048-H
http://dx.doi.org/10.1016/0021-8502(95)00048-H
http://dx.doi.org/10.1103/PhysRevE.70.021205
http://dx.doi.org/10.1007/BF01338485
http://dx.doi.org/10.1016/0095-8522(62)90051-X
http://dx.doi.org/10.1063/1.1762250
http://dx.doi.org/10.1063/1.1694102
http://dx.doi.org/10.1063/1.866878
http://dx.doi.org/10.1063/1.866878
http://dx.doi.org/10.1016/j.physa.2007.06.011
http://dx.doi.org/10.1016/j.physa.2010.12.010
http://dx.doi.org/10.1021/j100827a006
http://dx.doi.org/10.1016/0021-8502(92)90329-T
http://dx.doi.org/10.1103/PhysRevE.84.021201
http://dx.doi.org/10.1103/PhysRev.63.181
http://dx.doi.org/10.1063/1.1706220
http://dx.doi.org/10.1088/0953-8984/20/15/153102
http://dx.doi.org/10.1088/0953-8984/20/15/153102
http://dx.doi.org/10.1039/b805888c
http://dx.doi.org/10.1103/PhysRevA.26.2178
http://dx.doi.org/10.1103/PhysRevE.68.061207
http://dx.doi.org/10.1103/PhysRevLett.95.014502
http://dx.doi.org/10.1166/jnn.2012.5680
http://dx.doi.org/10.1103/PhysRevB.62.13104
http://dx.doi.org/10.1103/PhysRevB.62.13104



