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Stochastic resonance in multistable systems: The role of dimensionality
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The theory of stochastic resonance in multistable systems is extended to account for both direct transitions
between all stable states present and indirect ones involving intermediate states. It is shown that to satisfy these
requirements the dynamics needs to be embedded in phase spaces of dimension equal to at least two. Under well
defined conditions, the conjunction of the presence of intermediate states and the multidimensional character of
the process leads to an enhancement of the response of the system to an external periodic forcing.
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I. INTRODUCTION

In recent work by the present author the theory of stochastic
resonance was extended to account for the situation where
fluctuation-induced transitions between an initial and a final
stable state occur through at least one intermediate stable state
[1]. In addition to the existence of an optimal noise strength, it
was found that there also exists a driving frequency-dependent
optimal number of intermediate states for which the response
to a weak external periodic forcing is maximized.

As for the majority of works on stochastic resonance
reported in the literature, the above study was limited to
systems amenable to a single variable, for which there
necessarily exists a potential function generating the dynamics.
From the standpoint of transitions between states, the principal
limitation of this setting is that transitions between (initial)
state 1 and (final) state n necessarily occur through successive
visiting of the (intermediate) states i in a prescribed order.
The objective of the present work is to extend this approach
to account for both direct transitions between the stable states
present and indirect ones involving intermediate states. Such
mixed transitions constitute the rule rather than the exception
in many situations of interest, from the different modes of
atmospheric circulation [2] to the nucleation of self-assembly
of nanosize materials [3].

Technically, the topological constraints needed to accom-
modate such transitions entail that the evolution is embedded
in phase spaces of at least two dimensions. In what follows
we consider the first nontrivial case of three simultaneously
stable steady states in systems involving two variables x and
y. We also require that the evolution of these variables derives
from a potential function U (x,y), which in the absence of
periodic forcing should possess three minima located on the
stable states xi and yi (i = 1,2,3) and should allow for all
possible transitions between these states.

The general formulation is presented in Sec. II. Section III
is devoted to the long-time linear response. Transient behavior
is considered in Sec. IV and the main conclusions are
summarized in Sec. V.

II. FORMULATION

The evolution of a two-variable potential system subjected
to additive periodic and stochastic forcings can be cast in the
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form

dx

dt
= −∂U (x,y,t)

∂x
+ F1(t),

(1)
dy

dt
= −∂U (x,y,t)

∂y
+ F2(t),

where the stochastic forcings Fi are assimilated to uncorrelated
Gaussian white noises of variances q2

i ,

〈Fi(t)〉 = 0,
(2)

〈Fi(t)Fj (t ′)〉 = q2
i δ

kr
ij δ(t − t ′), i,j = 1,2.

We decompose the potential U in the following way, compat-
ible with its additive character:

U (x,y,t) = U0(x,y) − εg(x,y) sin(ωt + φ), (3)

where U0 is the potential in the absence of the periodic forcing,
g(x,y) is a coupling function, and ε, ω, and φ stand for the
amplitude, frequency, and phase of the forcing, respectively.

It is by now well established [4] that if the noise strength is
sufficiently weak, Eqs. (1) can be mapped onto a discrete-state
rate process describing the transfer of probability masses pi

(i = 1,2,3) between the attraction basins of the stable states
i (i = 1,2,3) as depicted in Fig. 1. The corresponding kinetic
equations read

dpi

dt
=

3∑
j=1

Mij (t)pj , i,j = 1,2,3. (4)

The configuration in Fig. 1(a) is the relevant one for the
purposes of the present study. The transfer matrix M is then a
full 3 × 3 matrix

M

=

⎛
⎜⎝

−[k12(t) + k13(t)] k21(t) k31(t)

k12(t) −[k21(t) + k23(t)] k32(t)

k13(t) k23(t) −[k31(t) + k32(t)]

⎞
⎟⎠,

(5)

where kij are the individual transition rates between state i and
state j . Notice that in the one-dimensional contraction of the
problem the scheme in Fig. 1(a) collapses to that in Fig. 1(b)
and the matrix M becomes tridiagonal (k13 = k31 = 0). This
brings us to the case studied in previous work by the present
author.
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FIG. 1. Schematic representations of two types of configurations
of a discrete-state process describing the transfer of probability
masses between the attraction basins of three coexisting stable steady
states.

As is well known, in an autonomous system, in the weak
noise limit and under the conditions of existence of a potential
the most probable path of transition between two stable states
xi,yi and xj ,yj goes through an intermediate unstable state of
the saddle point type xij ,yij lying on the manifold separating
the corresponding attraction basins. Taking for simplicity q2

1 =
q2

2 = q2, one may then write the transition rate k
(0)
ij in the

form [5,6]

k
(0)
ij = 1

2π

(
σ

(1)
i σ

(2)
i

)1/2

(
σ+

ij

|σ−
ij |

)1/2

exp

(
−	U

(0)
ij

q2/2

)
. (6)

Here 	U
(0)
ij is the potential barrier, i.e., the difference of values

of U0 on the unstable state ij and the initial stable state i,
and is necessarily a positive quantity; σ

(1)
i and σ

(2)
i are the

eigenvalues of the Hessian of U0 on the stable state i; and σ±
ij

stand, respectively, for the unstable and the stable eigenvalue
of the Hessian evaluated on the saddle point ij .

The presence of an external time-dependent forcing will
in principle modify the kinetics of the transitions as given
by Eq. (6). In what follows we will adopt the adiabatic
approximation [7,8], according to which individual transitions
from state i to state j adjust instantaneously to the forcing in
the sense that they are given by an extended form of Eq. (6)
in which U0 is replaced by the full time-dependent potential
as given by Eq. (3). This is expected to hold as long as the
forcing frequency ω is sufficiently small. The corresponding

time-dependent potential barrier then becomes

	Uij = 	U
(0)
ij − ε	gij sin(ωt + φ), (7)

where 	gij is the difference of the values of the coupling
function between the saddle point and the initial state.
Furthermore, we will be interested in the linear response to the
forcing. This will allow us to expand the ε-dependent terms in
Eq. (5) and keep the first nontrivial order

kij (t) = k
(0)
ij + εδkij sin(ωt + φ), (8)

where k
(0)
ij is given by Eq. (6) and

δkij = 2

q2
k

(0)
ij 	gij . (9)

Notice that by virtue of Eq. (3) and inasmuch as the Hessian in-
volves second derivatives of the potential, the pre-exponential
factors involving the eigenvalues σi and σij are ε (and thus
also time) independent.

III. LINEAR RESPONSE: ASYMPTOTIC BEHAVIOR

Within the framework of a linear response we seek solutions
of Eq. (4) in the form

pi = p
(0)
i + εδpi(t), (10)

where p
(0)
i is evaluated in the absence of the forcing and

εδpi(t) is the response induced by the forcing. Substituting into
Eq. (4) and taking into account Eqs. (5), (8), and (9) we obtain,
to the first nontrivial order in ε,

dδpi

dt
=

∑
j

M
(0)
ij δpj + fi sin(ωt + φ), i = 1,2,3, (11a)

where M (0) is the matrix in Eq. (5) evaluated in the absence of
the forcing [with kij (t) replaced by k

(0)
ij ] and

fi =
∑

i

	ijp
(0)
j , (11b)

with

	 = 2

q2

⎛
⎜⎝

−(
k

(0)
12 	g12 + k

(0)
13 	g13

)
k

(0)
21 	g23 k

(0)
31 	g31

k
(0)
12 	g12 −(

k
(0)
21 	g21 + k

(0)
23 	g23

)
k

(0)
32 	g32

k
(0)
13 	g13 k

(0)
23 	g23 −(

k
(0)
31 	g31 + k

(0)
32 	g32

)
⎞
⎟⎠. (11c)

Notice the conservation conditions

∑
i

p
(0)
i = 1,

∑
i

δp
(0)
i = 0. (12)

Equation (11) admits, in the long time limit, solutions of the
form

δpi(t) = Ai cos(ωt + φ) + Bi sin(ωt + φ) (13a)

or

δpi(t) = Ri sin(ωt + φ + ψi), (13b)

where the amplitude Ri and phase shift ψi are given by

Ri = (
A2

i + B2
i

)1/2
,

(14)

ψi = arctan

(
Ai

Bi

)
.

011133-2



STOCHASTIC RESONANCE IN MULTISTABLE SYSTEMS: . . . PHYSICAL REVIEW E 86, 011133 (2012)

The functions Ai and Bi are evaluated by substituting Eq. (13a)
into Eq. (11) and by equating the coefficients of the sine and
cosine terms. One obtains in this way

Ai = −
3∑

k=1

ω

λ2
k + ω2

γkuk,i ,

(15)

Bi = −
3∑

k=1

λk

λ2
k + ω2

γkuk,i ,

where λk and uk are the eigenvalues and eigenfunctions of
M (0) and γk are the expansion coefficients of f in the basis
of uk ,

fi =
3∑

k=1

γkuk,i . (16)

Notice that by virtue of the conservation condition (12), one
of the eigenvalues of M (0), say, λ1, is zero.

These relations are rather intractable for the most general
form of M (0) and 	. As an example. considering state 2 to be
the final state, with 1 and 3 being the initial and intermediate
ones, one obtains the following expression for the amplitude
R2:

R2
2 = a2

0 + a2
2ω

2

b2
0 + b2ω2 + ω4

, (17)

with

a0 = (
k

(0)
12 + k

(0)
13 + k

(0)
31

)[
δk32 + (δk12 − δk32)p(0)

1

− (δk21 + δk23 + δk32)p(0)
2

]
+ (

k
(0)
12 − k

(0)
32

)[
δk31 + (δk21 − δk31)p(0)

2

− (δk12 + δk13 + δk31)p(0)
1

]
,

a2 = δk32 + (δk12 − δk32)p(0)
1 − (δk21 + δk23 + δk32)p(0)

2 ,

b0 = (
k

(0)
12 + k

(0)
13 + k

(0)
31

)(
k

(0)
21 + k

(0)
23 + k

(0)
32

)
− (

k
(0)
21 − k

(0)
31

)(
k

(0)
12 − k

(0)
32

)
,

b2 = (
k

(0)
12 + k

(0)
13 + k

(0)
31

)2 + (
k

(0)
21 + k

(0)
23 + k

(0)
32

)2

+ 2
(
k

(0)
21 − k

(0)
31

)(
k

(0)
12 − k

(0)
32

)
. (18)

As expected, the response vanishes in the limit where the
driving frequency ω is much higher than the inverse of the
system’s intrinsic time scales. The existence of an optimal
frequency ωopt between the low and high frequency limits
depends in contrast on the system’s parameters and in
particular on the sign of the expression a2

0b2 − a2
2b0. If this

expression is positive, R2 possesses a minimum equal to
a2

0/b
2
0 at ω = 0 and a maximum at a finite frequency ωopt

and tends subsequently to zero as ω → ∞. If in contrast the
expression is negative, R2 is maximum at ω = 0 and tends to
zero monotonically as ω → ∞.

Checking the limits of validity of the above conditions
as well as other more specific properties of R2 requires the
a priori computation of the coefficients k

(0)
ij and δkij . This

depends in turn on the structure of the unperturbed potential
U (0)(x,y) and of the coupling function g(x,y). It can be shown
that the minimal setting necessary to accommodate three

-2
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FIG. 2. Location of steady states and the unstable manifolds in
the two-dimensional phase space of a double cusp catastrophe (x,
y) [Eq. (19)] for a = 0, c = 0, b = −5, λ = 7.75, μ = −7/4, u =
−3.75, v = 1/2, and ν = 0.1.

simultaneously stable states communicating with each other
both directly and indirectly implies also the existence of three
unstable states of the saddle point type and of an extra unstable
state of the unstable node type (cf. Fig. 2). This type of phase
space portrait can be generated by potentials of a polynomial
form corresponding to a double cusp catastrophe [9,10]

U (0)(x,y) = x4 + y4

4
+ a

x2y2

2
+ b

x3

3
+ c

x2y

2

+ λ
x2

2
+ μ

y2

2
+ νxy + ux + vy. (19)

Depending on the way this potential is unfolded, i.e., on the
values of the control parameters a, b, c, λ, μ, ν, u, and v,
different values of the parameters in Eqs. (17) and (18) will
be generated, which will determine the relative stability of the
three stable states and the kinetics of transitions between them.
To proceed further we consider hereafter some representative
examples in which k

(0)
ij and δk

(0)
ij display particular symmetry

properties.

A. Equal unperturbed rates and symmetrically disposed states

We set k
(0)
ij = k and thus p

(0)
i = 1/3. To determine δkij we

need to specify further the potential U (x,y) and in particular
the coupling function g(x,y) in Eqs. (3), (9b), and (11c). We
consider here the most symmetric situation in which the stable
and unstable states are located, at equal distances from each
other, on the circumference of a circle. This corresponds to
reducing the x-y dependence of U (0) and g to a single angular
variable α. The minimal setting for accommodating the desired
number of (three) stable states and unstable ones of the saddle
type is then provided by a periodic potential of the form

U = −μ

3
cos(3α) − εα sin(ωt + φ) (α mod2π ). (20)

The unperturbed barriers 	U
(0)
ij and those associated with the

action of the forcing 	gij can be evaluated straightforwardly,
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yielding

	U
(0)
ij = 2μ

3
,

(21)
	gij = −π

3

and thus

δk12 = δk23 = δk31 = 2π

3q2
k,

(22)

δk21 = δk13 = δk32 = − 2π

3q2
k.

Substituting into Eq. (17), one then finds R2 = 0; in other
words, the linear response to the forcing vanishes under the
above conditions. This is a consequence of the symmetries
imprinted on the system.

B. Two distinct unperturbed rates

We choose

k
(0)
12 = k

(0)
21 = k

(0)
13 = k

(0)
31 = k, k

(0)
23 = k

(0)
32 = k′. (23)

This choice is incompatible with a periodic potential as in
Eq. (20) but can be realized by an appropriate unfolding of
U (0)(x,y) in Eq. (19). Since the forward and backward rates are
equal we still have a uniform invariant probability p

(0)
i = 1/3.

To evaluate δkij we choose a coupling function g(x,y) = x.
Furthermore, we focus on the configuration where the saddle
type of unstable states are in the middle of the segments joining
the stable states 1, 2, and 3. This yields

δk21 = −δk12 = −δk31 = δk13 ≡ δ > 0,
(24)

δk23 = −δk32 ≡ δ′ > 0,

entailing that the prefactors βij = β in Eq. (6) as well as the
potential barriers 	U

(0)
ij = 	U for the transitions between

states 1 and 3 are identical. Substituting into Eq. (17) one
finds

R2 = 4

3q2

|kδ − k′δ′|
k + 2k′

1√
1 + ω2

(k+2k′)2

. (25)

This expression has a structure similar to that found in classical
stochastic resonance [6,11], albeit with different combinations
of rate constants. A detailed analysis leads to the following
conclusions.

(i) The response is enhanced as the forcing frequency ω

becomes less than k + 2k′.
(ii) For given ω there is an optimal noise strength q2

opt
for which the response is maximized. One can evaluate
analytically this optimal strength in the case where k′ is an
integer multiple of k, k′ = nk. One finds then

q2
opt = 4	U

W
( 2β2(2n+1)2e−2

ω2

) + 2
, (26)

where the Lambert W function W (z) is defined by
W (z) exp[W (z)] = z [12]. We notice that q2

opt gets smaller as
n increases.

(iii) The response takes a minimum (zero) value for
parameter values satisfying the equality kδ = k′δ′. Moving one

0

0.25

0.5

0.75

0 0.5 1 1.5 2k

R
2

(3q
2
/4)

FIG. 3. Response R2 [Eq. (25)] normalized by 3q2/4 as a function
of the parameter k for k′ = 0.1, δ = δ′ = 1, and ω = 0.1.

of these parameters, e.g., k, around the value k∗ determined
by this relation while keeping the other ones fixed yields the
behavior depicted in Fig. 3. We observe an increase of the
response as k moves both toward values larger and smaller than
k∗, although there exists a marked asymmetry in the magnitude
and the sensitivity of the response. This is in contrast with
classical stochastic resonance where the response increases
monotonically with the (unique) rate constant and constitutes
the signature of the role of both the intermediate state and the
two-dimensional character of the process. Notice that under
the conditions of Eqs. (23) and (24) the response R1 of the
initial state 1 to the forcing vanishes for reasons of symmetry.

IV. LINEAR RESPONSE: TRANSIENT BEHAVIOR

In practice, the effectiveness of the response of a system to
an external forcing is manifested not only through the forcing-
induced change of the final state reached in the long time
limit but also through the delay needed until the effects of
the forcing begin to be apparent. To address this question a
full scale time-dependent analysis of Eq. (4) and its linearized
version in Eq. (11) is necessary.

To set the stage and get a feeling of the type of questions that
may be raised in this context we first consider as a reference
the (irreversible) transition from an initial state 1 to a final
state 2,

dp1(t)

dt
= −k(t)p1(t) = −dp2(t)

dt
, (27)

with

p1(0) = 1, p2(0) = 0, (28a)

and [cf. Eq. (1b)]

k(t) = k

{
1 + 2ε

q2
δ sin(ωt + φ)

}
, (28b)

where the value of δ is determined by the coupling function g.
The unperturbed (ε = 0) and perturbed solutions of Eq. (27)
read

p
(0)
2 = 1 − exp(−kt) (29a)
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0 10 20 /

w

FIG. 4. Maximum effectiveness of the accelerating effect of a
periodic forcing to reach half of the asymptotic probability mass in
a transient two-state process [Eq. (31)] as a function of ω/k. These
optimal values are achieved with different phase values of the forcing.

and [cf. Eq. (1b)]

p2 = p
(0)
2 + εδp2

= 1 − exp(−kt)

(
1 − k

2εδ

q2

cos φ − cos(ωt + φ)

ω

)
,

(29b)

entailing that both p
(0)
2 and p2 tend to 1 as t → ∞, the

corresponding asymptotic values of p
(0)
1 and p1 being zero.

We regard as a primary indicator of the effectiveness of the
forcing the time at which the probability mass in state 2 reaches
half of its asymptotic value p2(t∗) = 1/2. For the unperturbed
system t∗ can be evaluated straightforwardly from Eq. (29a),

t∗0 = 1

k
ln 2. (30)

The forcing will thus be deemed effective if the value t∗
deduced from Eq. (29b) turns out to be significantly less
than the above reference value t∗0 . Alternatively, one may seek
conditions such that δp2(t) in Eq. (29b) at t = t∗0 , i.e., the
expression

w = −cos
(

ω
k

ln 2 + φ
) − cos φ

(ω/k)
(31)

has an appreciable positive value. In particular, for ω/k →
0, w → sin φ ln 2, entailing that the optimal phase needed to
accelerate the crossing is π/2. In contrast, for ω/k → ∞ one
obtains w → 0. Figure 4 depicts the maximum of w with
respect to the adimensionalized frequency ω/k, achieved for
different forcing phase values. We observe that, typically, the
forcing tends to accelerate the crossing of level p2 = 1/2.
Furthermore, the magnitude of this maximal response depends
on the phase φ. In particular, for moderate values of ω/k, as
this latter quantity is increased the phase φ needed to achieve
the maximum of w decreases, as does the magnitude of the
maximal response itself. These conclusions carry through for
reversible transitions

dp1

dt
= −k12p1 + k21p2 = −dp2

dt
(32)

in the limit k
(0)
12 = k

(0)
21 (the analog of the case in Sec. III A),

the only difference being that the factor ω/k in the argument
of the cosine in Eq. (31) is now replaced by ω/2k.

We turn next to the three-state case, the main object of our
study. Let T be the matrix whose columns are the eigenvectors
of matrix M (0) in Eq. (11a). Operating on both sides of this
equation by matrix T −1 and defining new variables through

z = T −1δp, (33)

we obtain
dzi

dt
= λizi + (T −1	p(0))i , i = 1,2,3, (34)

where λi are the eigenvalues of M (0) and 	 is defined by
Eq. (11c). These equations can be solved separately by simple
quadrature. Inverting Eq. (33), one can then obtain the response
vector δp and in particular the amplitude of the response of
the final state 2,

δp2 =
3∑

j=1

T2j zj . (35)

For clarity we hereafter give the explicit form of δp2 in the
case where state 2 can be regarded as practically absorbing
k

(0)
21 = k

(0)
23 = 0 (the three-state analog of the scheme at the

beginning of the present section). Furthermore, we take k
(0)
13 =

k
(0)
31 = k with k

(0)
12 and k

(0)
32 much smaller than k. One obtains

then, to the dominant order in the ratios k
(0)
12 /k and k

(0)
32 /k,

remembering that one of the eigenvalues λi (say, λ2) vanishes,

δp2 = −2z1, (36)

with

z1 = a1k

ω
[cos φ − cos(ωt + φ)] exp(λ1t)

+ b1

4 + (ω2/k2)

[
exp(λ1t)

(
ω

k
cos φ + 2 sin φ

)

− exp(λ3t)

(
ω

k
cos(ωt + φ) + 2 sin(ωt + φ)

)]
. (37)

The quantities λ1,λ3 and a1,b1 in this expression are given, to
the dominant order, by

λ1 = − 1

2k

(
k

(0)
12 + k

(0)
32

)
,

(38)
λ3 = −2

and

a1 = −1

4

(
k

(0)
12

k
δk12 + k

(0)
32

k
δk32

)
,

(39)

b1 = −1

4

(
k

(0)
12

k
δk12 − k

(0)
32

k
δk32

)
.

Under the same conditions the unperturbed value p
(0)
2 is given

by

p
(0)
2 = 1 − exp(λ1t), (40a)

independent of λ3. Arguing as in the two-state case in the
beginning of this section, we conclude that p

(0)
2 reaches the
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10

-0.2 -0.1 0
1

FIG. 5. Excess probability mass at time t∗ [Eq. (40b)] induced by
the presence of a periodic forcing in a transient three-state process
[Eq. (41)] as a function of the slowest eigenvalue λ1. The parameters
are a1 = 1, b1 = 1, and φ = −π .

value 1/2 at

t∗ = − ln 2

λ1
= 2k ln 2

k
(0)
12 + k

(0)
32

. (40b)

The presence of the forcing will accelerate the crossing
of level 1/2 of the full response p2 = p

(0)
2 + εδp2 if δp2(t∗)

turns out to be positive. Substituting Eq. (40) into Eqs. (36)
and (37) and noticing that the contribution of eigenvalue λ3 is
negligible, one obtains

δp2(t∗) = a1k

ω

[
cos

(
ω ln 2

−λ1
+ φ

)
− cos φ

]

− b1

4 + (ω2/k2)

(
ω

k
cos φ + 2 sin φ

)
. (41)

A detailed study shows that this quantity displays the following
properties.

-2

0

2

4

6

0 0.25 0.5 0.75 /

1
= 0.01

1
= 0.05

FIG. 6. Same as in Fig. 5 but as a function of ω/k for two different
values of λ1. The parameters are a1 = b1 = 0.1 and φ = −π/2.

-5

0

5

-1 -0.5 0 0.5 1/

FIG. 7. Same as in Fig. 5 but as a function of φ/π for three
different values of ω/k. The other parameters are a1 = b1 = 0.1 and
λ1 = −0.01.

(i) It possesses an extremum with respect to −λ1 or
equivalently with respect to the rates k

(0)
12 /k or k

(0)
32 /k,

(−λ1)opt = ω ln 2

2πn − φ
, (42)

where n is an integer. The extremum is a maximum if a1 > 0 in
Eq. (39) and minimum if a1 < 0. The former property, which
is of more interest for our purposes, is in turn satisfied for
appropriate coupling functions g(x,y) and for phase space
configurations where the saddle points 12 and 32 and the
initial states 1 and 3 are such that 	g12 < 0 and 	g32 < 0
[cf. Eq. (9b)]. These requirements are fulfilled by the choice
g(x,y) = x and the unfolding of potential U (0)(x,y) in Eq. (19)
generating the phase space portrait of Fig. 2. Here again
the roles of the intermediate state and the two-dimensional
character of the process are to be stressed. Notice that, as
stressed earlier, δp2 itself needs to be positive for a whole
range of values of −λ1 including (−λ1)opt, implying that b1

in Eq. (39) also has to satisfy certain conditions. Figure 5
depicts δp2(t∗) as a function of −λ1 and for values of the
other parameters such that all these properties hold true. As
can be seen, the maximum becomes more pronounced as ω/k

is decreased and can attain values corresponding to a tenfold
or so amplification of the forcing.

(ii) For fixed −λ1 and for values of the phase φ other than
an integer multiple of π , δp2(t∗) starts with a finite value for
ω/k = 0 and decreases to zero nonmonotonically as ω/k →
∞ (Fig. 6). The values attained in the low frequency region
can again be positive and quite substantial provided that −λ1

is sufficiently small and φ is close to π/2.
(iii) For fixed −λ1 and ω/k, δp2(t∗) varies periodically

with φ with period 2π and amplitude that increases as ω/k

is decreased. It reaches a finite limiting value as ω/k tends to
zero (Fig. 7), which can be positive and substantial within an
appropriate range of φ values.

V. CONCLUSION

In this work the theory of stochastic resonance has been
extended to include transitions between an initial and a
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final state occurring both directly as well as indirectly via
intermediate stable states. We have shown that in the minimal
setting of just three stable states a dynamics compatible with
these requirements needs to be embedded in phase spaces of
dimension equal to at least two. For systems deriving from a
potential and in the absence of an external periodic forcing,
this can in turn be fully accounted for by a potential involving
fourth-order nonlinearities corresponding to the universal
unfolding of the double cusp catastrophe [9,10]. In particular,
varying the unfolding parameters controls the relative stability
of the states and the rates of transitions between them.

The effects induced by the external forcing have been
analyzed in the asymptotic limit of long times and during
the transient evolution toward the final state. The efficiency of
the forcing was quantified through the amplitude of the long
time response and through the value of the time of crossing of a
certain prescribed level (chosen to be equal to 1/2) attained by
the probability of the final state, starting from a configuration
where the entire probability mass is centered on the initial state.
Our main conclusion has been that in both cases the presence
of an intermediate state and the two-dimensional character of
the process leave a clear-cut signature in the response. The
latter becomes as a rule more flexible and can be further
enhanced, as compared to classical stochastic resonance or
to its one-dimensional extension allowing for the presence of
intermediate states [1].

The analysis carried out in this paper can be extended
straightforwardly to four stable states, as this is part of the full
unfolding of the double cusp catastrophe [9,10]. Its extension
to five or more stable states in systems deriving from a
potential constitutes in contrast an open problem, since there
is no known potential generating all possible phase space
configurations compatible with this situation.

Our work has been concerned with generic classes of
dynamical systems satisfying the aforementioned properties. It

would undoubtedly be interesting to address concrete systems
of concern in physical, environmental, and life sciences
in which evidence for classical stochastic resonance is by
now well established [6,13] and identify situations in which
intermediate states are present and may interfere with the
process. The goal would be to link the structure of the
potential to the structure and dynamics of the underlying
system and seek conditions under which the intermediate
states can switch on new pathways optimizing the overall
response.

Throughout this work the transitions between the stable
states were mediated by unstable states of the saddle point
type, while an additional state of the unstable node type
was securing the structurally stable subdivision of the phase
space into the attraction basins of the stable states. In recent
work on winnerless competition dynamics [14,15], a transient
evolution between unstable states prior to the establishment of
a final stable state mediated by structurally stable heteroclinic
connections with a predefined sequence of transitions was
identified. While the topological configuration associated with
this scenario is different from that of Fig. 2, our formulation can
mimic an analogous situation by (i) choosing one of the stable
states, say, α, to be absorbing (in the sense of kαi = 0 for all
i 	= α) and at the same time to be reached from the other states i

(i 	= α) at a very slow rate kiα 
 kij (i,j 	= α) and (ii) adopting
for the transitions among states i the asymmetric configuration
considered in Sec. III B, where direct transitions for visiting
these states in a certain order proceed at a rate k much higher
than the rate k′ of their reverse counterparts. Conversely,
winnerless competition dynamics under the influence of both
noise and an external periodic forcing could give rise to
new properties in line with those highlighted in the present
work, in the form of additional control mechanisms in
the succession of the unstable states and their associated
lifetimes.
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