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Anomalous critical behavior in the polymer collapse transition of three-dimensional lattice trails
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Trails (bond-avoiding walks) provide an alternative lattice model of polymers to self-avoiding walks, and adding
self-interaction at multiply visited sites gives a model of polymer collapse. Recently a two-dimensional model
(triangular lattice) where doubly and triply visited sites are given different weights was shown to display a rich
phase diagram with first- and second-order collapse separated by a multicritical point. A kinetic growth process of
trails (KGTs) was conjectured to map precisely to this multicritical point. Two types of low-temperature phases,
a globule phase and a maximally dense phase, were encountered. Here we investigate the collapse properties of
a similar extended model of interacting lattice trails on the simple cubic lattice with separate weights for doubly
and triply visited sites. Again we find first- and second-order collapse transitions dependent on the relative
sizes of the doubly and triply visited energies. However, we find no evidence of a low-temperature maximally
dense phase with only the globular phase in existence. Intriguingly, when the ratio of the energies is precisely
that which separates the first-order from the second-order regions anomalous finite-size scaling appears. At the
finite-size location of the rounded transition clear evidence exists for a first-order transition that persists in the
thermodynamic limit. This location moves as the length increases, with its limit apparently at the point that maps
to a KGT. However, if one fixes the temperature to sit at exactly this KGT point, then only a critical point can be
deduced from the data. The resolution of this apparent contradiction lies in the breaking of crossover scaling and
the difference in the shift and transition width (crossover) exponents.
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I. INTRODUCTION

The canonical lattice model of the configurations of a
polymer in solution has been the self-avoiding walk (SAW)
where configurations are those lattice paths that could be
generated by a random walk on a lattice that is not allowed to
visit the same lattice site more than once. Considered as a static
equilibrium statistical mechanical ensemble, self-avoiding
walks display an excluded volume effect: They are swollen
in size if compared to the set of unrestricted random walks
of the same length. A common way to model intrapolymer
interactions is to assign an energy to each nonconsecutive
pair of monomers lying on neighboring lattice sites. This
prescription defines the interacting self-avoiding walk (ISAW)
model, which is the standard lattice model of polymer collapse
using self-avoiding walks. The collapse transition in ISAW
models, the so-called θ -point of polymers, is a second-order
phase transition that has been well studied. The standard
theory [1–3] of the collapse transition is based on the n → 0
limit of the magnetic tricritical φ4 − φ6 O(n) field theory and
related Edwards model with two- and three-body forces [4,5],
which predicts an upper critical dimension of three with subtle
scaling behavior in that dimension.

A physically equivalent way of obtaining the excluded
volume in a random walk model is to prevent the walk from
visiting the same bond more than once. This weaker restriction
leads to another class of lattice paths called self-avoiding
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trails (SATs). The interacting version of trails, customarily
obtained by giving a weight to multiply occupied sites, also
presents a collapse transition. The literature contains various
definitions [6–8] of single energy models of interacting self-
avoiding trails (ISATs), all weighting multiply visited sites
in different ways (they differ in how sites visited more than
twice are assigned the energy of interaction). Regardless,
theoretical prediction [9] and the evidence [10–13] suggest
that the collapse transition of the ISAT model is in a different
universality class to that of ISAW, although there is no clear
understanding of why this is the case if true.

On the other hand, a two-dimensional model (triangular
lattice) of an extended ISAT (eISAT) model, where doubly
and triply visited sites are given different energies, say, −ε2

and −ε3, respectively, was recently [14] shown to display a rich
phase diagram with first- and second-order collapse separated
by a multicritical point. The occurrence of the type of transition
depended on the ratio

k = ε3

ε2
(1)

of the energies given to multiply visited sites of different
degree.

In conjunction with this study a stochastic process, known
as kinetic growth trails (KGTs), was also considered, where
configurations of trails are produced by a growth process. The
static configurations produced are trails, but the trails of a
fixed length are not all produced with equal probability. The
equivalent static model is an eISAT with a particular value of
k = kG � 4.15 at one particular temperature T = TG. It was
demonstrated [14] that this value of k = kG separates models
where the collapse transition is first order (k > kG) from
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models where the collapse transition is second order (k < kG).
It was shown that for k < kG the second-order transition was
most likely in a single universality class, which was the same
as the one in the (two-dimensional) ISAW θ -point collapse
transition. Moreover, the KGT process mapped exactly onto
the transition point separating the two lines of first- and second-
order transition. Defining the temperature of the transition in
the eISAT model to be Tc(k), it was deduced that

Tc(kG) = TG. (2)

Also, importantly it was found that while the second-order
transition encountered for small k had a low-temperature phase
that was globular, the low-temperature phase at large k was
maximally dense, in that the trail filled the lattice.

In this paper we investigate a counterpart to the triangular
lattice eISAT model on the simple cubic lattice. One reason
for choosing the simple cubic lattice is that the coordination
number is the same as on the triangular lattice. This means
that if one considers a kinetic growth process KGT on the
simple cubic lattice it will map to precisely that same location
in the phase diagram of the three-dimensional model as the
corresponding triangular lattice model described above. Also
the KGT on the simple cubic lattice has previously been
studied [12]: It demonstrates a scaling behavior consistent
with it mapping to a critical point in the phase diagram of
eISAT. One might then speculate that the phase diagram of
the eISAT on the cubic lattice has the same structure as on
the triangular lattice. However, we find there are important
differences, including anomalous finite-size scaling behavior
around the KGT point, and no evidence of any maximally
dense low-temperature phase.

The paper is set out as follows. We begin by recalling the
theoretical framework of the collapse transition. We then move
onto defining the models including the extended ISAT (eISAT)
model on a general regular lattice, specifically on the triangular
and cubic lattices, the various canonical ISAT models and the
KGT process. Before describing our results for the cubic lattice
we summarize the findings on the triangular lattice.

II. COLLAPSE TRANSITION AND CROSSOVER SCALING

There are two related ways of describing the collapse. One
is by understanding the change in finite length n scaling of
key quantities such as the radius of gyration, or alternatively
end-to-end distance, and partition function as the temperature
is lowered past the transition temperature Tc. The second
is the associated singular thermodynamic behavior in the
thermodynamic limit (n → ∞) of the free energy per step
and in the internal energy and/or specific heat at that same
temperature.

Let us first describe the finite-size scaling change. As
the temperature is varied there is a collapse transition at
some T = Tc. For high temperatures (T > Tc) the excluded
volume interaction is the dominant effect, and the behavior is
universally the same as the noninteracting SAW problem. The
mean squared end-to-end distance R2

n and partition function
Zn are therefore expected to scale as

R2
n ∼ An2ν with ν > 1/2,

(3)
Zn ∼ B μnnγ−1,

respectively, with estimates of ν and γ to be 0.5874(2) [7] and
1.156957(9) [15] in three dimensions.

When fixed at the transition temperature T = Tc for ISAW
in three dimensions, tri-critical field theory and the Edwards
model [4,5] predict similar scaling forms with ν = 1/2 and
γ = 1, though with additive logarithmic corrections.

At low temperatures (T > Tc) it is accepted that the parti-
tion function is dominated by configurations that are internally
dense. The partition function should then scale differently to
that at high temperature, since a collapsed polymer should
have a well-defined surface (and associated surface energy).
One expects [16] in three dimensions asymptotics of the form

R2
n ∼ An2/3,

(4)
Zn ∼ B μnμn2/3

s nγ−1.

with μs < 1. So the exponent ν = 1/3 and the fractal dimen-
sion of the polymer becomes 3.

This change in scaling behavior is reflected in the thermody-
namic limit. In the thermodynamic limit there is expected to be
a singularity in the free energy, which can be seen in its second
derivative (the specific heat). Denoting the (intensive) finite
length specific heat per monomer by cn(T ), the thermodynamic
limit is given by the long length limit as

C(T ) = lim
n→∞ cn(T ). (5)

The existence of this limit is not proven and it should be
considered an open problem on its own, although beyond the
scope of this work.

In general one expects that the singular part of the specific
heat behaves as

C(T ) ∼ B|Tc − T |−α, (6)

where α < 1 for a second-order phase transition. The singular
part of the thermodynamic limit internal energy behaves as

U (T ) ∼ B|Tc − T |1−α, (7)

if the transition is second order, and there is a jump in the
internal energy if the transition is first order (an effective value
of α = 1).

Moreover one expects crossover scaling forms [17] to apply
around this temperature, so that

cn(T ) ∼ nαφ C([T − Tc]nφ), (8)

with 0 < φ < 1 if the transition is second order and

cn(T ) ∼ n C([T − Tc]n) (9)

if the transition is first order (that is, φ is effectively 1).
Assuming standard crossover theory [18] it was deduced in
Ref. [17] that the exponents α and φ are related via

2 − α = 1

φ
. (10)

Regardless of whether the full crossover theory holds one
can usually define an exponent ψ from the shift of the transition
temperature at finite length Tc,n measured by, say, finding the
position of a peak in the specific heat as follows:

Tc,n − Tc ∼ D n−ψ. (11)
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Another exponent can be related to the width 	Tn of the
transition. We shall define this exponent φ, via

	Tn ∼ E n−φ. (12)

We use the same symbol φ because in a crossover theory
the exponent will be the same φ as described in (8). For a
first-order transition one expects that both φ and ψ are 1. For
a second-order transition in the standard scaling picture one
expects the two exponents to be equal, ψ = φ, although we
note a breaking down of the standard scaling has been already
observed in Refs. [19,20] in high dimensions.

For the ISAW model the tricritical field theory expects the
width (crossover) exponent φ = 1/2 and shift exponent ψ =
1/2 with logarithmic corrections present in the scaling forms
because the system is at the upper critical dimension. The
value of the specific heat exponent α = 0 is consistent with
the scaling relation (10), as a logarithmically divergent specific
heat [4,5] is predicted:

cn(Tc) ∼ C(ln n)3/11. (13)

The prediction [4,5] for the shift is

Tc,n − Tc ∼ D n−1/2(ln n)−7/11. (14)

On the other hand, Shapir and Oono [9] have argued that
the ISAT collapse transition should be tricritical in nature,
as self-avoiding walks. However, they predict that ISAW and
ISAT are in different universality classes. Importantly, while
the upper critical dimension for ISAW is expected to be du = 3,
the Shapir-Oono field theory gives du = 4 for ISAT.

III. MODELS

A. The general extended ISAT model (eISAT)

On a lattice with coordination number greater than 31

the self-interaction in the trail model can be implemented in
different ways, depending on how the weight associated with
contact site depends on how many times the site has been
visited. The canonical ISAT model, which has been defined
differently by different authors, fixes the energy associated
with sites visited more than twice based upon the energy of
doubly visited sites. The eISAT is a generalized model that
allows for different (independent) energies to be associated
with multiply visited sites of different multiplicities.

Consider a regular lattice of coordination number 2q (q ∈
N,q � 2) and the configurations φn ∈ 
n of trails of length
n (bonds) starting from a fixed origin. Let −ε� be the energy
associated with lattice sites that have been visited � times by
the trail. Now let m�, � = 1, . . . q be the number of lattice sites
that have been visited � times by the trail. Note that one always
has

∑
� �m� = n + 1.2 Hence, to each of these contact sites

is associated an Boltzmann weight ω� = eβε� with ω1 = 1,
where β = 1/T is the inverse temperature in suitable units of
the inverse Boltzmann constant. The partition function is then

1On a lattice with coordination number less than 4, a self-avoiding
trail cannot visit the same site twice and therefore is just a self-
avoiding walk.

2We will not count the initial occupation of the origin as a visit.

given by

Zn(ω2, . . . ,ωq) =
∑

φn∈
n

ω
m2(φn)
2 · · · ωmq (φn)

q , (15)

and the probability distribution by

pE(φn; ω2, . . . ,ωq) = ω
m2(φn)
2 · · · ωmq (φn)

q

Zn(ω2, . . . ,ωq)
. (16)

We define a reduced finite-size free energy per step as

κn = 1

n
log Zn, (17)

related to the usual free energy per step as −βfn = κn.
The average of any quantity Q over the ensemble of allowed

paths φn ∈ 
n of length n is given generically by

〈Q〉n = 1

Zn

∑
φn∈
n

Q(φn) ω
m2(φn)
2 · · · ωmq (φn)

q . (18)

The thermodynamic limit in this problem is given by the limit
n → ∞, so that the thermodynamic free energy per step f∞
is given by

−βf∞ = κ∞ = lim
n→∞ κn, (19)

where again the existence of such limit lacks of a rigorous
proof. This quantity determines the asymptotic behavior of the
partition function; i.e., Zn grows to leading order exponentially
as μn with μ = exp κ∞.

B. Cubic and triangular lattice eISAT

Both the triangular and simple cubic lattices have coordina-
tion number 6. Therefore only two weights, ω2 and ω3, appear
in the formulae (15) and (16).

In order to explore the two-parameter space of the eISAT we
define a one-parameter family of models with weights defined
by

(ω2, ω3) = (ω,ωk) (k-eISAT) (20)

for any positive real value of the parameter k; that is, the
energies obey

ε3 = kε2 (21)

in the k-eISAT model. We set the energy ε2 = 1 for conve-
nience henceforth.

In this parametrization we define a reduced internal energy
per step and a reduced specific heat per step in the usual way
via

un = ∂κn/∂ log ω = 〈m2 + k m3〉n
n

, (22)

cn = ∂un/∂ log ω = 〈(m2 + k m3)2〉n − 〈m2 + k m3〉2
n

n
. (23)

Let us define the collapse transition as occurring at

ω = ωc(k) (24)

so that we expect for fixed k that

cn(ω) ∼ nαφC[(ω − ωc)nφ] (25)
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if crossover scaling occurs. More generally the shift exponent
is defined by

ωc,n − ωc ∼ D n−ψ, (26)

where ωc,n is the location of the peak of the specific heat, and
the width exponent by

	ωn ∼ E n−φ, (27)

where 	ωn is the width of the half-height of the peak of the
specific heat. Both these exponents could depend on k.

C. “Canonical” ISAT models

The canonical model used by Doukas et al. [14] is one
where every successive visit to a site adds an energy −ε to
the total for that site so that a q-times visited sites has energy
−(q − 1)ε. Therefore the canonical model is defined by the
weight parametrization

(ω2,ω3) = (ω,ω2). (28)

The canonical model corresponds to the case k = 2 in our
family of interacting trails.

A second “canonical” model used by Prellberg and
Owczarek [8,12] has k = 3 so that

(ω2,ω3) = (ω,ω3). (29)

In fact it seems that Meirovitch et al. [6] used ω3 = ω2, that
is k = 1. Interestingly, all these models k = 1,2,3 have been
seen [14] to behave in the same way on the triangular lattice
and, as we shall see, seem to behave in the same way on the
simple cubic lattice (though the two- and three-dimensional
models differ from each other in behavior).

D. Phase diagram of eISAT on the triangular lattice

The study by Doukas et al. [14] on the triangular lattice
identified the kinetic growth point with a multicritical collapse
transition, being the meeting point of a swollen (coil), a
collapsed and a maximally dense phase (see Fig. 1).

For small ω2 and ω3 the trails present the usual swollen
polymer phase where ν = 3/4 (in two dimensions). For large
enough ω2, regardless of ω3, there is a collapse phase, as
occurs in the ISAW model, and a transition between the
swollen and collapsed globule phases which seems to be
θ -like, with φ = 3/7 as expected in two dimensions. On the
other hand, for large enough ω3 the ensemble is dominated
by maximally dense configurations that are space filling and
internally contain only triply visited sites. Between the swollen
phase and the maximally dense phase the collapse transition
is first order. Separating this line of first-order transitions from
the line of θ -like transitions is a multicritical point. This point
is precisely the point (ω∗

2,ω
∗
3) to which the kinetic growth

process of trails maps. The maximally dense and globule phase
is separated by a strong second-order transition, much stronger
than the θ collapse.

IV. THE KINETIC GROWTH PROCESS (KGT)

We now revisit the kinetic growth process [21] of trails
(KGTs). Consider a regular lattice of coordination number 2q

(q ∈ N), and consider a stochastic process defined as follows:

25/3

 10

 5

 1
5/3  3 2 1

ω
3

ω2

Crystal

Coil

Globule

FIG. 1. (Color online) Phase diagram of eISAT on the triangular
lattice. The blue transition line (dotted) for small ω2 (large k)
separating the coil from the maximally dense phases represents
a first-order transition and ends at the solid circle, which is the
kinetic growth point (KGT). This KGT point is conjectured to be
multicritical. The red (solid) line separating the coil from the globule
represents the θ -like second-order transition found for small k. The
black line (dashed) separating the globule from the maximally dense
phase is conjectured to be second order but not θ -like.

Starting at the origin, a lattice path is built up step-by-step by
choosing between available continuing steps from unoccupied
lattice bonds with equal probability. This dynamic process
produces lattice paths that are self-avoiding trails; moreover it
is easy to show that, on a coordination 6 lattice, a trail φn of
length n is generated with probability

pG(φn) = 1

6

(
1

5

)n−1 (
5

3

)m2(φn) (25

3

)m3(φn)

. (30)

This has to be compared with the probability distribution (16)
of the equilibrium model with weights (5/3,25/3)

pE

(
φn;

5

3
,
25

3

)
= 1

Zn( 5
3 , 25

3 )

(
5

3

)m2(φn) (25

3

)m3(φn)

, (31)

from which we can deduce

pG(φn) ∝ pE

(
φn;

5

3
,
25

3

)
. (32)

Note that the normalization is different since the sum over all
walks of fixed length gives the probability of walks being still
open in the case of the growth process, and unity in the case of
the equilibrium model. The existence of this special mapping
was first pointed out in Refs. [22,23].

We shall refer to the weight choice to which the KGT maps
to as the Kinetic Growth point in the (ω2,ω3) plane:

(ω∗
2,ω

∗
3) =

(
5

3
,
25

3

)
(KGT). (33)

The Kinetic Growth point does not correspond to any point
in any of the canonical parametrizations described above
(Sec. III C), but it belongs to our family of interacting trails
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(20) with k equal to

kG ≡ log 25/3

log 5/3
� 4.15 . . . . (34)

The KGT point has

TG ≡ 1

log 5/3
� 1.957 . . . . (35)

In order to match the definition in (22) at the KGT point,

un(ω∗
2,ω

∗
3) = u∗

n, (36)

cn(ω∗
2,ω

∗
3) = c∗

n, (37)

we define analogues of the internal energy and specific heat
by

u∗
n = 〈m2 + kG m3〉n

n
, (38)

c∗
n = 〈(m2 + kG m3)2〉n − 〈m2 + kG m3〉2

n

n
. (39)

Kinetic Growth trails have been subject of various studies
both in low and high dimensionality and on a variety of lattices
(see, for example, Refs. [11,12,14]).

Simulations on the simple cubic lattice show a divergent
specific heat with a logarithmic divergence different from the
one predicted by the Edwards model.

In particular it was seen that

c∗
n ∼ C∗(log n)ζ (40)

with

ζ = 1.0 ± 0.5, (41)

whereas the Edwards model has ζ = 3/11.

V. RESULTS FOR THE CUBIC LATTICE EISAT

A. The KGT point

We begin our investigation by revisiting the KGT point on
the simple cubic lattice directly by simulating the eISAT at
that point. That is, we have simulated the KGT point of the
eISAT model at

(ω2,ω3) = (ω∗
2,ω

∗
3) ≡

(
5

3
,
25

3

)
. (42)

We simulated 105 realizations of the kinetic growth process
collecting 8.7 × 104 samples of length 220(�106). We then
computed the energy un and the specific heat cn. The results
confirm what already was reported in [12]: un behaves as

un ∼ u∞ − u√
n
, (43)

as indicated in Fig. 2, and the specific heat cn diverges as a
power of log n:

cn ∼ c (log n)ζ . (44)

We calculated the local slopes ζn of log cn versus log log n,
which are plotted versus 1/ log n in Fig. 3.

Estimating of exponents like ζ is a notoriously difficult
problem, even at the relatively long length scale reached by
our simulations. Nevertheless, on the theoretical assumption

0.00 0.02 0.04 0.06 0.08 0.10

1/
√

n

0.00

0.05

0.10

0.15

0.20

u
n

FIG. 2. (Color online) Plot of the energy un of kinetic growth
trails on the simple cubic lattice against 1/

√
n, along with a line of

best fit.

that the specific heat scales logarithmically, is fairly reasonable
to interpolate the values of ζn with a straight line touching the
vertical axis somewhere around 1. We estimate ζ � 1.0 ± 0.5
as reported in Ref. [12].

B. The kG-eISAT model

We have first simulated the k-eISAT model (20) with k =
kG (the correspondence with KGT occurs at ω = 5/3) using
the flatPERM algorithm [24,25]. We ran S = 105 iterations
of generating about Sn � 9 × 109 samples at length 103.

0.00 0.05 0.10 0.15 0.20 0.25

1/ ln n

0.0

0.5

1.0

1.5

2.0

2.5

3.0

ζ n

FIG. 3. (Color online) Estimating the exponent ζ in Eq. (44) for
KGTs: local slopes ζn of ln cn versus ln ln n plotted against 1/ ln n.
Error bars are obtained by a simple rebinning procedure.
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Following Ref. [24], we also measured the number of samples
adjusted by the number of their independent growth steps,
obtaining Seff

n � 4 × 107 “effective” samples.
FlatPERM outputs an estimate Wn,m of the total weight of

the walks of length n and fixed value of m. From the total
weight one can access physical quantities over a broad range
of temperatures through a simple weighted average, e.g.,

un(ω) =
∑

m m Wn,m∑
m Wn,m

, (45)

cn(ω) =
∑

m m2 Wn,m∑
m Wn,m

−
(∑

m m Wn,m∑
m Wn,m

)2

. (46)

The analysis of the scaling of the specific heat peak is done
by calculating the location of the peak of the specific heat ωc,n

and thereby evaluating c
peak
n = cn(ωc,n).

At the kinetic growth point, we confirm the slow growth of
the specific heat seen in the previous section [see Eq. (44)].
The KGT simulations and flatPERM simulations evaluated at
ωc coincide as shown in Fig. 4.

Somewhat unexpectedly, the height of the peak of the
specific heat, c

peak
n , shows a different behavior, diverging as

a power of n, as illustrated by the top curve in Fig. 4. In
fact the divergence is linear, which indicates a first-order
transition. The nature of the finite-size transition is therefore
very different from the one inferred from the kinetic growth
process.

We have therefore simulated this model at longer lengths
(104) using a thermal implementation of flatPERM at sev-
eral fixed temperatures around the expected location of the

4 6 8 10 12 14

ln n

−3

−2

−1

0

1

2

3

ln cn (KGW)

ln cpeak
n (flatPERM)

ln cn(ωc) (flatPERM)

FIG. 4. (Color online) Comparison of the growth of the specific
heat at the kinetic growth point (lower dashes and crosses) with the
growth of the peak of the specific heat (upper dots) for eISAT with
k = kG. One clearly sees different growth rates in the upper and lower
curves; in particular the peak of the specific heat (upper dots) grows
linearly on this logarithmic scale.

0.05 0.10 0.15 0.20 0.25
u2

0

5

10

15

20

p
(u

2
)

n = 8808
n = 4669
n = 2967
n = 2091
n = 1565
n = 1226

FIG. 5. (Color online) Normalized energy density of states near
the kinetic-growth point for eISAT with k = kG. The values of ω have
been chosen such that both peaks have equal height. One clearly sees
the build-up of a first-order transition with a well-defined gap between
the two peaks. This will result in a latent heat in the thermodynamic
limit.

transition. We have found that the energy distribution shows
indeed a double peak (see Fig. 5) with the two peaks getting
more and more definite as the length scale increases.

We infer from this that a simulation at ωc does not “see” the
second peak and hence shows only the observed much weaker
divergence of the specific heat.

This is consistent with a scenario in which the shift and
width of the transition scale with different exponents as in
Eqs. (26) and (27).

Figure 6 indicates that the peak position of the specific
heat converges to the kinetic growth point ωc = 5/3 with an
expected inverse square-root-like scaling, and Fig. 7 shows
that the width of the transition decreases much faster with an
inverse linear scale.

We thus conclude that

ωc,n − ωc ∼ D n−1/2, (47)

where ωc,n is the location of the peak of the specific heat, and

	ωn ∼ E n−1, (48)

where 	ωn is the half-width (or, more precisely, width of the
half-height) of the specific heat peak.

Since the width decays much faster than the shift, one
cannot see the first-order nature of the true thermodynamic
transition in a kinetic growth simulation which is fixed at the
transition point; it lies outside the crossover region. This is
graphically indicated in Fig. 8.

A possible explanation of the breaking down of the standard
scaling is given by the mean-field theory elaborated by
Khokhlov [26], in which the competition between a bulk
free energy of a dense globule and its surface tension drives

011123-6



ANOMALOUS CRITICAL BEHAVIOR IN THE POLYMER . . . PHYSICAL REVIEW E 86, 011123 (2012)

0.000 0.005 0.010 0.015 0.020 0.025 0.030

1/
√

n

1.66

1.68

1.70

1.72

1.74

1.76

1.78

ω
c
,n

FIG. 6. (Color online) The peak position of the specific heat ωc,n

versus 1/
√

n for eISAT with k = kG. The location of the kinetic
growth point at ω = 5/3 is marked with a large dot on the vertical
axis. One can see that the peak position of the specific heat approaches
this point in the thermodynamic limit.

the transition. One of the implications of this theory is the
breaking down of the conventional tricritical scaling above the
upper critical dimension, we refer to Refs. [8,19,20] for a more
in-depth discussion. Which is the upper critical dimension of
this special multicritical point is not clear and deserves further
study.
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FIG. 7. (Color online) The half width the specific heat 	ωn versus
1/n for eISAT with k = kG.

ωωc ωc,n

Δωn

FIG. 8. The observed scaling at k = kG is such that (ωc,n − ωc) 
	ωn.

C. k-eISAT with k > kG

We next discuss the case of k > kG, where on the triangular
lattice a first-order transition was found.

We simulated k = 5, k = 7, and a model where only
triply visited sites are weighted (this can be seen as the
limit of letting k → ∞). We simulated trails with length
up to 103, collecting at that length Sn � 7 × 108, 109, and
2 × 108 samples corresponding respectively to Seff

n � 2 × 107,
3 × 107, and 4 × 106 effective samples.

The energy distribution displays a clear double-peaked form
(Fig. 9), which becomes more pronounced as k increases.
Moreover, it sharpens as n increases, which is clear evidence
of a first-order phase transition. We find that due to the initial
build-up of the bimodality the specific heat actually seems to
increase faster than linearly. The scaling of the shift and width
of the transition here is no longer consistent with the scenario
found at k = kG. We now find evidence for 1/n scaling of the
shift of the transition, rather than the 1/

√
n scaling found at

k = kG.

D. k-eISAT with k < kG

Finally we focus on k-eISAT for k < kG. We simulated
the k-eISAT model with k = 0,1,2,3, collecting for each
simulation order of Sn � 108 samples (corresponding to Seff

e �
106) at the maximum length N = 103.

On the triangular lattice, for k < kG the collapse transition
is θ -like, and hence second order. A corresponding conjecture
for the cubic lattice is the presence of a weak second-order
transition with a logarithmically divergent specific heat cn �
(ln n)ζ .

The results for k = 1 and k = 2, which we report in
Fig. 10, are consistent with this prediction. However, we
note that our estimated value ζ = 2.25 ± 0.25 is outside the
prediction ζ = 3/11 for the θ point.

While models with k = 0 and k = 3 show very strong
scaling corrections which make the analysis inconclusive
there, we expect the second-order phase transition scenario
to extend to these values, and indeed to the whole range of
values 0 � k < kG.

E. Low temperatures

Motivated by the results on the triangular lattice, we now
investigate the possible presence of a maximally dense phase
in three dimensions.

In a maximally dense phase, in which the trail asymptoti-
cally fills the lattice, the quantity 1 − 3u3, i.e., the proportion
of steps that are not involved with triply visited sites per
unit length, should tend to zero as n → ∞. Based on this
criterion, the investigation on the triangular lattice identified
two different regions of the collapsed phase: one in which
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FIG. 9. (Color online) Normalized energy density of states (k >

kG) for k = 5 and 7, at the respective values of ω = 1.65 and 1.44,
i.e., near the peak of the specific heat curves.

1 − 3u3 tended to zero, and one in which it did not. The one in
which it did was associated with the first-order transition for
k > kG.

Following the analysis in Ref. [14], we show in Fig. 11 the
quantity 1 − 3u3 against n−2/3 at two points in the parameter
region of the low-temperature phase. This is the expected order
of finite-size correction due to the presence of a surface in
a compact low-temperature cluster. The parameters (ω2,ω3)
chosen are representative of regions in the ω2,ω3 plane for
which we would expect to observe a significant difference.
While there is a substantial difference in the asymptotic value
of 1 − 3u3 in these regions, it seems that 1 − 3u3 does not
tend to zero in either. To provide a more robust result we
ran a linear extrapolation of the limiting value of 1 − 3u3 at

1.50 1.55 1.60 1.65 1.70 1.75 1.80 1.85 1.90 1.95

ln ln n

−1.8

−1.6

−1.4

−1.2
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−0.8

−0.6

−0.4

−0.2

ln
cp

e
a
k

n

k = 1
k = 2

FIG. 10. (Color online) Specific heat peak scaling for k = 1
(dotted red line) and k = 2 (dashed blue line): the specific heat
diverges logarithmically with an exponent close to ζ = 2.25.

growing scales, obtaining the limiting values of 0.958 ± 0.002
and 0.24 ± 0.06.

We have also looked for a signature of a transition between
low-temperature phases and were unable to find any emerging
transition, unlike for the triangular lattice (see Fig. 13). Of
course, we cannot exclude that such a transition may become
apparent at longer trail lengths.

0.00 0.02 0.04 0.06 0.08 0.10

n−2/3
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0.2

0.4

0.6

0.8

1.0

1
−

3u
3

(4, 4)

( 7
√

30, 30)

FIG. 11. (Color online) 1 − 3u3, the proportion of steps not
involved with triply visited sites per unit length, plotted against n−2/3,
for (ω2,ω3) = (4,4) (upper blue line) and ( 7

√
30,30) � (1.62,30)

(lower green line), respectively. Statistical errors have been estimated
by multiple independent runs.
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FIG. 12. (Color online) Density plot of the logarithm of the largest
eigenvalue λmax of the matrix of second derivatives of the free energy
with respect to ω2 and ω3 at length n = 512.

VI. PHASE DIAGRAM

To investigate further the full two-dimensional phase
diagram, we ran two more sets of simulations. First we ran
a two-parameter flatPERM simulation of the general eISAT
model. A simulation of this type is limited by both time
and memory requirement, but we have been able to collect
Seff

n � 108 effective samples at length N = 512.
A density plot of the maximum fluctuations, calculated from

the eigenvalues of the matrix of second derivatives of the free

ω2

ω3

1 5/3 3
1

25/3

18 k = kG

Coil

Globule

Globule

FIG. 13. (Color online) Schematic of the observed phase diagram
at length n = 1000. Dots and squares indicate the location of peaks
of fluctuations. Empty and filled dots indicate putative first- and
second-order phase transitions, respectively, whereas squares (in
green) indicate crossover. The diamond (in red) on the k = k − G

curve corresponds to the special transition described in Sec. V A.

ω
3

ω21
1

5/3 2

25/3

12

k = kG

Coil Globule

Globule

FIG. 14. (Color online) Conjectured phase diagram for cubic
lattice. The solid line indicates phase transitions of the second order,
and the dashed indicates a first-order phase transition. The red dotted
line indicates only the k-eISAT model, which passes through the KGT
point (shown as a red diamond). Empty and filled dots indicate an
estimated location of the phase transitions colored as in Fig. 13.

energy is shown in Fig. 12. Our inference for the finite-size
phase diagram is shown in Fig. 13.

Then we investigated the phase diagram along vertical and
horizontal slices, that is to say, with ω2 and ω3 fixed, for n up to
1000. Observed phase transition points are included in Fig. 13.
In the collapsed region we find evidence for a wide crossover
region, but no evidence for an actual transition between two
distinct phases.

We have provided numerical evidence of that the two
different types of transitions lead to a single collapsed
globule-like phase at low temperatures. Our conjecture for
the thermodynamic phase diagram is found in Fig. 14.

VII. CONCLUSIONS

We have investigated the collapse properties of an extended
family of interacting self-avoiding trails in three dimensions
on the simple cubic lattice where doubly and triply visited sites
are given weights ω2 = eε2/T and ω3 = eε3/T .

We have explored the general eISAT model by considering
a family of models satisfying ω3 = ωk

2 with k positive real
number. A kinetic growth process (KGT) of growing trails
on the cubic lattice maps to one temperature of the kG �
4.15 equilibrium model. We find that the collapse is second
order if k < kG and first order if k > kG. This resembles the
triangular lattice finding (although the nature of the second-
order transition is different). Interestingly, the low-temperature
phase for both k < kG and k > kG seems to be a disordered
globular state.

Exactly at k = kG, the finite-size scaling picture is particu-
larly intriguing: The energy distribution displays a double-
peak form, indicating a first-order-type transition but we
observe different values for the shift exponent ψ � 1/2 and
the width (crossover) exponent φ � 1. The thermodynamic
limit location of this first-order transition when k = kG is
the temperature TG that maps to the kinetic growth process.

011123-9



BEDINI, OWCZAREK, AND PRELLBERG PHYSICAL REVIEW E 86, 011123 (2012)

However, if one simulates directly at the point k = kG and T =
TG then the finite size scaling encountered is entirely second-
order-like and shows no sign of the first-order transition which
dominates in the thermodynamic limit. This can be understood
by appreciating that the finite-size transition region shrinks
quicker than its center approaches the limiting temperature.

These results help to illuminate previous contradictory
work for interacting trails on the diamond lattice [12,27]. As
the coordination number of the diamond lattice equals 4, trails
can interact only through doubly visited sites. The collapse
point of interacting trails on the diamond lattice at ω = 3
was identified with the kinetic growth process. In Ref. [12] it
was shown that the scaling of the specific heat at the kinetic
growth points for the diamond and simple cubic lattices was
indistinguishable. However, simulations of interacting trails
on the diamond lattice showed the emergence of a first-order
phase transition [27]. The scenario we describe here for KGT
on the simple cubic lattice clearly mimics these results. We are
now able to understand the existence of both of these behaviors
through the breaking of crossover scaling.

One last observation we can make is that interacting trails
have been simulated in high dimensions [8,19,20,28] and also
demonstrate the breakdown of crossover scaling. The behavior
in high dimensions has been shown to be consistent with a
self-consistent mean-field theory, which also displays bimodal

energy distributions, though these do not lead to real first-order
transitions in high dimensions. While that theory cannot be
applicable to k = kG in three dimensions (it predicts shift and
width exponents both equal to 1/2), it would be interesting
to formulate a mean-field theory of the transition that occurs
for our eISAT model when k = kG. Consequently this may
imply that the upper critical dimension for the k = kG eISAT
models is less than three, and may in fact be two. Similarly, an
analysis of these models from the renormalization group point
of view would give a more clear picture of this intriguing
critical behavior. Here we point out the numerical observation
of confluent logarithms in the two-dimensional kinetic growth
trails [11,13], lending further support to that assertion as
logarithmic corrections typically appear at the upper critical
dimension of a phase transition.
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