
PHYSICAL REVIEW E 86, 011121 (2012)

Symbiotic two-species contact process

Marcelo Martins de Oliveira,1,* Renato Vieira Dos Santos,2 and Ronald Dickman2,†
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We study a contact process (CP) with two species that interact in a symbiotic manner. In our model, each site
of a lattice may be vacant or host individuals of species A and/or B; multiple occupancy by the same species
is prohibited. Symbiosis is represented by a reduced death rate μ < 1 for individuals at sites with both species
present. Otherwise, the dynamics is that of the basic CP, with creation (at vacant neighbor sites) at rate λ and
death of (isolated) individuals at a rate of unity. Mean-field theory and Monte Carlo simulation show that the
critical creation rate λc(μ) is a decreasing function of μ, even though a single-species population must go extinct
for λ < λc(1), the critical point of the basic CP. Extensive simulations yield results for critical behavior that are
compatible with the directed percolation (DP) universality class, but with unusually strong corrections to scaling.
A field-theoretic argument supports the conclusion of DP critical behavior. We obtain similar results for a CP
with creation at second-neighbor sites and enhanced survival at first neighbors in the form of an annihilation rate
that decreases with the number of occupied first neighbors.
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I. INTRODUCTION

Absorbing-state phase transitions have attracted much
interest in recent decades, as they appear in a wide variety
of problems such as population dynamics, heterogeneous
catalysis, interface growth, and epidemic spreading [1–5].
Interest in such transitions has been further stimulated by
recent experimental realizations [6,7].

The absorbing-state universality class associated with
directed percolation (DP) has proven to be particularly robust.
The DP-like behavior appears to be generic for absorbing-
state transitions in models with short-range interactions and
lacking a conserved density or symmetry beyond translational
invariance [8,9]. In contrast, models possessing two absorbing
states linked by particle-hole symmetry belong to the voter
model universality class [10].

The contact process (CP) [11] is probably the best under-
stood model exhibiting an absorbing-state phase transition; it
has been known for many years to belong to the DP class.
The CP can be interpreted as a stochastic birth-and-death
process with a spatial structure. As a control parameter (the
reproduction rate λ) is varied, the system undergoes a phase
transition between extinction and survival. In this context it is
natural to seek a manner to include symbiotic interactions in
the CP. In the present work, this is done by allowing two
CPs (designated as species A and B) to inhabit the same
lattice. The two species interact via a reduced death rate μ

at sites occupied by individuals of both species. (Aside from
this interaction, the two populations evolve independently.) We
find, using mean-field theory and Monte Carlo simulation, that
the symbiotic interaction favors survival of a mixed population,
in that the critical reproduction rate λc decreases as we reduce

*mmdeoliveira@ufsj.edu.br
†dickman@fisica.ufmg.br

μ. Note that for λ(μ) < λ < λ(1), only mixed populations
survive; in isolation, either species must go extinct.

In addition to its interest as a simple model of symbiosis,
the critical behavior of the two-species CP is intriguing in
the context of nonequilibrium universality classes. By analogy
with the (equilibrium) n-vector model, in which the critical
exponents depend on the number of spin components n, one
might imagine that the presence of two species would modify
the critical behavior. Using extensive simulations, we find that
the critical behavior is consistent with that of DP, although with
surprisingly strong corrections to scaling. An argument based
on field theory supports the conclusion of DP scaling. We note
that our result agrees with that of Janssen, who studied general
multispecies DP processes [12]. Similar conclusions apply to
a related model, a CP with creation at second-neighbor sites
and enhanced survival at first neighbors, in the form of an
annihilation rate that decreases with the number of occupied
first neighbors. (In this case the two species inhabit distinct
sublattices.)

The balance of this paper is organized as follows. In Sec. II
we define the models and analyze them using mean-field
theory. In Sec. III we present our simulation results and in
Sec. IV we discuss a field-theoretic approach. Section V is
devoted to discussion and conclusions.

II. MODELS AND MEAN-FIELD THEORY

To begin we review the definition of the basic contact
process. Following the usual nomenclature, we refer to an
active site as being occupied by a particle and an inactive
one as vacant. The CP [11] is a stochastic interacting particle
system defined on a lattice, with each site i either occupied
by a particle [σi(t) = 1] or vacant [σi(t) = 0]. Transitions
from σi = 1 to 0 occur at a rate of unity, independent of
the neighboring sites. The reverse transition, a vacant site
becoming occupied, is possible only if at least one of its nearest
neighbors (NNs) is occupied: The transition from σi = 0 to 1
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occurs at rate λr , where r is the fraction of NNs of site i

that are occupied. Thus the state σi = 0 for all i is absorbing.
At a certain critical value λc the system undergoes a phase
transition between the active and the absorbing state [11].
The CP has been studied intensively via series expansion and
Monte Carlo simulation and its critical properties are known
to high precision [1,3–5,13].

We now define a two-species symbiotic contact process
(2SCP). Let the indicator variables for occupation of site i

by species A and B be σi and ηi , respectively. The allowed
states for a site (σi,ηi) are (0,0), (0,1), (1,0), and (1,1). The
transitions (0,0) → (1,0) and (0,1) → (1,1) occur at rate λrA,
with rA the fraction of NNs bearing a particle of species
A. Similarly, the rate for the transitions (0,0) → (0,1) and
(1,0) → (1,1) is λrB , with rB the fraction of NNs bearing
a particle of species B. The transitions (0,1) → (0,0) and
(1,0) → (0,0) occur at a rate of unity, whereas (1,1) → (1,0)
and (1,1) → (0,1) occur at rate μ. This set of transition rates
describes a pair of contact processes inhabiting the same
lattice. For μ = 1 the two processes evolve independently, but
for μ < 1 they interact symbiotically since the annihilation
rates are reduced at sites with both species present. We note
that the rates are symmetric under exchange of species labels
A and B.

We also study a CP with creation at second-neighbor sites.
In Ref. [14] a modified CP was defined as follows.

(i) In addition to creation at NNs, at rate λ1, we allow
creation at second neighbors, at rate λ2. For bipartite lattices
such as the ring or the square lattice, λ1 is the rate of creation
in the opposite sublattice, while λ2 is the rate in the same
sublattice as the replicating particle.

(ii) The annihilation rate at a given site is 1 + νn2, with n

denoting the number of occupied NNs.
For ν > 0, the presence of particles in one sublattice tends

to suppress their survival in the other, leading to the possibility
of sublattice ordering, as discussed in Ref. [14].

Suppose now that λ1 = 0, and let λ2 ≡ λ. Then the
populations in the two sublattices constitute distinct species
since creation is always in the same sublattice. For ν < 0
moreover, the two species interact in a symbiotic manner,
analogous to that in the two-species CP defined above. (For
ν = 0 the two sublattices evolve independently.) We call this
process the symbiotic sublattice contact process (SSLCP).

Both the 2SCP and SSLCP possess four phases: the
fully active phase (nonzero populations of both species), a
symmetric pair of partly active phases (only one species
present), and the inactive phase (all sites inactive). The latter
is absorbing while the partly active phases represent absorbing
subspaces of the dynamics. (That is, a species cannot reappear
once it goes extinct.) Let λc,0 denote the critical creation rate
of the basic CP. In the 2SCP with μ = 1 (or the SSLCP
with ν = 0), the critical creation rate must be λc,0. The same
applies for the transitions from the partly active phases to the
absorbing one, regardless of the value of μ or ν. Intuitively,
in the presence of symbiotic interactions, one expects the
transition from the fully active to the absorbing phase to
occur at some λc < λc,0 since the annihilation rate is reduced.
Since this expectation is borne out numerically, the partly
active phases are of little interest as they are not viable in the
vicinity of the fully active-absorbing phase transition. Under-

standing the latter transition is the principal objective of this
study.

As a first step in characterizing the phase diagrams of the
models, we develop mean-field approaches. The derivation
of a dynamic mean-field theory (MFT) for an interacting
particle system begins with the equations of motion for the
set of one-site probabilities (or, more generally, the n-site
joint probability distribution) [1]. In this equation, the n-site
probability distribution is inevitably coupled to the distribution
for n + 1 or more sites. An n-site MFT is obtained by
estimating the latter distribution(s) in terms of that for n sites.
Here we consider the simplest cases, n = 1 and 2.

Consider the 2SCP in the one-site approximation. Denoting
the probabilities for a given site to be vacant, occupied
by species A only, by species B only, and doubly oc-
cupied by p0, pA, pB , and pAB , respectively, assuming
spatial homogeneity, and factorizing two-site joint probabil-
ities (p[(σi,ηi),(σj ,ηj )] = p[(σi,ηi)]p[(σj ,ηj )]) one readily
obtains the equations

dp0

dt
= −λp0(ρA + ρB) + pA + pB,

dpA

dt
= λp0ρA + μpAB − (1 + λρB)pA, (1)

dpB

dt
= λp0ρB + μpAB − (1 + λρA)pB,

dpAB

dt
= λ(pAρB + pBρA) − 2μpAB,

where ρA = pA + pAB and ρB = pB + pAB . If one species is
absent (so that, say, pB = pAB = 0) this system reduces to the
MFT for the basic contact process ṗA = λpA(1 − pA) − pA

with a critical point at λ = 1. To study the effect of symbiosis
we seek a symmetric solution pA = pB = p. In this case one
readily finds the stationary solution

p = μ

2λ(1 − μ)
[2(1 − μ) − λ +

√
λ2 − 4μ(1 − μ)] (2)

and

pAB = λp2

μ − λp
. (3)

For μ � 1/2, p grows continuously from zero at λ = 1,
marking the latter value as the critical point. The activity
grows linearly, p � [μ/(2μ − 1)](λ − 1), in this regime. For
μ < 1/2, however, the expression is already positive for
λ = √

4μ(1 − μ) < 1 and there is a discontinuous transition
at this point. The value μ = 1/2 may be viewed as a tricritical
point; here p ∼ √

λ − 1 for λ > 1. Numerical integration of
the MFT equations confirms the above results. For μ < 1/2,
MFT in fact furnishes the spinodal values of λ. For a given set
of initial probabilities, the numerical integration converges to
the active stationary solution for λ � λ∗ and to the absorbing
state for smaller values of λ. For the most favorable initial
condition, i.e., pAB(0) → 1, λ∗ → λ(−) = √

4μ(1 − μ), the
lower spinodal, while for a vanishing initial activity ρA,
ρB → 0, λ∗ → λ(+) = 1. The stationary activity at λ∗ is
nonzero. Figure 1 shows the stationary probabilities versus
λ for μ = 1/4.
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FIG. 1. (Color online) Density p of species A (bottom curve) and
of doubly occupied sites pAB (top curve) in the one-site approximation
for the 2SCP, with μ = 0.25.

The two-site MFT for the one-dimensional 2SCP involves
ten pair probabilities and a set of 32 transitions. The resulting
phase diagram is qualitatively similar to that of the one-site
MFT. For μ > 0.75, the transition is continuous and occurs
at λ = 2, the same value as for the basic CP at this level of
approximation. There is a tricritical point at μ = 0.75, below
which the transition is discontinuous; Fig. 2 shows the phase
boundary.

The one-site MFT for the SLCP was developed in Ref. [14].
Adapted to the present case (creation only in the same
sublattice, symbiotic interaction), the equation is

dρA

dt
= −(

1 − νq2ρ2
B

)
ρA + λ2ρA(1 − ρA) (4)

and similarly for ρA � ρB , on a lattice of coordination number
q. (Here ρj denotes the fraction of occupied sites in sublattice
j .) As we seek a symmetric solution, we set ρA = ρB . The
resulting equation yields a continuous phase transition at
λ = 1, independent of ν. (Note that ν must be greater than
−1/16; smaller values correspond to a negative annihilation
rate, for ρ near unity.) The two-site approximation is likely

FIG. 2. (Color online) Phase boundary in the λ-μ plane as given
by two-site MFT for the 2SCP on the line. The curved portion
represents the lower spinodal λ(−)(μ).

to provide a better description of the SSLCP since in this
case the nearest-neighbor double occupancy probability is an
independent variable, analogous to pAB in the one-site MFT
of the 2SCP. Since such an analysis is unlikely to result in
additional insights, we shall not pursue it here.

Although MFT predicts a discontinuous phase transition
in the 2SCP in any number of dimensions, such a transition
is not possible in one-dimensional systems with short-range
interactions and free of boundary fields [15]. In one dimension
the active-absorbing transition should be continuous, as we
have indeed verified in simulations. Although our simulations
show no evidence of a discontinuous transition in two
dimensions (d = 2), such a transition remains a possibility
for d � 2, for small values of μ. A discontinuous transition
might also arise under rapid particle diffusion, as this generally
favors mean-field-like behavior.

III. SIMULATIONS

We performed extensive Monte Carlo simulations of the
2SCP on rings and the square lattice (with periodic boundaries)
and of the SSLCP on rings. A general observation is that
both models appear to be more strongly affected by finite-size
corrections than is the basic CP.

In the simulation algorithm for the two-species CP, we
maintain two lists, i.e., of singly and doubly occupied sites.
Let Ns and Nd denote, respectively, the numbers of such sites,
so that Np = Ns + 2Nd is the number of particles. The total
rate of (attempted) transitions is λNp + Ns + 2μNd ≡ 1/�t ,
where �t is the time increment associated with a given step in
the simulation. At each such step, we choose among the events:
(i) creation attempt by an isolated particle, with probability
λNs�t ; (ii) creation attempt by a particle at a doubly occupied
site, with probability 2λNd�t ; (iii) annihilation of an isolated
particle, with probability Ns�t ; and (iv) annihilation of a
particle at a doubly occupied site, with probability 2μNd�t .
Once the event type is selected we choose a site i from the
appropriate list. In the case of annihilation, a particle is simply
removed, while creation requires the choice of a neighbor j of
site i and can proceed only if j is not already occupied by a
particle of the species to be created. For creation by a particle
at a doubly occupied site, the species of the daughter particle
is chosen to be A or B with equal probability and similarly for
annihilation at a doubly occupied site.

In simulations of the SSLCP we maintain a list of occupied
sites. At each step a site is selected from the list; an attempt
to create a new particle, at one of the second-neighbor sites,
is chosen with probability p = λ/(1 + λ2 + μn2

1); the site is
vacated with the complementary probability 1 − p. The time
increment associated with each event is �t = 1/Np, with Np

the number of particles just prior to the event.

A. Results: The 2SCP in one dimension

We studied the 2SCP using three values of μ: 0.9, 0.75,
and 0.25. While the first case may be seen as a relatively small
perturbation of the usual CP (μ = 1), the third represents a
very strong departure from the original model. We perform
three kinds of studies: quasistationary (QS) [16], initial
decay (starting from a maximally active configuration), and
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FIG. 3. (Color online) Quasistationary simulation of the one-
dimensional 2SCP: moment ratios mρ (solid symbols) and mq (open
symbols) versus 1/L for the one-dimensional model with μ = 0.75.
The top curve in each pair is for λ = 3.0336 and the bottom is for
λ = 3.0337.

spreading, in which the initial condition is a doubly occupied
site in an otherwise empty lattice. Although the critical
value λc(μ) can be estimated using each method, spreading
simulations proved the most effective in this regard.

In the QS simulations, we study system sizes 800, 1600,
3200, 6400, and 12800, with each run lasting 107 time units;
averages and uncertainties are calculated over 10–80 runs. We
use three well established criteria to estimate the critical value:
(i) power-law dependence of the order parameter on system
size ρ ∼ L−β/ν⊥ , (ii) power-law dependence of the lifetime
τ ∼ Lz, and (iii) convergence of the moment ratio mρ(L) to
a finite limit mc as L → ∞ [17]. Here mρ ≡ 〈ρ2〉/〈ρ〉2. The
order parameter is defined as the density of individuals, i.e.,
ρ = (NA + NB)/L. A related quantity of interest is the density
q of doubly occupied sites; the moment ratio mq is defined in a
manner analogous to mρ . Two further quantities of interest are
the scaled variances of ρ and q; we define χρ ≡ Ld var(ρ) and
similarly for χq . The expected critical behavior is χ ∼ Lγ/ν⊥ ,
where the critical exponent γ satisfies the hyperscaling relation
γ = dν⊥ − 2β [1].

A preliminary estimate of λc is obtained from the crossings
of mρ for successive system sizes L and 2L. For μ = 0.75, for
example, this yields λc = 3.0337. The plot of mρ and mq (see
Fig. 3) indicates that λc > 3.0336 (since mρ curves upward),
while the slight downward curvature for λ = 3.0037 suggests
that this value may be slightly above critical. This graph also
suggests that mρ and mq approach the same limiting value,
despite marked differences for smaller system sizes. Table I

FIG. 4. (Color online) Initial-decay simulation of the 2SCP in
one dimension: decay of the particle density ρ (upper curve) and
the density q of doubly occupied sites in initial-decay studies with
μ = 0.9, λ = 3.2273, and system size L = 51 200. The slopes of the
regression lines are −0.161 (ρ) and −0.162 (q).

summarizes our findings for the critical parameters obtained
from QS simulations.

The initial-decay studies use, as noted above, an initial
configuration with all sites doubly occupied. The activity then
decays, following a power law ρ ∼ t−δ at the critical point [18]
until it saturates at its QS value. The larger the system size,
the longer the period of power-law decay and the more precise
the resulting estimate for the critical exponent δ; here we use
L = 25 600 or 51 200. Averages are calculated over 500–3000
realizations. As the order parameter decays, its fluctuations
build up; at the critical point, the moment ratio is expected
to follow m − 1 ∼ t1/z [19]. Since we expect ρ and q to
scale in the same manner, we define exponents δρ and δq ,
and similarly zρ and zq , based on the behavior of mρ and mq ,
respectively. Figure 4 shows, for μ = 0.9, that ρ and q decay
in an analogous manner and follow power laws at long times,
although there are significant deviations from a simple power
law at short times; the decay exponents are consistent with the
value of δ for directed percolation in one space and one time
dimension (see Table II). The growth of fluctuations follows
a more complicated pattern, as shown in Fig. 5. At relatively
short times, mρ − 1 ∼ t1/zρ , with zρ = 1.63(2), which is not
very different from the DP value; mq − 1 also grows as a
power law in this regime, but with an apparent exponent of
zq = 2.06(1). At longer times zρ appears to take a smaller
value [1.31(1) for 7.5 < ln t < 10.5], while zq shifts to a value
close to that of DP [1.61(1) for 10 < ln t < 14]. The reason
for the distinct behaviors of mρ and mq , in marked contrast

TABLE I. Two-species symbiotic CP in one dimension: results from QS simulations, with L = 800, 1600, 3200, 6400, and 12800. For
μ = 0.25 the maximum size is 6400.

μ λc β/ν⊥ z mρ mq (γ /ν⊥)ρ (γ /ν⊥)q

0.9 3.2273(1) 0.25(2) 1.50(5) 1.168(12) 1.164(4) 0.627(20) 0.474(7)
0.75 3.03370(5) 0.241(6) 1.64(5) 1.163(10) 1.166(2) 0.528(6) 0.486(1)
0.25 1.76297(1) 0.248(3) 1.56(4) 1.168(3) 1.169(3) 0.500(1) 0.492(2)
CP or DP 3.29785 0.25208(5) 1.5807(1) 1.1736(1) 0.49584(9)
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TABLE II. Two-species symbiotic CP in one dimension: results
from initial-decay studies.

μ L λc δ zρ zq

0.9 51200 3.2273 0.161(1) 1.44(1) 1.54(2)
0.75 25600 3.0337 0.1625(10) 1.48(4) 1.55(4)
0.25 51200 1.76297 0.1581(3) 1.56(1) 1.58(1)
DP 0.1599 1.5807(1)

with the similar scaling of ρ(t) and q(t), is unclear. While
scaling anomalies are observed in the initial-decay studies for
μ = 0.9 and 0.75, for strong symbiosis (μ = 0.25) they are
absent, as seen in Table II, which summarizes the results of
the initial-decay studies. (In this table, the values listed for zρ

and zq reflect the latter part of the evolution, during which the
order parameter decays in the expected manner.)

In the spreading studies, each realization runs to a maximum
time of tm (unless it falls into the absorbing state prior to this).
The system size is taken large enough so that activity never
reaches the boundary. Here we use tm = 2 × 106 and L = 105;
averages are calculated over 104 or 2 × 104 realizations. At
the critical point, one expects to observe power-law behavior
of the survival probability P (t) ∼ t−δ , the mean number of
particles n(t) ∼ tη, and the mean-square distance of particles
from the initial seed R2(t) ∼ t zs [18]. Here δ is the same
exponent as governs the initial decay of the activity and zs

is related to the dynamic exponent z via zs = 2/z. Deviations
from asymptotic power laws, indicating off-critical values of
the control parameter λ, are readily identified in spreading
simulations, leading to precise estimates for λc.

The spreading behavior is characterized by clean power
laws, as illustrated in Fig. 6. As this plot makes clear, the
mean particle number np and the mean number of doubly
occupied sites n2 grow with the same critical exponent. Precise
estimates of the spreading exponents are obtained via analysis
of local slopes such as δ(t), defined as the inclination of a

FIG. 5. (Color online) Initial-decay simulation of the 2SCP in
one dimension: growth of fluctuations in ρ (bottom curve) and q

(top curve) for the same parameters as in Fig. 4. The slopes of the
regression lines are (from left to right) 0.613, 0.694, and 0.649.

FIG. 6. (Color online) Spreading simulation of the 2SCP in one
dimension: survival probability P (t), total particle number np(t),
number of doubly occupied sites n2(t), and mean-square distance
from seed R2(t). The parameters are μ = 0.25 and λ = 1.76 297.

least-square linear fit to the data (on logarithmic scales), on
the interval [t/a, at]. (The choice of the factor a represents
a compromise between high resolution, for smaller a, and
insensitivity to fluctuations, for larger values; here we use
a = 4.59.) Curvature in a plot of a local slope versus 1/t

signals an off-critical value. Figure 7 shows the behavior of
δ(t) for μ = 0.25. The spreading exponents, summarized in
Table III, are in good agreement with the values for DP in 1+1
dimensions. (We note that in all three cases, ηp = η2 to within
uncertainty.)

B. Contact process with creation at second neighbors

We studied the SSLCP using QS and initial-decay simula-
tions. The results from the former, based on finite-size scaling
analysis of studies using L = 800, 1600, 3200, 6400, and
12 800, are summarized in Table IV. The value of ν⊥ was
estimated (for ν = −0.1 only) via analysis of the derivatives
|dm/dλ|, d ln τ/dλ, and d ln ρp/dλ in the neighborhood of
the critical point. Finite-size scaling implies that the derivatives
follow |dx/dp| ∝ L1/ν⊥ (here x stands for any of the quantities

FIG. 7. (Color online) Spreading simulation of the 2SCP in one
dimension: local slope δ(t) versus 1/t for μ = 0.25 and (from bottom
to top) λ = 1.7629, 1.762 95, 1.762 97, and 1.7630.
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TABLE III. One-dimensional 2SCP: results from spreading
simulations.

μ λc δ η zs

0.9 3.2273 0.165(1) 0.310(1) 1.257(2)
0.75 3.0337 0.1595(5) 0.3180(5) 1.265(5)
0.25 1.76297 0.158(1) 0.315(3) 1.265(10)
DP 3.29785 0.15947(5) 0.31368(4) 1.26523(3)

mentioned). We estimate the derivatives via least-squares
linear fits to the data on an interval that includes λc. (The
intervals are small enough that the graphs show no significant
curvature.) Linear fits to the data for m, ln ρp, and ln τ yield
1/ν⊥ = 0.94(2), 0.92(3), and (again) 0.92(3), respectively,
leading to the estimate ν⊥ = 1.08(3).

Results of the initial-decay studies are summarized in
Table V. As in the two-species CP, the value of z obtained
from analysis of m(t) appears to be smaller than the DP
value, whereas the result obtained from the QS simulations
is consistent with that of DP.

C. Two-species contact process in two dimensions

We performed extensive Monte Carlo simulations of the
2SCP on square lattices using both initial-decay and QS
simulations. In order to locate the critical point with good
precision, we study the initial decay of the particle density,
starting from a maximally active initial condition (all sites
doubly occupied). We use lattices of linear size L = 4000 and
average over at least 20 different realizations. Figure 8 shows
the decay of ρ(t) for μ = 0.1. After an initial transient, during
which the density evolves slowly, the particle density follows
a power law with δ = 0.46(1), which is compatible with the
value [δ = 0.4523(10)] for the DP class in 2 + 1 dimensions.
The transient behavior lasts longer the larger is μ, as shown in
Fig. 9. However, the relaxation is seen to cross over to DP-like
behavior for all values studied, except for μ = 0.9, for which
the transient regime persists throughout the entire simulation.

Having determined λc to good precision in the initial-
decay studies, we perform QS simulations of the model on
square lattices of linear size L = 20,40, . . . ,320 with periodic
boundaries. Figure 10 shows moment-ratio crossings and
the finite-size scaling behavior of the density and lifetime
for μ = 0.1. For the larger sizes we obtain β/ν⊥ = 0.78(1)
and z = 1.74(2), in good agreement with the best estimates
for DP in 2 + 1 dimensions. Simulation results for the two-
dimensional model are summarized in Table VI.

TABLE IV. One-dimensional SSLCP: results from quasistation-
ary simulations.

ν λc β/ν⊥ z mc ν⊥

−0.05 3.1489(1) 0.235(8) 1.63(5) 1.154(5)
−0.1 2.8878(1) 0.242(1) 1.612(12) 1.161(3) 1.08(3)
−0.2 2.0502(1) 0.253(6) 1.59(1) 1.170(6)
DP 3.29785 0.25208(5) 1.5807(1) 1.1736(1) 1.096854(4)

TABLE V. One-dimensional SSLCP: results from initial-decay
simulations.

μ L λc δ z

−0.05 50000 3.1489 0.1458(5) 1.45(2)
−0.1 50000 2.8878 0.1484(7) 1.45(3)
−0.2 20000 2.0503 0.1597(3) 1.53(1)
DP 0.1599 1.5807(1)

IV. FIELD-THEORETIC ANALYSIS

In this section we extend the field theory or continuum
representation of DP to the two-species case to determine
whether the presence of additional species changes the scaling
behavior. Since the theory of DP has been known for some
time, we give a bare outline of this analysis, referring the
reader to Refs. [20–24] for details. To begin, we modify the
lattice model so as to facilitate the definition of a continuum
description following the Doi-Peliti formalism [20,21], which
has been applied to DP in Refs. [22,24]. (The latter study
applies the Wilson renormalization group to the problem.)

In the Doi-Peliti formalism, the master equation governing
the evolution of the probability vector |P (t)〉 ≡ ∑

C p(C,t)|C〉
(the sum is over all configurations) is written in the form
d|P 〉/dt = L|P 〉, where the evolution operator L is composed
of creation and annihilation operators. Starting from this
“microscopic” description, one derives an effective action
S via a path-integral mapping. Then, taking the continuum
limit, one arrives at a field theory for the model. Of the many
lattice models that belong to the DP universality class, the
simplest to analyze in this manner is the Malthus-Verhulst
process (MVP). Here, each site i of a lattice hosts a number
ni � 0 of particles. The transitions at a given site are creation
(ni → n1 + 1) at rate λni and annihilation (ni → n1 − 1) at
rate μni + νni(ni − 1). In addition, particles hop between
nearest-neighbor sites at rate D.

For the MVP on a ring of  sites, one has the
set of basis configurations |n1, . . . ,n〉. Letting ci

and c
†
i denote, respectively, annihilation and creation

FIG. 8. (Color online) The 2SCP in two dimensions: density of
active sites starting from a maximally active initial condition for
μ = 0.1 and λ values increasing from λ = 0.742 (bottom curve) to
from λ = 0.745 (top curve). The system size is L = 4000.
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FIG. 9. (Color online) The 2SCP in two dimensions: density of
active sites starting from a maximally active initial condition for
μ = 0.1, 0.25, 0.5, 0.75, and 0.9 (from top to bottom) and λ = λc(μ)
(see Table VI). The slope of the dashed line is −0.45. The system
size is L = 4000.

operators associated with site i, we have, by definition,
ci |n1, . . . ,ni, . . . ,n〉 = ni |n1, . . . ,ni − 1, . . . ,n〉 and
c
†
i |n1, . . . ,ni, . . . ,n〉 = |n1, . . . ,ni + 1, . . . ,n〉. Then the

evolution operator for the MVP is

LMVP =
∑

i

[λ(c†i − 1)c†i ci + (1 − c
†
i )(μ + νci)ci]

+ D

2

∑
i

[(c†i − c
†
i+1)ci+1 + (c†i − c

†
i−1)ci−1]. (5)

Following the steps detailed in Ref. [22], one arrives at the
effective action for the MVP,

SMVP =
∫

dt

∫
dx[ψ̂(∂t + w − D∇2)ψ + νψ̂ψ2 − λψ̂2ψ],

(6)
where w ≡ μ − λ, the continuum limit has been taken, and
terms higher than third order have been discarded, as they are
irrelevant to critical behavior. (We recall that ψ̂(x,t) is an aux-
iliary field that arises in the mapping. The operator that governs
the evolution of the probability generating function is given by
the functional integral Ut = ∫

Dψ
∫
Dψ̂ exp[−S(ψ,ψ̂)]; see

Refs. [21,22].)
The action of Eq. (6) is equivalent that of DP and serves

as the starting point for renormalization-group (RG) analyses
[8,9,24]. (One usually imposes the relation ν = λ via a
rescaling of the fields, but this is not needed here.) In the
RG analysis the bilinear term naturally defines the propagator,
while the cubic terms correspond to the vertices shown in
Fig. 11. These terms lead, via diagrammatic analysis, to
a nontrivial DP fixed point below dc = 4 dimensions. The

FIG. 10. (Color online) The 2SCP in two dimensions: QS moment
ratio of particles vs λ for μ = 0.1 (the system sizes are L =
40, 80, 160, and 320 in order of steepness). The inset shows the
QS density of active sites (circles), density of doubly occupied sites
(squares), and lifetime of the QS state (triangles) for μ = 0.1.

one-loop diagrams that yield, to lowest order, the recursion
relations for parameters w, λ, and ν are shown in Fig. 12.

Now consider the two-species CP. To formulate a minimal
field theory, we consider a two-species MVP; call it MVP2.
Let mi and ni denote, respectively, the number of particles of
species A and B at site i and let ai and a

†
i , and bi and b

†
i , denote

the associated annihilation and creation operators. We require
the annihilation rate for species A to be a decreasing function
of ni and vice versa; a simple choice for the annihilation rate
of an A particle at site i is μ exp[−γ ni], where γ is a positive
constant, and similarly for B particles, with ni replaced by mi .
This corresponds to the evolution operator

LMVP2 =
∑

i

[λ(a†
i − 1)a†

i ai + (1 − a
†
i )(μe−γ bi†bi + νai)ai]

+D

2

∑
i

[(a†
i − a

†
i+1)ai+1 + (a†

i − a
†
i−1)ai−1]

+
∑

i

[λ(b†i − 1)b†i bi + (1 − b
†
i )(μe−γ ai†ai + νbi)bi]

+D

2

∑
i

[(b†i − b
†
i+1)bi+1 + (b†i − b

†
i−1)bi−1]. (7)

To avoid ambiguity, we interpret the exponentials as being
in normal order, i.e., all creation operators to the left of
annihilation operators. Recalling that terms with four or
more fields are irrelevant, we may expand the exponentials,
retaining only the terms proportional to b

†
i bi and a

†
i ai . Using

: X : to denote the normal-ordered expression of X, it is

TABLE VI. Simulation: critical parameters for the two-dimensional 2SCP.

μ λc β/ν⊥ z δ mp mq

0.9 1.64515(5) 0.63(5) 1.95(5) >0.35 1.40(2) 1.52(2)
0.75 1.61640(5) 0.73(5) 1.78(6) 0.44(3) 1.32(3) 1.33(3)
0.5 1.47290(5) 0.74(3) 1.72(3) 0.46(2) 1.298(8) 1.322(8)
0.25 1.13730(5) 0.76(2) 1.73(2) 0.45(2) 1.30(2) 1.31(2)
0.1 0.743160(5) 0.78(1) 1.73(2) 0.46(1) 1.305(10) 1.315(12)
CP or DP 1.64874(4) 0.797(3) 1.7674(6) 0.4523(10) 1.3264(5)
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FIG. 11. Two three-field vertices in the field theory of DP. Lines
exiting a vertex correspond to ψ̂ , while those entering correspond
to ψ .

straightforward to show that

: e−γ b†b := 1 − (1 − e−γ )b†b + I ≡ 1 − γ̄ b†b + I, (8)

where I consists of terms with four or more operators. (With
the truncation comes the possibility of a negative rate, but
this is of no consequence in the RG analysis.) Now, following
the usual procedure, we obtain the effective action for the
two-species MVP:

SMVP2 =
∫

dt

∫
dx[ψ̂(∂t + w − D∇2)ψ + νψ̂ψ2 − λψ̂2ψ]

+
∫

dt

∫
dx[ϕ̂(∂t + w − D∇2)ϕ + νϕ̂ϕ2 − λϕ̂2ϕ]

−ν̄

∫
dt

∫
dx[ϕ̂ϕψ + ψ̂ψϕ], (9)

where ν̄ = γ̄ μ. Here ψ and ψ̂ are fields associated with species
A; ϕ and ϕ̂ are associated with species B. The first two lines
of expression (9) correspond to independent MVPs; the third
represents the symbiotic interaction between them. [While
such a minimal action could have been “postulated” directly,
we prefer to start with the microscopic expression of Eq. (7)
since it describes a valid stochastic process.]

There are two cubic terms in the action involving only
species A (i.e., the vertices shown in Fig. 11), two involving
only B (those of Fig. 11 drawn, say, with dashed lines),
and two vertices with a mixed pair of incoming lines as
well as a single outgoing line that may belong to either
species. One readily identifies the one-loop diagrams leading
to renormalization of the parameter ν̄. In contrast, no diagrams
(at any order) involving mixed-species vertices can affect
the recursion relations for the DP parameters w, ν, and λ.
The reason is that the presence of a mixed-species vertex

FIG. 12. One-loop diagrams in the field theory of DP, leading to
renormalization of w, μ, and λ, respectively.

anywhere in a diagram implies that the lines entering the
diagram are mixed, so that it can only contribute to the
recursion relation for ν̄. We conclude that the interaction
between species cannot alter the scaling behavior, which must
therefore remain that of DP. At one-loop order, there are
two fixed-point values for ν̄, namely, 2λ and zero, the latter
corresponding to independent processes.

V. CONCLUSION

We study symbiotic interactions in contact-process-like
models in one and two dimensions. For this purpose, we
propose a two-species model (2SCP), in which the death
rate is reduced (from unity to μ) on sites occupied by both
species. A related model (SSLCP), in which each species is
confined to its own sublattice, is also studied in one dimension
and found to exhibit similar behavior. Simulations reveal that
the phase transition between active and absorbing states is
continuous and that the critical creation rate λc is reduced
in the presence of symbiosis. This means that the loss of one
species will rapidly lead to extinction since the system is then a
basic contact process operating at λ < λc. Although this might
suggest identifying the density q of doubly occupied sites as
the order parameter, we find that the particle density ρ (which
includes a large contribution from singly occupied sites) scales
in the same manner as q.

Mean-field theory (in both the one- and two-site approxima-
tions) predicts a discontinuous phase transition in any number
of dimensions for μ sufficiently small. A discontinuous
transition between an active and an absorbing phase is not
expected in one-dimensional systems of the kind studied
here [15], nor do our simulations show any evidence of a
discontinuous transition in two dimensions. Nevertheless, we
cannot discard the possibility of such a transition for d � 2,
for small values of μ, or under rapid particle diffusion, which
generally favors mean-field-like behavior.

Overall, the critical behavior of the symbiotic models is
consistent with that of directed percolation. Corrections to
scaling are, however, more significant than in the basic CP, so
that a study restricted to smaller systems, or to only one kind
of simulation, could easily suggest non-DP behavior. These
corrections are stronger, and of longer duration, the smaller the
intensity of symbiosis. Thus, in the two-dimensional case, the
decay of ρ (in initial-decay studies) attains the expected power-
law regime (with a DP value for the decay exponent), except for
μ = 0.9, the weakest symbiosis studied. A similar tendency
is observed in the QS simulations of the one-dimensional
2SCP, for which the estimates for critical exponents and the
critical moment ratio mc differ most from DP values for
μ = 0.9.

In the initial-decay studies in one dimension, for smaller
intensities of symbiosis (i.e., μ = 0.9 and 0.75), we observe
anomalous growth of fluctuations in the order parameter.
The latter are characterized by mρ − 1 = var(ρ)/ρ2, which
is expected to grow ∼ t1/z, before saturating at its QS value.
The growth at long times corresponds to a z value significantly
smaller than that of DP. The exponent zq associated with the
growth of mq is substantially larger, though still slightly below
the DP value. In contrast with these anomalies, the spreading
exponents are found to take DP values in one dimension,
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independent of the degree of symbiosis. Thus we are inclined
to regard the asymptotic scaling of the symbiotic models as
being that of DP and to interpret the deviations as arising from
finite-time and finite-size corrections. One might conjecture
that under strong symbiosis, the critical system is rapidly
attracted to the DP fixed point (although not as rapidly as
is the basic CP), whereas for weak symbiosis, it makes a long
excursion into a regime in which DP-like scaling is not evident
before finally returning to the vicinity of the DP fixed point.
The asymptotic scaling behavior is presumably associated
with large, sparsely populated but highly correlated regions
of doubly occupied sites, which, for reasons of symmetry,
behave analogously to DP space-time clusters. The presence
of isolated particles, which are relatively numerous and long
lived for weak symbiosis, could mask the asymptotic critical
behavior, on short scales. We defer further analysis of these
questions to future work.

Extending the field theory of DP to the two-species case,
we find that the irrelevance of four-field terms makes DP
extremely robust since the only possible three-field vertices are
already present in the single-species theory. This means that the
interaction between species cannot alter the scaling behavior,
as already noted by Janssen in the case of multispecies DP pro-
cesses [12]. Our simulation results, as noted, support this con-
clusion. A more detailed field-theoretic analysis, including the
evolution of the lowest-order irrelevant terms, might shed some
light on the scaling anomalies observed in the simulations.

ACKNOWLEDGMENTS

We are grateful to Miguel A. Muñoz for helpful comments.
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[2] M. A. Muñoz et al., in Procedings of the 6th Granada Seminar
on Computational Physics, edited by J. Marro and P. L. Garrido,
AIP Conf. Proc. No. 574 (AIP, New York, 2001).
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