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From closed to open one-dimensional Anderson model: Transport versus spectral statistics
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Using the phenomenological expression for the level spacing distribution with only one parameter 0 � β � ∞
covering all regimes of chaos and complexity in a quantum system, we show that transport properties of the
one-dimensional Anderson model of finite size can be expressed in terms of this parameter. Specifically, we
demonstrate a strictly linear relation between β and the normalized localization length for the whole transition
from strongly localized to extended states. This result allows one to describe all transport properties in the open
system entirely in terms of the parameter β and the strength of the coupling to the continuum. For nonperfect
coupling, our data show a quite unusual interplay between the degree of internal chaos defined by β and the
degree of openness of the model. The results can be experimentally tested in single-mode waveguides with either
bulk or surface disorder.
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I. INTRODUCTION

In spite of remarkable progress in understanding the
statistical properties of quantum systems, either deterministic
or disordered, one of the important problems still awaits
detailed analysis. The specific question is as follows: To
what extent can we predict the scattering properties of a
complex open system, if we know the global properties of
eigenstates and energy spectra of the corresponding closed
system? This problem was solved for a specific case of closed
systems with maximal chaotic properties described by fully
random matrices. A proper mathematical tool in these studies
is based on effective non-Hermitian Hamiltonians of a certain
structure [1], and many analytical results have been obtained;
see, for example, [2–4]. The key point in this method is that
the scattering matrix of an open system is expressed in terms
of eigenvalues and eigenfunctions of the related closed system
along with their decay amplitudes.

A much more difficult problem emerges if the closed system
is not fully chaotic, being characterized by additional param-
eters related to the degree of chaos. Recently, this problem
was analyzed numerically in Refs. [5–7] where the global
characteristics of scattering or signal transmission through
a system have been studied in dependence on two control
parameters, the degree of internal chaos and the strength of
coupling to the continuum. In particular, it was found that,
independently of the degree of chaos, increasing continuum
coupling leads the system from the quasistable regime of
isolated narrow resonances to the “super-radiant” regime of
overlapping resonances coexisting with long-lived compound
states. However, the specific features of this evolution may
critically depend on the degree of chaos and therefore the
observation of the signal transmission provides important
information on the regular or chaotic character of the intrinsic
dynamics.

The above studies were performed with the use of random
matrices (canonical Gaussian ensembles or two-body random
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interactions). Some statistical assumptions may be question-
able in application to realistic physical systems. Below we
study the one-dimensional (1D) Anderson model, paying most
attention to the relation between the scattering properties of an
open model and those of the eigenstates and spectral statistics
of the closed model. We discover unexpected effects that give
additional insight into the problem of scattering through finite
disordered systems.

II. THE MODEL

The tight-binding Anderson model is often used to describe
electron propagation in random media. In the 1D case the
corresponding Hamiltonian with diagonal disorder takes the
standard form,

Hmn = εnδmn − ν(δm,n+1 + δm,n−1). (1)

Here ν is the hopping amplitude connecting the nearest sites (in
what follows we set ν = 1); the site energies εn are assumed to
be uniformly distributed in the interval [−W/2,W/2], giving
rise to the disorder variance σ 2 = W 2/12. Our interest is in the
transmission properties through samples of finite size N with
arbitrary coupling amplitudes

√
γ L and

√
γ R connecting the

left and right edges with attached semi-infinite ideal leads in
which εn = 0; see Fig. 1. For zero disorder, open tight-binding
models were studied in [8,9]. For nonzero disorder, so far, the
main interest has been related to the statistics and distributions
of resonances for one open channel [10,11]; the relation of the
resonances to the transport properties was studied in [12].

Without disorder, the spectrum of the closed chain consists
of Bloch waves with the nodes at the ends and energies inside
the band |E| � 2. In the limit N → ∞ and for weak disorder,
σ 2 � 1, all eigenstates are exponentially localized with the
characteristic length l∞(E) given by the Thouless relation [13]

l−1
∞ (E) = σ 2

8(1 − E2/4)
. (2)

This expression is valid everywhere apart from the vicinity of
the band edges, |E| = 2, and band center, E = 0.
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FIG. 1. Disordered 1D lattice consisting of
N sites connected at both ends to ideal semi-
infinite tight-binding leads.

III. LEVEL REPULSION IN A CLOSED MODEL

To quantify the degree of chaos in finite samples with
no continuum couplings, γ L = γ R = 0, we employ the
well-known results of the random matrix theory (RMT). In
deterministic quantum models with chaotic behavior in the
classical counterpart, chaos is usually characterized by the
Wigner-Dyson (WD) distribution P (s) of normalized spacings
s between the nearest energy levels. In the opposite case of
integrable classical counterparts, P (s) is typically close to the
Poisson distribution. Therefore, one can take the distribution
P (s) as a measure of chaos in a closed model.

For zero disorder, εn = 0, the energy spectrum near
the band center is equidistant, so that P (s) → δ(s − 1), and
the eigenstates are extended and regular (standing waves).
In the limit of strong disorder, all eigenstates are effectively
localized on the scale of the sample size N � 1; thus the
form of P (s) should be close to Poissonian. In between
these limits, for l∞ ∝ N , it is natural to expect a kind of
“intermediate statistics” which can be compared with the
WD distribution. However, the latter is known to emerge
when the eigenstates are chaotic with random fluctuations of
their components, as happens in ensembles of full random
matrices [14]. It is also known that chaotic eigenstates appear
in quasi-one-dimensional models described by band random
matrices, when the localization length is larger than the sample
size. Such a situation physically corresponds to the diffusion
of wave packets [15]. In contrast, in our model described by
tridiagonal matrices [see Eq. (1)], the diffusion scale is absent
since the localization length is proportional to the mean free
path. For this reason, in the theory of disordered solids an
emergence of the WD distribution for the one-dimensional
Anderson model of finite size is of special interest [16].

In order to describe the entire evolution of P (s) as a function
of the strength of disorder, we use the phenomenological
expression suggested in Ref. [17],

Pβ(s) = B1z
β(1 + B2βz)f (β) exp

[
− 1

4
βz2 −

(
1 − β

2

)
z

]
,

(3)

where

f (β) = β−12β

(
1 − β

2

)
− 0.168 74. (4)

Here z = πs/2 and the parameters B1 and B2 are determined
by the normalization conditions∫ ∞

0
Pβ(s)ds =

∫ ∞

0
sPβ(s)ds = 1. (5)

The above formula (3) was suggested in Refs. [17,18] by
using the analytical expressions derived by Dyson [19] for
a classical gas of two-dimensional charged particles moving
on a ring at temperature 1/β. This model was found to be
very effective since for the values β = 1,2,4 the partition

function giving the probability of finding the particles at
specific positions coincides with the partition function for
eigenvalues in canonical Gaussian ensembles.

One of the original motivations for the expression (3) was
to have a unique formula for P (s) that would provide correct
results in particular cases of conventional random matrix
ensembles. Specifically, the function f (β) is constructed in
such a way that for the values β = 1,2,4 corresponding to
Gaussian ensembles of random matrices of a given symmetry
(orthogonal, unitary, and symplectic, respectively) it is close
to the expressions for P (s) obtained in the RMT for those
ensembles [14]. As shown in Ref. [18], for these values of β

the dependence (3) is more accurate (in the whole range of s)
than the WD distribution typically used in the literature.

Since for β = 0 Eq. (3) coincides with the Poisson
distribution, and for β = ∞ it reproduces the δ function, this
interpolation formula is a perfect candidate for the description
of the intermediate statistics in the closed Anderson model (1).
An expression similar to Eq. (3) [20] has already been used
to describe P (s) in finite one- and two-dimensional Anderson
models [21,22], resulting in values of β from 0.05 to 19.2
depending on the disorder strength.

It should be stressed that in application to our model the
parameter β in Eq. (3) should be considered as a parameter
which globally describes the distribution P (s), rather than
a parameter determining the repulsion of energy levels for
very small spacings s � 1. To date, there are indications
that the repulsion between neighboring energy levels in the
finite Anderson model cannot be rigorously associated with
the symmetry of the matrix Hmn [see Eq. (1)], as happens in
the case of full random matrices. Indeed, in Refs. [23,24] it was
analytically shown that for 3 × 3 real symmetric matrices with
matrix elements a13 = a31 = 0 and other elements random,
the repulsion for small s � 1 is nonlinear, P (s) ∼ s ln(1/s).
For 4 × 4 tridiagonal random matrices the repulsion appears
to be P (s) ∼ s ln2(1/s) [24]. The extensive numerical study
performed in Ref. [24] allows one to predict the general
dependence P (s) ∼ s lnN−2(1/s) for any size N of tridiagonal
matrix with all nonzero elements random. For a slightly
different type of random tridiagonal matrix, the rigorous result
obtained in Ref. [25] gives P (s) ∼ s lnN−3(1/s). All these
results indicate that the level repulsion (defined in the limit
s → 0) in disordered tridiagonal matrices strongly depends
on the specific properties of the system.

With Eq. (3) we performed an extensive numerical study of
P (s) by changing the degree of disorder for a closed chain in a
large range of the control parameter x = l∞/N with l∞ defined
by Eq. (2); see the examples in Fig. 2. Our data demonstrate that
Eq. (3) gives an amazingly good correspondence (supported
by the χ2 criteria) with the numerical data in a very large range
of x. Therefore, one can make the unexpected conclusion that
the distribution P (s) for the Anderson model on a finite scale
N can be described by the Dyson Coulomb gas model, where
s is the distance between the nearest particles on a ring.

011142-2



FROM CLOSED TO OPEN ONE-DIMENSIONAL ANDERSON . . . PHYSICAL REVIEW E 86, 011142 (2012)

200

400

600

800

0 1 2 30

200

400

600

800

0 1 2 3 4

x = 2.6
β = 1.2
χr

2 = 0.8 (74%)χr
2 = 0.75 (79%)

x = 0.5
β = 6.1

x = 0.087 x = 0.01

χr
2 = 0.5 (97%) χr

2 = 0.9 (66%)

β = 0.22 β = 0.03

P(s)

s s

P(s)

FIG. 2. (Color online) Examples of P (s) for |E| < 0.2 (excluding
the energies very close to 0), with N = 1000. The data are obtained
for 120 disorder realizations with the χ 2 fit to Eq. (3) for r = 40 bins.
The reduced χ 2 statistic is shown with the corresponding confidence
levels given in parentheses.

Another result is that for the specific degree of disorder,
namely, for x = l∞/N ≈ 0.435 [see Eq. (6) below], the distri-
bution P (s) is indistinguishable from the WD distribution. This
is in correspondence with the numerical results earlier obtained
in Ref. [21]. It is known that in the RMT an emergence of the
WD distribution is directly related to the random character of
eigenstates [14]. The numerical data [21], indeed, show that,
in the situation when P (s) is close to the WD distribution,
some of the global statistical characteristics of the eigenstates
are in good correspondence with the assumption of their
randomness. However, more detailed studies of the eigenstates
are needed in order to claim that they have the same degree
of randomness as in the conventional ensembles of random
matrices. Our preliminary results show that, in spite of a
very good correspondence of P (s) with the WD distribution,
the more small-scale characteristics of eigenstates demon-
strate small but clear deviations from the predictions of the
RMT.

IV. LOCALIZATION LENGTH VERSUS REPULSION

Now we can establish the relation between x and β. It is
qualitatively clear that they express the same phenomenon of
gradual transformation of standing waves into localized states,
but the exact relation between them was unknown. All the data
are summarized in Fig. 3. We see a precise linear dependence
between x and β in the whole range of x values independently
of the chosen energy range. The fit of the data as β = Ax + C

gives the slope A = 2.3 ± 0.1 with C essentially zero. This
result, obtained carefully with the use of χ2 statistical criteria,
shows that the repulsion parameter β is just the normalized
localization length l∞,

β ≈ 2.3
l∞
N

. (6)

The factor 2.3 in Eq. (6) can be attributed to the fluctuations
of components of the eigenstates.
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x
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FIG. 3. (Color online) Repulsion parameter β versus x = l∞/N

for E ≈ 0 (circles) and E ≈ −1 (squares); see Fig. 2.

The localization length l∞ of a given state with the site
components ψn can be defined through the Shannon entropy,

S = −
N∑

n=1

wn ln wn (7)

with wn = ψ2
n . For random states with a Gaussian distribution

of ψn one gets S = ln(N/2.07). We define the normalized
entropic localization length dN = 2.07 exp〈S〉, where 〈· · · 〉
represents an ensemble average. With this definition we
have dN = N for fully chaotic eigenfunctions occupying N

sites. The data show that the onset of strong chaos occurs
when dN ≈ 2.1l∞ [26] which is equivalent to β ≈ dN/N ≈ 1.
Therefore, one arrives at the same result through an analysis
of the spectrum as through the eigenstates.

According to this important result, the repulsion parameter
β is nothing but the properly rescaled localization length. This
was observed in numerical studies of the kicked rotor [27]
and Wigner banded random matrices [28]. Here, this result
emerges for the standard Anderson model, thus indicating a
generic effect. Very recently, a linear relation between the
repulsion parameter β and localization length was found in an
experimental study of disordered elastic rods [29].

V. OPEN MODEL: NON-HERMITIAN HAMILTONIAN

The scattering properties of open systems can be for-
mulated [1] with the effective non-Hermitian Hamiltonian
[8,10,12,26]

Hmn(E) = Hmn + D(E)(γ Lδn,1δm,1 + γ Rδn,Nδm,N ), (8)

where

D(E) = E

2
− i

2

√
4 − E2. (9)

This expression is valid for any disorder εn, continuum
coupling γ L,γ R , and energy E. Near the center of the band
(the general case, −2 < E < 2, is studied in Ref. [26]) Eq. (8)
reduces to the canonical form,

Hmn(E) = Hmn − i

2
Wmn (10)

with

Wmn = 2π
∑

c=L,R

Ac
m(E)Ac

n(E), (11)
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where Wmn(E) is defined by the coupling amplitudes

AL,R
n (E) =

√
γ L,R/π

[
1 − E2

4

]1/4(
δ

(L)
n,1 + δ

(R)
n,N

)
. (12)

Here Hmn in Eq. (1) describes the internal dynamics, while
the non-Hermitian part W (E) is factorized in terms of the
coupling amplitudes Ac

n(E) between the internal states |n〉 and
open decay channels, c = L,R, where L and R stand for left
and right, respectively.

The non-Hermitian Hamiltonian (10) allows us to construct
the scattering matrix S in the space of channels,

S = 1 − iπK

1 + iπK
, (13)

where the reaction matrix K is defined as

Kab(E) =
∑

j

Ãa
j Ã

b
j

E − Ej

, Ãc
j =

∑
m

Ac
mψ (j )

m , (14)

and ψ
(j )
m is the m component of the eigenstate |j 〉 of the closed

Hermitian Hamiltonian (1).
For weak disorder, σ 2 � 1, the strength of coupling to the

leads is characterized by the coupling parameter

κc = 2πγ c

ND
. (15)

Here D is the mean level spacing at the center of the
energy band in a closed chain. By this definition, the channel
transmission coefficient is maximal for perfect coupling when
κc = 1. Below we consider symmetric coupling γ c ≡ γ ,
κc ≡ κ . In all numerical simulations we take N = 1000 sites
and combine an ensemble average over a large number of
realizations with a spectral average over 1000 energies across
an energy window |E| < 0.2.

VI. TRANSPORT CHARACTERISTICS

For continuous weak random potentials the problem of scat-
tering through finite one-dimensional samples is rigorously
solved by various analytical approaches (see, for example,
[30,31]). It was shown that the distribution function for the
transmission coefficient T (conductance) depends on the ratio
of the localization length l∞ to the length N of a sample.
Therefore, the knowledge of the localization length (defined
in the limit N → ∞) gives a full description of scattering (for
perfect coupling with the leads).

In contrast with continuous models, for the tight-binding
model (1) there are no rigorous results, either for the
distribution of T or for the moments 〈T q〉, that would be
valid everywhere inside the energy spectra |E| < 2, even for
weak disorder. The reason is the existence of the so-called
resonances for specific energies Er = ±2 cos(πr/s) with r,s

integer, for which standard perturbation theory fails. The most
studied case is the band center where the Thouless expression
(2) has to be corrected due to an anomaly precisely at E = 0
for which l∞ � 105.2/W 2 instead of 96/W 2 (for details and
references, see [31] and [32]). On the other hand, one can
expect that Eqs. (16) and (17) can also be used if the energy
is not too close to the band center or band edges, with l∞
defined by Eq. (2). We have checked this conjecture for the
two lowest moments of the transmission coefficient, defined
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<T>

β
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<T>

FIG. 4. (Color online) Upper panel: 〈T 〉 versus β = 2.3x for
different coupling strengths κ; the smooth curve shows the analytical
expression Eqs. (16) and (17). Lower panel: Dependence 〈T 〉 versus
κ for different values of β. For β → ∞, the average is found to tend
towards 2κ/(1 + κ2), depicted as the smooth curve.

as T = |SLR|2 [30,31],

〈T q〉 =
√

2x3

π
exp

(
− 1

2x

) ∫ ∞

0
fq(z) exp

(
− z2x

2

)
dz,

(16)

where x = l∞/N . Here 〈· · · 〉 stands for the ensemble average,
and the functions fq for q = 1,2 are

f1(z) = z2

cosh z
, f2(z) = 2z2 + z sinh 2z

4 cosh3 z
. (17)

Our numerical data, indeed, manifest the correspondence with
the theoretical expression for the mean transmission with κ =
1; see the upper panel of Fig. 4. Here and in the following we
express the degree of localization in terms of β using Eq. (6).

In this figure (upper panel) we also present the transmission
coefficient 〈T 〉 for the case of nonperfect coupling, for which
the analytical results are absent. The maximal value of 〈T 〉
occurs for perfect coupling, κ = 1. As for nonperfect coupling,
the lower panel of Fig. 4 shows that the transmission coefficient
is symmetric with respect to the change κ → 1/κ , which is
known for models described by full random matrices in place
of Hmn in Eq. (10) (see, e.g., [3]). However, our results manifest
that even in the presence of strongly localized, β � 1, or
regular extended eigenstates, β � 1, in a closed model, this
symmetry is preserved when the system is open.

A very good correspondence was also observed for 〈T 2〉.
This gives the possibility for a discussion of the variance
of the transmission, Var(T ) ≡ 〈T 2〉 − 〈T 〉2, characterizing
mesoscopic fluctuations of the transmission. In the upper panel
of Fig. 5, we plot Var(T ) versus β for different fixed values of
κ . Once more, an excellent agreement between the analytical
expressions given by Eqs. (16) and (17) and the numerical data
based on the discrete model (10) can be seen when κ = 1. For
this case, the variance reaches a maximum for β ≈ 4.0 which is
much larger than that corresponding to maximal internal chaos
(β = 1), as one may naively expect. For β ≈ 4, the eigenstates
are extended; however, they are neither strongly chaotic nor
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FIG. 5. (Color online) Upper panel: Var(T ) versus β for different
values of κ . The solid curve corresponds to the analytical value for
Var(T ) obtained from Eqs. (16) and (17). Lower panel: Var(T ) versus
κ for different values of β.

regular. Our data demonstrate a nonmonotonic dependence of
Var(T ) on both sides of κ = 1 for some critical value βcr ∼ 4
and above. Below this critical value the single maximum of
Var(T ) occurs at perfect coupling whereas above βcr there are
two maxima on both sides.

Moving away from nonperfect coupling, a clear symmetry
is seen for the mutually inverse values κ = 10 and 0.1;
this symmetry is also observed in the lower panel of the
same figure where we plot the variance of T versus κ for
different values of β. Such a symmetry has been repeatedly
mentioned in the literature; see, for example, [5]. It follows
from the physics of many intrinsic states coupled to the same
decay channels; one of the first derivations follows from the
Moldauer-Simonius relation [33]. With κ growing beyond the
super-radiant transition at κ ∼ 1, the broad state becomes a
part of the background while the narrow resonances return to
the nonoverlap regime.

The analytical estimates (16) and (17) for 〈T 〉 are valid
for perfect coupling, κ = 1, only. On the other hand, one can
obtain an analytical expression for 〈lnT 〉 which is valid for any
value of κ and again reveals the symmetry κ ⇔ 1/κ ,

〈ln T 〉 = −2N

l∞
+ 2 ln

[
4κ

(1 + κ)2

]
. (18)

It can be derived via the product of N + 2 transfer matrices, by
tracing out two (nonrandom) matrices describing the coupling
to the leads. This expression can be used for the definition
of the localization length l∞ in the presence of nonperfect
coupling. Our numerical data for 〈ln T 〉 manifest excellent
correspondence with Eq. (18), at the band center (see Fig. 6),
as well as for different values of β (not shown).

VII. CORRELATIONS

The knowledge of the scattering matrix S defined by
Eq. (13) allows one to study many details of scattering.
One problem of both theoretical and experimental interest is
to understand how the correlations between different cross

0 200 400 600 800 1000

-20

-15

-10

-5

0

κ = 10
κ = 1
κ = 0.1

N

<
ln

T>
 - 

f(κ
)

FIG. 6. (Color online) 〈ln T 〉 − f (κ) vs N for different values of
κ . Here f (κ) = 2 ln [4κ/(1 + κ)2] [see Eq. (18)] and W = 1; l∞ =
105.2 for E = 0.

sections depend on the degree of localization for different
coupling strengths. This problem was recently addressed in
Refs. [5–7] where the non-Hermitian Hamiltonians contained,
apart from a diagonal part, bandlike random symmetric
matrices. Such models are typically studied in application to
open complex systems, like heavy nuclei and quantum dots.
There, the amplitudes Ac

m connecting intrinsic states |m〉 with
many open channels c = 1, . . . ,M � 1 were assumed to be
completely random and independent of internal dynamics. In
contrast, in our case the derivation of the Hamiltonian (10), for
specified internal disorder {εn}, does not involve any additional
assumption of randomness for the coupling to continuum. Our
main interest here is to understand how the properties of cross
section correlations depend on whether the internal eigenstates
are localized or extended, and how the correlations depend on
the coupling to the continuum.

The average cross section can be divided into two parts
corresponding to direct and fluctuating processes, respectively
(see, e.g., [5]). The direct processes correspond to a very
fast passage of an incoming particle (or wave) through the
scattering region, thus resulting in broad short-lived states
of an open system. In contrast, the fluctuating parts of cross
sections describe narrow long-lived states (resonances) known
in nuclear physics as “compound” states. In our model with
M = 2 channels, the transmission and reflection coefficients
are defined as follows:

T = |SLR|2 = ∣∣SLR
f l

∣∣2
, R = |SLL|2 = ∣∣〈SLL〉 + SLL

f l

∣∣2
,

(19)

where “f l” stands for the fluctuating parts. With the usual
definition of the (partial) cross section σab = |δab − Sab|2,
we define the fluctuating cross sections as σLR = |SLR

f l |2 and
σLL = |SLL

f l |2. Therefore, the average fluctuating part of the
two cross sections can be expressed in terms of the average
transmission T and reflection R coefficients:

〈σLR〉 = 〈T 〉, 〈σLL〉 = 〈R〉 − 〈SLL〉2. (20)

The average elements of the scattering matrix can be written
as [compare with Eq. (13)]

〈Sab〉 = 1 − κ

1 + κ
δab. (21)

This expression is well known in the RMT (see, for example,
[3]). One can show that it is also valid for the considered
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FIG. 7. (Color online) Correlations C1 (upper) and C2 (lower)
versus β for κ = 1,0.5,0.2. The solid curves are the analytical
expressions (16) and (17) for −Var(T ) and Var(T ) shown in the
upper and lower panels, respectively.

Anderson model [26]. Note that for perfect coupling, κ = 1,
the mean values 〈σLL〉 and 〈σLR〉 of the cross sections are
nothing but the average transmission and reflection coeffi-
cients, respectively.

Two types of correlations of our interest are defined as

C1 = 〈σLLσLR〉 − 〈σLL〉〈σLR〉, (22)

C2 = 〈σLLσRR〉 − 〈σLL〉〈σRR〉. (23)

In the literature they are referred to as the covariances,
widely studied in connection with transmission through
waveguides with bulk and surface scattering (see, for example,
[34] and references therein). The result of computation of
the correlations (22)–(23) is presented in Fig. 7 as a function
of the repulsion parameter β for different values of κ . For
perfect coupling, the data are well described by the analytical
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FIG. 8. (Color online) Correlations C1 (upper) and C2 (lower)
versus κ for different values of β as indicated.

expressions, since in this case we simply have

C1 = −Var(T ), C2 = Var(T ). (24)

Referring to Fig. 8 for nonperfect coupling, one has to stress
the following. First, both for C1 and C2 there is a critical value
of coupling, for which the sign of the correlation changes for
any value of β. Second, the symmetry κ ⇔ 1/κ is seen for
any value of the repulsion parameter β, and therefore for any
degree of localization in the closed model. As a whole, the
dependence of the correlations C1 and C2 on the coupling κ

and on the degree of internal chaos (in our case defined by the
repulsion parameter β) qualitatively agrees with that found in
Refs. [7] for random matrix models.

VIII. CONCLUSION

We studied the transport properties of the 1D Anderson
model in dependence on the degree of internal chaos and
strength of the coupling to the continuum. We found that the
level spacing distribution P (s) for a closed model of finite
size N is well described by the phenomenological expression
(3) where the repulsion parameter β changes from β = 0 to
β = ∞. This expression originates from the two-dimensional
Coulomb gas model with the temperature 1/β, and gives the
distribution of spacings between the nearest charged particles
moving on a ring. This fact may be used for further analytical
studies of the spectrum statistics in the finite Anderson
model.

In the closed model we established an important linear
relation between the parameter β of spectral statistics and the
normalized localization length l∞/N of the eigenfunctions.
This result still awaits a rigorous analysis. The important
point is that the parameter β can be used to describe the
transformation of extended standing waves into localized
states, when the degree of disorder is increased. In passing
from extended to localized states, our data clearly manifest the
Wigner-Dyson distribution occurring in a quite narrow region
of the disorder strength, for β ≈ 1.

Opening the system at the ends, we used the effective
non-Hermitian Hamiltonian to study the transport properties
of the model. For perfect coupling we demonstrated that both
the transmission coefficient (conductance) and its variance
can be analytically described by the theoretical expressions
developed for disordered models with continuous potentials.
This fact allows one to fully predict how the mesoscopic
fluctuations depend on the degree of internal chaos quantified
by the spectral parameter β, or, which is the same, by the
normalized localization length. For nonperfect couplings, we
have developed an expression for the mean logarithm of
the conductance, which is confirmed by our numerical data.
Our extensive numerical study of nonperfect coupling reveals
specific properties of transport characteristics in dependence
on both the internal chaos and the coupling strength to the
continuum.

Our special interest was in the study of correlations between
two cross sections related to the transmission and reflection of
scattering waves. The data show that the dependence of these
correlations on the degree of disorder, and on the coupling

011142-6



FROM CLOSED TO OPEN ONE-DIMENSIONAL ANDERSON . . . PHYSICAL REVIEW E 86, 011142 (2012)

strength with the continuum, is qualitatively of the same type
as found in Ref. [7] for models described by random non-
Hermitian matrices. Since our original model (1) is adequate
for one-mode waveguides with inserted scatterers [35], one
can suggest that the properties of scattering revealed in our
study can be experimentally observed.
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