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The high-temperature expansion coefficients of the ordinary and the higher susceptibilities of the spin-1/2
nearest-neighbor Ising model are calculated exactly up to the 20th order for the general d-dimensional
(hyper)simple-cubical lattices. These series are analyzed to study the dependence of critical parameters on
the lattice dimensionality. Using the general d expression of the ordinary susceptibility, we have more than
doubled the length of the existing series expansion of the critical temperature in powers of 1/d .
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I. INTRODUCTION

We have derived high-temperature (HT) expansions of the
ordinary and the higher susceptibilities (see the definitions in
Sec. II) of the spin-1/2 Ising model exactly up to the 20th
order for the general d-dimensional (hyper)simple-cubical
(hsc) lattices.

These expressions are obtained by interpolation of the HT
series expansion coefficients of the susceptibilities over the
integer values of the lattice dimensionality, and not by analytic
continuation. Thus they have no obvious uniqueness properties
when d is allowed to take noninteger values. A priori a different
dependence of physical quantities on the dimensionality might
result from different possible interpolations, such as that
obtained by formulating the Ising model on a fractal lattice
[1,2], whose Hausdorff dimension can be varied continuously,
or also in other ways [3]. An analogous situation is known to
occur for the N -vector model, whose HT series coefficients
can be interpolated [4] by rational functions of N . Of course,
noninteger values of d (or similarly of N ) might in some cases
have no physical meaning [5].

The expansions [6–8] of the physical quantities in powers
of 1/d, i.e., around the mean-field (MF) approximation (or in
powers [9] of 1/N , i.e., the expansions around the spherical
model limit), are related with these analytic representations in
terms of d (or of N ).

Our results not only provide reference data in a compact
form for the higher susceptibilities, which are generally diffi-
cult to compute by methods different from series expansions,
but also make a variety of other investigations possible. For
example, in discussing [10–16] how the finite-size-scaling
behavior [17] changes for systems above the upper critical
dimensionality, accurate estimates of the critical parameters
are needed as benchmarks. Our data can also help to assess
the accuracy of estimates of physical parameters obtained
from approximations of a different nature, such as the the
ε = 4 − d expansion [9,18] of the renormalization group
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theory, the fixed-dimension renormalization group [19], the
1/d expansion [6,8], the Monte Carlo (MC) simulations,
etc. It is appropriate at this point to observe that the MC
simulations become increasingly time and memory demanding
as the lattice dimensionality d grows, whereas the nonanalytic
corrections to scaling in the asymptotic critical behavior of
physical quantities, which usually make the HT series analyses
delicate matters and are the main source of their uncertainties,
become simpler and smaller [20] with increasing d. Thus even
moderately long HT expansions can lead to very accurate
estimates already for not very large d.

It is also worth mentioning that extremely long, although
approximate HT expansions of the ordinary susceptibility have
been recently generated [21] by a MC method for the hsc
lattices of dimensionalities d = 5, . . . ,8 and used to test the
accuracy of the “extended scaling” ideas [22–24] above the
upper critical dimension. The results of this investigation can
now be compared with those from the analysis of our far
shorter, but exact expansions.

The expressions presented here are obtained from recently
derived [25–27] HT and low-field series expansions of the
magnetization in presence of an external magnetic field for
the spin-1/2 Ising model with nearest-neighbor interactions.
Actually, we have produced a wider ranging set of data
including as well other spin systems in the Ising model
universality class, such as the general spin-s Ising model and
the lattice scalar-field theories with polynomial self-interaction
and thus, also for these models we are able to write exact
expressions valid for general d-dimensional hsc lattices.

Our derivation of the HT and low-field series, which sig-
nificantly extend the longest known results, even in zero field
[4,28–32], has been performed for the lattice dimensionalities
d = 1,2, . . . ,10. The expansions are carried to the 24th order
in the case of the (hyper)body-centered-cubical lattices, but
they are slightly shorter in the case of the hsc lattices: We have
obtained the 24th order for d < 5, the 22nd for d = 5, the 21st
for d = 6, and the 20th for 7 � d � 10.

The layout of the paper is as follows. In the second section,
we set our notations and tabulate the additional coefficients
obtained in our work for the expansion of the ordinary
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susceptibility as closed-form polynomials in the coordination
number q = 2d [33]. In the third section, we discuss some
results of an analysis of these series. We conclude in the last
section.

II. ISING MODEL IN GENERAL DIMENSION

The partition function of a spin-1/2 Ising system with
nearest-neighbor interactions, in the presence of an external
magnetic field H , on a finite d-dimensional lattice of N sites
can be written as

ZN (H,T ; d) =
∑
conf

exp

[
J/kBT

∑
〈ij〉

sisj + H/kBT
∑

i

si

]
.

(1)

Here si = ±1 denotes an Ising spin variable associated to
the lattice site i. The first sum extends to all configurations
of the spins, the second to all distinct pairs 〈ij 〉 of nearest-
neighbor spins and the third to all spins. We shall set K =
J/kBT , with T the temperature, J the exchange coupling,
kB the Boltzmann constant, and h = H/kBT the reduced
magnetic field. In terms of the variable v = tanhK , the HT
expansion coefficients are simple integers and so this variable
is more convenient for the data tabulation.

In the thermodynamic limit N → ∞, the specific free-
energy F(h,K; d) is defined by

−K

J
F(h,K; d) = lim

N→∞
1

N
lnZN (h,K; d). (2)

The specific magnetization M(h,K; d) is defined by

M(h,K; d) = −K

J

∂F(h,K; d)

∂h
. (3)

Our calculation of the field-dependent magnetization, has
yielded significant extensions of the existing HT expansions
in zero field for the 2n-spin connected-correlation functions
at zero wave number and zero field χ2n(K; d) (usually called
higher susceptibilities). These quantities are defined by the
successive field derivatives of the specific magnetization

χ2n(K; d) = (
∂2n−1M(h,K; d)/∂h2n−1

)
h=0

=
∑

s2,s3,...,s2n

〈s1s2...s2n〉c (4)

at zero field. The even field derivatives of the magnetization
vanish at zero field in the symmetric HT phase, while
all derivatives are nontrivial in the broken-symmetry low-
temperature phase.

The HT expansion coefficients of the susceptibilities at
a given order l in K are usually computed as sums of
contributions classified in terms of graphs having l edges. To
each graph we associate a weight depending on the symmetry
of the graph and on its free multiplicity (i.e., the number
of distinct ways per lattice site in which the graph can be
embedded in the lattice) associating each vertex to a site
and each line to a nearest-neighbor bond [34]. Only the
latter quantity, technically denoted as “free-lattice-embedding
number” within the linked-cluster HT expansion method,
depends on the lattice dimensionality. An analysis of these
numbers for the various classes of graphs, like that performed
in Refs. [6,7], leads to the conclusion that, at any given
expansion order l, the HT series coefficients of the ordinary and
the higher susceptibilities can be written as simple polynomials
in the lattice dimensionality d of degree at most l. It is then
clear that a straightforward prescription to represent the HT
series coefficients of a susceptibility as polynomials in d up
to the order Klmax , consists in repeating the computation of
the HT series for lattices of dimensionalities d = 0,1, . . . ,lmax

and then in interpolating each series coefficient with respect to
d. Unfortunately, this straightforward strategy works only for
relatively small orders of expansion, since in the case of the
hsc lattice the combinatorial complexity of the computation of
the graph-embedding numbers grows large exponentially with
the dimensionality.

Here we take advantage of a well known result that is
helpful in mitigating this difficulty. It was shown long ago
[35] that the HT expansions of the successive derivatives
of the magnetic field with respect to the magnetization
∂2n+1h/∂M2n+1 at zero magnetization, for n = 0,1 . . . contain
only star graphs (i.e., connected graphs having no articulation
vertex).

This property was sometimes used to restrict the num-
ber of graphs contributing to the HT expansion of higher
susceptibilities. What is interesting for our aims is the fact
that the lattice-embedding number of a star graph with l

edges is a polynomial in d of degree [l/2] at most. The
higher susceptibilities are simply related to the quantities
∂2n+1h/∂M2n+1

∂h

∂M (K; d) = 1

χ2(K; d)
, (5)

∂3h

∂M3
(K; d) = χ4(K; d)

χ2(K; d)4
, (6)

∂5h

∂M5
(K; d) = χ6(K; d)

χ2(K; d)6
− 10

χ4(K; d)2

χ2(K; d)7
, (7)

∂7h

∂M7
(K; d) = χ8(K; d)

χ2(K; d)8
− 56

χ4(K; d)χ6(K; d)

χ2(K; d)9
+ 280

χ4(K; d)3

χ2(K; d)10
, (8)

∂9h

∂M9
(K; d) = χ10(K; d)

χ2(K; d)10
− 120

χ4(K; d)χ8(K; d)

χ2(K; d)11
− 126

χ6(K; d)2

χ2(K; d)11
+ 4620

χ4(K; d)2χ6(K; d)

χ2(K; d)12
− 15400

χ4(K; d)4

χ2(K; d)13
, (9)

011139-2



HIGH-TEMPERATURE EXPANSIONS OF THE HIGHER . . . PHYSICAL REVIEW E 86, 011139 (2012)

∂11h

∂M11
(K; d) = χ12(K; d)

χ2(K; d)12
− 220

χ4(K; d)χ10(K; d)

χ2(K; d)13
− 792

χ6(K; d)χ8(K; d)

χ2(K; d)13
+ 17160

χ4(K; d)2χ8(K; d)

χ2(K; d)14

+ 36036
χ4(K; d)χ6(K; d)2

χ2(K; d)14
− 560560

χ4(K; d)3χ6(K; d)

χ2(K; d)15
+ 1401400

χ4(K; d)5

χ2(K; d)16
, (10)

and so on.
Then it transpires that it is sufficient to interpolate the HT

series expansion coefficients of the combinations of (higher)
susceptibilities on the rhs of Eqs. (5)–(10), etc. only over the
dimensionalities 1 � d � [l/2], to obtain the representations
of these quantities for general d through the lth order in K . Fi-
nally, from these results the representations of the single higher
susceptibilities can be easily recovered. This simple remark
leads to a decisive reduction of the combinatorial complexity
of the necessary calculations. In our case, only the knowledge
of the HT expansions of the (higher) susceptibilities for all
hsc lattices with d � 10 up to the 20th order is sufficient to
obtain the expression of these susceptibilities for general d

up to the same order. The fact that the coefficient of order
Kl in χ2n(K; d) is a polynomial in d of degree l, while the
corresponding coefficient at the same order in the expansion
of ∂2n−1h/∂M2n−1 is a polynomial of degree [l/2], provides
a simple consistency check of our computations.

A brief technical comment on a detail of the calculation is
appropriate at this point, since most of the computing time goes
into counting the number of lattice embeddings of each graph
for relatively large lattice dimensionality. The first step of the
computation consists in ordering appropriately the vertices of
the graph and in placing the first of them at the lattice origin.
The second step consists in counting the possible positions of
coordinates (x1, . . . ,xd ) for the second vertex. It is crucial
to optimize this step by using the hypercubical symmetry
to restrict the possible positions of the second vertex to the

fundamental region x1 � x2 � · · · � xd � 0. Separating each
� case into a > and an =, one gets 2d cases. The case with all
> corresponds to the inside of the fundamental region, whose
sites are representatives of a group orbit of length d!2d . A small
program precomputes the length of the orbits for the each of
the 2d cases, which is then used in the embedding program.
After fixing the first two points of the embedding, the possible
positions of the remaining vertices are restricted to relatively
few sites by the constraints given by the distances from the
first two points.

The timings for computing the HT expansion of the
d-dimensional Ising model at order n have been roughly
O(5.5n2.5d ). In particular, the 10-dimensional Ising model
at order 20 took 42 days of single-core time on a quad-core
computer with a CPU-clock frequency of 2.8 GHz.

III. HIGH-TEMPERATURE EXPANSIONS

Expressions like those obtained here have already appeared
at lower orders in the literature for the spin-1/2 Ising model
[6,36–38] with nearest-neighbor interaction. In the case of the
ordinary susceptibility χ2(K; d), they reached at most [37]
the 15th order, while for χ4(K; d) and χ6(K; d) they were
computed [38] only up to the 11th order.

For brevity, we shall report our results in Table I only
for χ2(K; d) in the case of the spin-1/2 Ising model. We
shall tabulate only the coefficients of order > 15, since the

TABLE I. The coefficients c(2)
n (d) of the HT series expansion in powers of v = tanhK for the ordinary susceptibility χ2(v; d) =∑∞

n=0 c(2)
n (d)vn of the spin-1/2 Ising model with nearest-neighbor interaction, on a (hyper)-simple-cubical lattice of general dimensionality

d . We have not reproduced here the expressions of the coefficients c(2)
n (d) with n < 16 that were already tabulated in Ref. [37] in terms of

the variable d , whereas for convenience, here we have used the variable q = 2d . It should also be stressed that also in Ref. [37] the series
coefficients refer to the expansion variable v like in this Table and not to the variable K as erroneously stated.

c
(2)
16 (d) = q16 − 15q15 + 92q14 − 317q13 + 699q12 − 2879/3q11 + 7663/3q10 + 62404/3q9 + 951902/3q8 − 29340047/5q7

− 1222190629/15q6 + 1842802906q5 − 40303287247/3q4 + 727440333881/15q3 − 436050363522/5q2 + 61362596609q

c
(2)
17 (d) = q17 − 16q16 + 106q15 − 398q14 + 963q13 − 1526q12 + 3198q11 + 53594/3q10 + 872213/3q9 + 62822606/15q8

− 1721035544/5q7 + 24837980998/5q6 − 103041998423/3q5 + 658765700268/5q4 − 1406657809016/5q3

+ 1518632487582/5q2 − 124150140027q

c
(2)
18 (d) = q18 − 17q17 + 121q16 − 492q15 + 1298q14 − 6931/3q13 + 12916/3q12 + 14580q11 + 803611/3q10 + 58164043/15q9

− 6630346477/45q8 − 18614162023/15q7 + 2490068122951/45q6 − 9120432843283/15q5 + 153498549866917/45q4

− 160125507535387/15q3 + 791246681603369/45q2 − 35100413743831/3q

c
(2)
19 (d) = q19 − 18q18 + 137q17 − 600q16 + 1716q15 − 10124/3q14 + 18163/3q13 + 31678/3q12 + 746245/3q11 + 10791224/3q10

+ 155233339/3q9 − 119093401726/15q8 + 797131628934/5q7 − 7738214717002/5q6 + 26108335469563/3q5

− 441756642770324/15q4 + 870753648372433/15q3 − 893908363283714/15q2 + 23668071765201q

c
(2)
20 (d) = q20 − 19q19 + 154q18 − 723q17 + 2230q16 − 4792q15 + 8677q14 + 15815/3q13 + 701276/3q12 + 50129237/15q11

+ 48537033q10 − 18335572678/5q9 − 109608216238/9q8 + 8227897945731/5q7 − 1179114186108353/45q6

+ 1059691462407483/5q5 − 9089741189180104/9q4 + 2855597663272273q3 − 65971006971414364/15q2

+ 2798133827599029q
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lower-order ones reproduce those already listed in Ref. [37]. A
simplification of the expressions of the coefficients is obtained
by using the variable q = 2d rather than the variable d used in
Ref. [37]. As already pointed out, we can produce analogous
formulas also for the other models in the Ising universality
class for which we have computed the HT expansions of the
magnetization, but they will not be presented here [33].

By solving recursively the equation

1/χ2(vc; d) = 0 (11)

with the Ansatz vc(d) = tanhKc(d) = a1/q + a2/q
2 + · · · an

expansion of the critical temperature in inverse powers of q

was carried in Ref. [6] to the fifth order. We confirm the results
of Ref. [6], (which are expressed in terms of the variable K

rather than v) and also, taking advantage of our data, we are
able to carry that expansion to the 12th order,

1

qKc(d)
= 1 − 1

q
− 4

3q2
− 13

3q3
− 979

45q4
− 2009

15q5
− 176749

189q6

− 6648736

945q7
− 765907148

14175q8
− 5446232381

14175q9

− 829271458256

467775q10
+ 164976684314

22275q11

+ 6495334834824112

638512875q12
· · · . (12)

A fifth order expansion of Kc(d) was also obtained [7] for
the N -vector model. All these expansions are presumably
of asymptotic character, but so far this property has been
established [7] only in the case of the spherical model
(i.e., in the large N limit).

IV. SERIES ANALYSES

We shall now very briefly discuss the numerical estimates
of some nonuniversal critical parameters of the spin-1/2
Ising models for d > 4. In particular, we shall use the
expansion of χ2(K; d) to locate the critical points Kc(d).
We shall also estimate the critical amplitudes of the five
lowest-order susceptibilities and a few universal ratios of these.
In our analysis, we have simply assumed that all (higher)
susceptibilities show MF exponents of divergence, as also our
recent work [25,26] has contributed to confirm.

The critical parameters are defined by the asymptotic
critical behaviors of the susceptibilities

χ2n(K; d) ≈ A2n(d)τ (d)−γ2n[1 + a2n(d)τ θ(d) . . .] (13)

as K → Kc(d)−. Here τ (d) = (1 − K/Kc(d)), γ2n = γ2 +
3(n − 1) is the MF exponent, (assumed to depend on the order
2n of the susceptibility, but not on the lattice dimensionality for
d > 4) and γ2 = 1. A2n(d) denotes the amplitude of the leading
singularity, a2n(d) the amplitude of the leading correction to
scaling, and θ (d) is the exponent of the leading correction to
scaling. The value of θ (d) is expected [20] to be 1/2 for d = 5,
while for d = 6 it should be 1 with a possible logarithmic
multiplicative correction. Generally, for d > 6 it is expected
that θ (d) = (d − 4)/2.

We can only briefly outline the now standard numerical
approximation techniques that we have used for these anal-
yses, since a more detailed discussion was already given in

Refs. [25,26,29]. We have mainly employed the differential
approximant (DA) method, that generalizes [39] the elemen-
tary well known Padé approximant method, to resum the HT
expansions up to the border of their convergence disks. This
technique estimates the values of the finite quantities or the
singularity parameters for the divergent quantities from the
solution, called differential approximant, of an initial value
problem for an ordinary linear inhomogeneous differential
equation of the first or of a higher order. Various differential
equations can be formed from a given series expansion. For
each of them, the coefficients are polynomials in the expansion
variable, defined in such a way that the series expansion of the
solution of the equation equals, up to some appropriate order,
the series to be approximated.

Sometimes, to determine the location of the critical points,
it is more convenient to use a smoother and faster converg-
ing modification [29,39,40], called modified-ratio approxi-
mant(MRA) of the traditional methods of extrapolation of
the series coefficient ratio sequence. The MRAs produce
sequences [K (r)

c (d)] of approximations of the critical point
that can be easily extrapolated to large orders r of expansion
and therefore in some cases they may yield more accurate
estimates than the DAs for which the analogous extrapolation
is somewhat arbitrary. Let us finally stress that when using
the DAs the evaluation of the uncertainties has not the same
meaning as for MCs, but remains subjective to some extent and
only indicates a small multiple of the spread of the values of a
conveniently large sample of the highest-order approximants,
formed from all or most expansion coefficients. If the sample
averages remain stable as the order of the series grows and it
can be assumed that stability indicates convergence, then the
spread can be seen as a reasonable measure of the uncertainty
of the results.

For the critical inverse temperatures Kc(d) of the systems
under study, we consider our best estimates those reported
in Table II. They are obtained from the HT expansion of the
ordinary susceptibility χ2(K; d) by extrapolating to large order
of expansion, a few (from four to six) highest-order terms
of the MRA sequence of estimates [K (r)

c (d)] of the critical
inverse temperature, basing on a fit to their simple asymptotic
behavior [29]

K (r)
c (d) = Kc(d) − �(γ2)

�(γ2 − θ )

θ2(1 − θ )a2(d)

r1+θ
+ o

(
1

r1+θ

)
.

(14)

A small multiple of the fit error is taken as the uncertainty of
the final estimate.

In the case of six-dimensional lattices, we expect θ = 1.
Therefore the second term on the right-hand side of Eq. (14)
vanishes and it must be replaced by a higher-order term
reflecting the exponent of the next-to-leading correction to
scaling in Eq. (13). In the d = 5 case, in which one expects
θ = 1/2, the coefficient of 1/r1+θ in Eq. (14) appears to be
numerically negligible, so that the situation is similar to that of
the six-dimensional case. In general, to avoid making assump-
tions on the values of the exponents of the next-to-leading
correction to scaling, we have assumed an asymptotic form
K (r)

c = Kc + w/r1+ε and determined Kc, w, and the effective
exponent ε = ε(d) by a best fit to the few highest-order terms

011139-4



HIGH-TEMPERATURE EXPANSIONS OF THE HIGHER . . . PHYSICAL REVIEW E 86, 011139 (2012)

TABLE II. Our estimates of the critical inverse temperatures Kc(d), obtained from the ordinary susceptibility expansions, for several hsc
lattices of dimensionality d > 4. We have marked by an asterisk the estimates in the cases in which expansions extend beyond the 20th
order [26]. In particular for d = 5 our series extend to the 22nd order, and for d = 6 to the 21st order.

Source Kc(5) Kc(6) Kc(7) Kc(8) Kc(9) Kc(10)

HT This work 0.113920(1)* 0.092298(1)* 0.0777094(2) 0.067155(1) 0.059148(1) 0.052858(1)
HT [37,41] 0.113935(15) 0.092295(3) 0.077706(2)
HT [42] 0.113915(3)
MC [21] 0.113925(12) 0.092290(5) 0.077706(2) 0.067144(4)
MC [12,13] 0.11391(?) 0.09229(4)
MC [14–16] 0.09229(4) 0.0777(1) 0.06712(4)
MC [10] 0.1139152(4)
MC [11] 0.1139139(5)

of the sequence (K (r)
c ). We thus obtain the values ε = 1.1(2)

for d = 5 and ε = 1.5(2) for d = 6. For d > 6, the values of ε

thus obtained are larger. Therefore our estimates consistently
confirm the above mentioned expectations about θ (d), and
suggest that in d = 5 and d = 6 the asymptotic behavior of
Eq. (14) is actually determined by the next-to-leading, rather
than the leading, correction to scaling. On the other hand, for
d = 5 and d = 6, a measure of the exponent θ (d) of the leading
corrections to scaling, whose amplitudes a2n(d) are probably
not negligible in spite of the fact that they are not seen by the
MRAs, can be performed studying by DAs the critical behavior
of appropriate universal ratios of higher susceptibilities, such
as those introduced below in Eqs. (16)–(18). In these ratios
the dominant critical singularities cancel, while the leading
corrections to scaling generally survive and thus can be
detected by DAs. This was already discussed in Ref. [26].
In conclusion, all these results are in reasonable agreement
with the expectations [20,21] indicated above.

In the Table II, we have also reported a few of the most
recent estimates of the critical inverse temperatures obtained
in the literature either from shorter HT series or from MC
simulations, for the values of d considered in our study. Since
for d > 4 no logarithmic factors are expected to modify the
leading MF behavior of the physical quantities, our series
analyses are likely to yield estimates of a high accuracy,
which moreover seem to improve with increasing lattice
dimensionality, both because of the decreasing influence of the
corrections to scaling and of the increasing lattice coordination
number. All the results obtained from MRAs are consistent,

within their uncertainties, also with the analyses employing
DAs. In d = 5 dimensions, our estimate is slightly larger
than other estimates [10,11] of similar nominal accuracy,
but can be essentially considered compatible with those of
Refs. [21,37,41,42]. It is of interest to quote here also the
estimate Kc(5) = 0.113919(2) obtained from second-order
quasidiagonal DAs that use all series coefficients up to
order 20 � l � 22. The same value, with a slightly larger
uncertainty, is obtained from DAs using all series coefficients
up to order 18 � l � 20. Generally, for higher values of d,
our estimates of the critical inverse temperatures do not differ
much from the old values, but they show a greater accuracy. For
d > 7, the estimates of Kc(d) obtained from the 1/d expansion
of Eq. (12) reproduce our MRA values within the errors.

Let us now turn to the critical amplitudes A2n(d) of the
susceptibilities χ2n(K; d) with n = 1,2, . . . ,5, that can be
determined, in terms of the previously estimated values of
Kc(d), by extrapolating the effective amplitudes

Aeff
2n (K; d) = [1 − K/Kc(d)]γ2nχ2n(K; d) (15)

to K = Kc(d), namely A2n(d) = Aeff
2n (Kc; d). Our analysis

uses first- and second-order DAs of the HT expansion of
Aeff

2n (K; d).
In the Table III, we have reported our series estimates of

A2(d), A4(d), A6(d), A8(d), and A10(d) normalized to their
values in the MF approximation [43]: AMF

2 = 1, AMF
4 = −2,

AMF
6 = 40, AMF

8 = −2240, and AMF
10 = 246400. As expected,

these ratios tend to unity as d → ∞. For comparison, we
have also reported the corresponding MC results of Ref. [21].

TABLE III. Our estimates of the critical amplitudes A2n(d) of the susceptibilities χ2n(K; d), normalized to their values AMF
2n in the MF

approximation for several hypersimple-cubical lattices of dimensionality d > 4. We have marked by an asterisk the estimates obtained from
series extending beyond the 20th order. (For d = 5 our series extend to the 22nd order, and for d = 6 the 21st order.)

Amplitude Source d = 5 d = 6 d = 7 d = 8 d = 9 d = 10

A2(d)/AMF
2 This work 1.32(1)* 1.179(2)* 1.124(2) 1.096(2) 1.079(1) 1.067(3)

A4(d)/AMF
4 This work 1.40(1)* 1.20(1)* 1.138(2) 1.105(2) 1.085(1) 1.068(3)

A6(d)/AMF
6 This work 1.49(1)* 1.22(1)* 1.147(3) 1.114(2) 1.091(2) 1.077(3)

A8(d)/AMF
8 This work 1.57(1)* 1.25(1)* 1.165(2) 1.122(2) 1.097(3) 1.081(4)

A10(d)/AMF
10 This work 1.65(2)* 1.28(1)* 1.19(1) 1.13(1) 1.103(4) 1.085(4)

A2(d)/AMF
2 MC [21] 1.291(3) 1.1606(17) 1.1008(5) 1.0836(5)

A2(d)AMF
2 HT [20] 1.311(9) 1.168(8)
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The results of this simulation are slightly, but systematically
smaller than our HT estimates. This minor disagreement
cannot be due to the very small difference in the estimates
of Kc(d) used in the two calculations, but must probably
be ascribed to an underestimate of the uncertainties inherent
in the MC generation of the HT series. On the other hand,
the old estimates [20] of the same amplitudes obtained from
an analysis of the 11th order HT series of Ref. [6] are
compatible with ours. Estimates for A2(d) have also been
obtained [8] from a third-order expansion in 1/d, but they
are not accurate enough. No comparison at all was possible
for A4(d), . . . ,A10(d) for which we do not know of other
estimates in the literature.

Finally, we have computed also for d > 6, the critical values
of a few universal ratios of higher susceptibilities such as the
lowest-order terms in the sequences I+

2r+4(d), A+
2r+4(d), and

B+
2r+8(d), defined by

I+
2r+4(d) = lim

K→K−
c

χ2(K; d)rχ2r+4(K; d)

χ4(K; d)2r+1
= A2(d)rA2r+4(d)

A4(d)2r+1

(16)

A+
2r+4(d) = lim

K→K−
c

χ2r (K; d)χ2r+4(K; d)

χ2r+2(K; d)2
= A2r (d)A2r+4(d)

A2r+2(d)2

(17)

B+
2r+8(d) = lim

K→K−
c

χ2r (K; d)χ2r+8(K; d)

χ2r+4(K; d)2
= A2r (d)A2r+8(d)

A2r+4(d)2

(18)

for r > 0. These universal ratios were introduced in Ref. [44]
and were studied in detail for d = 4,5,6 in Refs. [25,26]. For
the first few values of r = 1,2,3, we have checked that as
expected, also for d > 6, they take the MF values: I+MF

6 = 10,

I+MF
8 = 280, I+MF

10 = 15400, A+MF
8 = 14/5, A+MF

10 =
55/28, and B+MF

10 = 154 within a relative accuracy generally
higher than 10−3, although the single amplitudes entering into
the ratios reach their MF value only in the d → ∞ limit.

V. CONCLUSION

We have represented in a compact form, as simple
polynomials in the lattice dimensionality, the HT expansion
coefficients of the (higher) susceptibilities in the case of
the spin-1/2 Ising model on the hsc lattices of general
dimensionality d. Our calculations add five more orders to the
existing expansions of the ordinary susceptibility for general
d and nine more orders to those of the fourth- and sixth-order
susceptibilities. For the susceptibilities of order greater than
the sixth no such data already exist in the literature.

An analysis of the series for lattice dimensionality d > 4
yields estimates of nonuniversal parameters that compare
well with the previous results whenever available, but are
generally more accurate. Our estimates of a few universal ratio
amplitudes provide a high-accuracy check that, unsurprisingly,
they take MF values for d > 4.

Finally, using the general d expression of the ordinary
susceptibility, we have been able to expand up to the 12th order
the critical temperature in powers of 1/d more than doubling
the length of the result already known in the literature.
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