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Detection of a long-range correlation with an adaptive detrending method
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We propose a methodology of estimating the scaling exponent for a long-range correlation in a nonstationary
time series from the perspective of the regression analysis. By an adaptive degree determination of a regression
polynomial, the proposed methodology is designed to properly remove various types of trends embedded in the
nonstationary signal so that the scaling exponent can be estimated without artificial crossovers. To show the
validity of the proposed methodology, we applied it to the detrended fluctuation analysis and tested it out against
correlated data superimposed by various types of trends. It turned out that, unlike the conventional technique,
our approach was capable of eliminating artificial crossovers. We also discuss the statistical characteristics of the
proposed method with regard to the estimation of the scaling exponent.
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I. INTRODUCTION

The long-range correlation in diverse complex systems
has been widely investigated [1] and is often quantified in
terms of the scaling exponent estimated by using various
methods [2]. In the case of a nonstationary signal, which
is usually associated with trends, it is important to remove
the trend embedded in the signal when the trend is due
to external conditions, not to the intrinsic dynamics of the
system. To this end, methods involving a process of elimination
of the trend, referred to as detrending, have been proposed
and applied to numerous fields. Examples of these methods
are the detrended fluctuation analysis (DFA) [3,4] and the
detrended moving average analysis (DMA) [5]. In addition, a
method for the long-range correlation between different time
series in the presence of nonstationarity, called the detrended
cross-correlation analysis (DCCA) [6], was also introduced.

In the case of DFA, for example, the crossover is known
to appear, and this results from nonconstant scaling exponents
in scale. The crossover in DFA refers to a point at which two
straight lines representing corresponding scaling exponents
have different slopes. When the crossover exists, the value of
the scaling exponent is not a constant but depends on scales.
Thus, the crossover indicates different scaling behaviors
depending on the range of scales and implies the correlation
property of the signal differs in scales of time or space.
The cause of the crossover has been extensively investigated
[7–10]; in particular, it was shown that the appearance of the
crossovers in DFA is closely related to the trend embedded in
a time series [7,8].

In general, the cause of the crossover is twofold. One cause
is the intrinsic property of the dynamics of the system, and
the other is an artifact caused by the trend not being properly
removed. When the existence of the crossover is related to
the latter cause, the onset of the crossover reduces not only
the scaling range but the accuracy of estimation. Thus, from
a methodological perspective, the appearance of the crossover
is an important issue in detecting the long-range correlation of
a nonstationary signal.
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In the conventional methods [3–6], a local trend is estimated
by introducing a regression polynomial of a predetermined
degree, irrespective of the scale (or box size). Generally
speaking, as the subset size increases, the trend becomes more
involved. In addition, the strength of the trend can be different
from samples in a given subset size. Thus, it is intuitively
legitimate to assume that different subset sizes and samples
may require a regression polynomial with different degrees;
furthermore, a polynomial of a higher degree may be necessary
for a better fitting as the subset size increases. In this sense,
it is desirable to have a systematic and consistent scheme for
determining the degree of the regression polynomial that takes
into account the possible dependence of the degree on the
subset size as well as different samples.

In this paper, we investigate a way of removing the
trend in a nonstationary signal from the perspective of the
regression analysis [11] and propose an effective methodology
of eliminating an artificial crossover systematically by the
regression polynomial of different degrees depending on both
the subset size and samples. The determination of the degree
can be accomplished by utilizing a statistical hypothesis test
with a predetermined significance level as the parameter.
An underlying assumption of both the conventional and the
proposed DFAs is that trend in a time series can be efficiently,
if not entirely, removed by a regression analysis on the time
series. The proposed DFA is designed to eliminate trend
from a signal more effectively than the conventional DFA
by an adaptive determination of the degree of the regression
polynomial. The crux is an adaptive determination of the
degree of a regression polynomial with respect to not only
the subset size but different samples within a given subset
size. The proposed DFA may work best for a polynomial trend.
However, since any nonpolynomial trend can be approximated
by a polynomial of a certain degree, the proposed method
can be applied to, at least approximately if not exactly,
any nonpolynomial trend. To illustrate the usefulness of
the proposed methodology, in this paper, we applied the
methodology to DFA. The proposed methodology, however,
can be readily applicable to any method, such as DMA and
DCCA, that adopts a regression polynomial as a means of
removing nonstationarities.

This paper is organized as follows. In Sec. II, we formalize
the proposed methodology, called adaptive DFA (ADFA),

011135-11539-3755/2012/86(1)/011135(5) ©2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.86.011135


CHANG-YONG LEE PHYSICAL REVIEW E 86, 011135 (2012)

by explaining how the statistical hypothesis is applied to
the adaptive determination of the regression polynomial in
DFA. This section is followed by experimental results and
a discussion of testing ADFA against correlated signals
superimposed by trends. We also compare the results for both
DFA and ADFA. The last section contains a summary and
conclusion, including future studies.

II. ADAPTIVE DETRENDED FLUCTUATION ANALYSIS

For a given time series of x1,x2, . . . ,xN , DFA first divides
the time series into N/n subsets (or boxes) of an equal
size n and calculates the accumulated time series Yn(i,k) =∑(i−1)n+k

j=1 xj , where i (i = 1,2, . . . ,N/n) is the subset index
and k (k = 1,2, . . . ,n) denotes the data points in each subset.
With the accumulated time series Yn(i,k) of N/n subsets, DFA
looks for scaling behavior of the fluctuation function F (n) of
Yn(i,k) as the box size n varies:

F (n) ∝ nβ, (1)

where β is the scaling exponent and F (n) is given as

F 2(n) = n

N

N/n∑

i=1

1

n

n∑

k=1

[Yn(i,k) − ŷn,p(i,k)]2. (2)

Here, ŷn,p(i,k) is an estimate of a regression polynomial
yn,p(i,k) of the degree p for Yn(i,k), evaluated at the kth value
of the ith subset of the size n. Thus, F 2(n) is an average
fluctuation over N/n subsets of a given size n.

To demonstrate how to adaptively determine the degree
p, we focus on a subset of the size n and drop the subset
index i because the same scheme can be applied to the other
subsets of the same size. With this convention, the regression
polynomial yn,p(k) of the degree p fitted in the subset size n

can be expressed as

yn,p(k) = a0 + a1zk + a2z
2
k + · · · + apz

p

k + εk, (3)

where the ar ’s (r = 0,1, . . . ,p) are unknown parameters to
be estimated. In addition, it is usually assumed that the error
εk ∼ N (0,σ 2), where “∼” hereafter stands for “is distributed
as.”

With a subset of size n, the total variance of Yn(k)’s, called
the total sum of squares (SST), can be decomposed into two
parts:

n∑

k=1

[Yn(k) − Ȳ ]2

=
n∑

k=1

[Yn(k) − ŷn,p(k) + ŷn,p(k) − Ȳ ]2

=
n∑

k=1

[Yn(k) − ŷn,p(k)]2 +
n∑

k=1

[ŷn,p(k) − Ȳ ]2, (4)

where Ȳ = 1
n

∑n
k=1 Yn(k) and the cross term vanishes. The

vanishment of the cross term stems from estimating ai in
Eq. (3). The usual method of estimating ai is the so-called
method of least squares, with which the cross term can be
shown to vanish by minimizing

∑
k ε2

k with respect to ai . See
Ref. [11] for a detailed proof. The first term on the right hand

side of Eq. (4) is called the sum of squares due to residual errors
(SSE) XSSE (or the residual sum of squares), and the second
term is the sum of squares due to regression (SSR) XSSR. SSR
represents the amount of error that is removed by fitting the
regression polynomial to the data, while SSE is the amount of
error that still remains after the regression polynomial has been
fitted. In this sense, SSE can be regarded as a pure fluctuation.
Thus, from the perspective of the regression analysis, F 2(n) is
nothing but the average of XSSE/n over the number of subsets
N/n.

The adaptive determination of p is designed by utilizing
the probability distribution of the following statistics [12]:

F ≡ XSSR/p

XSSE/(n−p−1)
∼ F (p,n−p−1). (5)

That is, the ratio of SSR to SSE divided by its degrees of
freedom is distributed as the Fisher-Snedecor distribution
(or F distribution) with parameters p and n−p−1. The
F statistics is used for the inference about the difference
between SSR and SSE. The degree p is determined by
using Eq. (5) as the statistics for a hypothesis test with
a predetermined significance level in such a way that the
regression polynomial of the degree p significantly contributes
to SSR. More specifically, we find the highest p with which
the corresponding test statistic F0, the computed F value of
Eq. (5), satisfies

F0 > Fα(p,n−p−1), (6)

where Fα(p,n−p−1) is the critical F value with the signif-
icance level α, the only free parameter. That is, the terms of
a degree higher than p do not contribute significantly to SSR.
In this way, the proposed scheme systematically takes into
account the possible dependence of the polynomial degree on
both different subset sizes n and different subsets within a
given size.

An effective implementation of the suggested methodology
can be accomplished by rewriting the regression model of
Eq. (3) in terms of the orthogonal polynomials.

yn,p(k) = b0φ0(zk) + b1φ1(zk) + · · · + bpφp(zk) + εk, (7)

where φr (zk) is a rth-degree polynomial in zk and the
polynomials are orthogonal over the z set:

n∑

k=1

φr (zk)φs(zk) = 0 if r �= s. (8)

The orthogonal polynomials are especially useful when the
zk’s are equally spaced, which is mostly satisfied in the case
of a time series. In this case, the orthogonal polynomials are
given recursively as (for zk = 1,2, . . . ,n) [13]

φ0(zk) = 1,φ1(zk) = zk − n + 1

2

and, for r � 1,

φr+1(zk) = φr (zk)φ1(zk) − r2(n2 − r2)

4(4r2 − 1)
φr−1(zk).

Because of the orthogonality, the least-squares estimate of
coefficient br in Eq. (7) is solely contributed by φr , independent
of the other φs’s (s �= r). Thus, each br can be estimated
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independently from other bs’s (s �= r) [11]. This implies that
SSR contributed by φr is independently evaluated from φs’s
(s �= r) and that it can be separately decided whether φr should
be included in the resulting regression polynomial. When φr ’s
(r � s) are included in the regression polynomial, Eq. (5) for
each φr (r = 1,2, . . . ,s) becomes

F = XSSR,r

XSSE/(n−s−1)
∼ F (1,n−s−1), (9)

where XSSR,r is SSR contributed by φr . With the above scheme
and b0 = Ȳ , we start with φ1 and successively include an
orthogonal polynomial of higher degree until F0 evaluated by
Eq. (9) indicates an insignificant contribution to SSR. That is,
we stop adding φs when F0 < Fα(1,n−s−1).

The usage of the orthogonal polynomials has the additional
advantages of less time complexity and higher accuracy. The
estimate of br in Eq. (7) is explicit so that no solutions of
sets of simultaneous equations are needed, as is the case for
Eq. (3). This also enables us to avoid any possible roundoff
error, known as the ill-conditioned problem [14], which may
occur and is susceptible to the matrix calculation required in
the conventional method, especially for a high degree.

III. EXPERIMENTAL RESULTS AND DISCUSSION

We demonstrate an advantage of the proposed method
(ADFA) by applying it to an artificially generated correlated
signal, which is additively superimposed by various trends:
quadratic, periodic, and power-law trends [7]. We also applied
DFA to the superimposed signal for comparison. The results,
as displayed in Fig. 1, show that the scaling behavior of F (n)
by using DFA at relatively small subset sizes n is different
from that at large n’s. As a result, there exist crossovers,
marked by arrows, at which the fluctuation tends to increase
by a different rate with increasing subset size. Considering
that the trend is accumulated and becomes more dominant
as the subset size increases, the regression polynomial of a
fixed degree may not suffice to properly eliminate the trend. In
contrast, no crossover is found when ADFA is applied to the
superimposed signal, which implies that ADFA successfully
removes the trends. Moreover, the estimated scaling exponents
are consistent, within statistical errors, regardless of the type
of the trend. This also supports the validity of the proposed
method. In addition, the results for ADFA are insensitive to
the significance level of 0.01 < α < 0.1 in the hypothesis test
statistics [data not shown] [16].

The inset of Fig. 1 depicts the dependence of the degree
of the regression polynomial in ADFA on the subset size n.
As we expect, the degree is not a constant but varies in n,
and a polynomial of a higher degree is adopted as n increases.
Furthermore, the degree also varies in subsets for a given
subset size as the error bars indicate. These findings imply
that the adaptive determination of the degree can properly take
into account the contribution from the trends in not only the
different subset sizes but also different subsets within the same
size.

In general, the higher the degree p of the regression
polynomial is, the better the polynomial fits to the data. As
a result, SSR in Eq. (4) becomes larger for a higher degree
p. Given that SST is a constant for given data, the observed

FIG. 1. Log10-log10 plots of the fluctuation F (n) vs the subset size
n for a correlated signal, superimposed additively by various trends.
The correlated signals are generated by using the method proposed in
Ref. [15]. For DFA, F (n) vs n is plotted for the quadratic (open
squares), periodic (open circles), and power-law (open triangles)
trends together with the arrows indicating the crossover points. For
ADFA, F (n) vs n is plotted for the same superimposed trends:
quadratic (solid squares), periodic (solid circles), and power-law
(solid triangles) trends. By using ADFA with a significance level α=
0.1, we obtained the scaling exponents, estimated by the least-squares
fit (dotted lines), β =0.68,0.67,0.68 for the quadratic, periodic, and
power-law trends, respectively. The plots for periodic and power-law
trends are vertically shifted for clarity. The inset shows a plot of the
average degree of the regression polynomial over the N/n subsets
vs n, where ADFA is applied to the correlated signal superimposed
by the quadratic trend. The error bars are twice the estimated sample
standard deviations from the N/n subsets for each n.

tendency of a higher p for large n implies that SSE by ADFA
becomes smaller than that by DFA as n increases. With F (n)
being nothing but the average of SSE over subsets, we can
infer that the difference between F (n)’s obtained by DFA and
ADFA becomes considerable as n increases. This, in turn,
implies that estimated β by using ADFA is smaller than that
by using DFA.

To empirically verify the above assertion, we estimate the
scaling exponents β for the correlated time series of known
correlation exponents γ [15] by using both ADFA and DFA.
As shown in the inset of Fig. 2, not only is F (n) by ADFA
smaller than that by DFA, but the disparity becomes marked
as n increases. Thus, we expect that the scaling exponent β

obtained by ADFA is smaller than that by DFA, as shown in
Fig. 2. Equally important, we find that the scaling exponents
of ADFA is smaller than those of DFA by an approximately
constant amount regardless of γ ’s as the estimated slope
(≈0.47), being close to 0.5, indicates. This suggests that the
disparity is consistent and thus not due to any irregularity of
the proposed method.

The disparity can be further investigated in terms of the
probability distribution of a random sample. Consider a ran-
domly generated (thus uncorrelated) time series x1,x2, . . . ,xn

of a mean μ and a variance σ 2. Then, an accumulated
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FIG. 2. Plots of the scaling exponent β vs the correlation exponent
γ [15] obtained by DFA (open squares) and ADFA (solid squares)
with the correlated data of various γ ’s. The solid line is a least-squares
fit of the results of ADFA being β ≈ 0.81 − 0.47γ , and the dotted
line represents the theoretical relation between β and γ for DFA,
β = 1 − γ /2 [17]. The correlated signals are generated by using the
method proposed in Ref. [15], and the error bars are the standard
deviation of 10 independent trials. The inset shows the log10-log10

plots of F (n) vs n obtained by DFA (open squares) and ADFA (solid
squares) when γ = 0.65.

value Yn(k) = ∑k
i=1 xi of xi’s is approximately distributed as

N (kμ,kσ 2) by the central limit theorem. From the theory of
the regression analysis [11] and the definition of the chi-square
distribution [12], it follows that

n∑

k=1

[Yn(k) − ŷn,p(k)]2

kσ 2
∼ χ2(n − p − 1), (10)

where χ2(n − p − 1) denotes a chi-square distribution with
n−p−1 degrees of freedom. By making an approximation of
k ≈ 〈k〉 = n/2, Eq. (10) becomes

Y 2
n,p ≡ 2

nσ 2

n∑

k=1

[Yn(k) − ŷn,p(k)]2 ∼ χ2(n − p − 1). (11)

With Eq. (11), we obtain an analytic expression of F 2(n) in
Eq. (2) for an uncorrelated signal as

F 2(n) = σ 2

2

〈
Y 2

n,p

〉 ≈ σ 2

2
(n − p − 1), (12)

where 〈·〉 represents an average over N/n subsets and we have
used the fact that the expectation value of a random variable
being distributed as χ2(n−p−1) is n−p−1. From this, we
find that the fluctuation F 2(n) depends not only on the subset
size n but also on the degree p.

In particular, when p (	n) is independent of n, which is
the case for DFA, F (n) ∝ n1/2, so that the scaling exponent
β0 ≈ 1/2 for an uncorrelated signal [3]. For the case of ADFA,
on the contrary, p varies in samples of a given subset size n

and tends to increase in n, as shown, for instance, in the inset
of Fig. 1. This suggests that F (n) by ADFA is expected to be
smaller than that by DFA. Furthermore, due to the increasing

tendency of p as n, the difference in F (n) between DFA and
ADFA becomes prominent as n increases. Thus, the scaling
exponent β0 for uncorrelated data obtained by ADFA should be
less than 1/2, although it is highly unlikely to find analytically
the numerical expression of β0 for ADFA due mainly to the
nontrivial dependence of p on both the n and N/n subsets.

Nevertheless, similar to the case of DFA in which 1/2 <

β < 1 indicates a long-range correlation, the existence of a
long-range correlation in a time series can be tested by using
ADFA. That is, we can infer that a long-range correlation
exists in a signal when the scaling exponent β is in the range
of β0 <β <β0 +1/2, where β0 is the exponent for a randomly
shuffled (thus uncorrelated) version of the original time series.

IV. SUMMARY AND CONCLUSION

In this paper, we proposed a methodology of estimating the
scaling exponent for a long-range correlation in a nonstation-
ary time series by properly removing any trend embedded in
the time series. The proposed methodology was designed to
determine adaptively the degree of a regression polynomial in
terms of the statistical hypothesis test with a significance level
as the parameter. The adaptively determined degree varied
from not only different subset sizes but different subsets within
a given subset size.

To demonstrate the usefulness of the proposed method-
ology, we applied it to DFA and tested the implemented
DFA, an adaptive DFA (ADFA), out against correlated data
superimposed by various types of trends. It turned out that
ADFA could estimate the scaling exponent without artificial
crossovers, in contrast to the conventional technique. This
result showed that ADFA was capable of eliminating an
artificial crossover systematically by the regression polyno-
mial of different degrees depending on both the subset size
and subsets. We also analytically discussed the statistical
characteristics of ADFA for an uncorrelated signal.

This study is the first step in the estimation of the scale
exponent from the perspective of the adaptive determination of
the polynomial degree. Any variation of the proposed method-
ology would be interesting and merit further investigation.
Although, in this paper, we used the F distribution as the test
statistic, other test statistics, such as the sample coefficient
of determination (r2 ≡ XSSR/XSST), could be an alternative
and deserve to be investigated. In addition, the proposed
methodology can be readily implemented to DMA and DCCA,
in addition to DFA, which adopt a regression polynomial as a
means of removing nonstationarities. Further studies regarding
not only the methodology itself but also practical application
would be valuable and support the advantage of the adaptive
determination of the polynomial degree in estimating the
scaling exponent.
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