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Satya N. Majumdar† and Grégory Schehr‡
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We study the statistics of the number of records Rn,N for N identical and independent symmetric discrete-time
random walks of n steps in one dimension, all starting at the origin at step 0. At each time step, each walker jumps
by a random length drawn independently from a symmetric and continuous distribution. We consider two cases:
(I) when the variance σ 2 of the jump distribution is finite and (II) when σ 2 is divergent as in the case of Lévy flights
with index 0 < μ < 2. In both cases we find that the mean record number 〈Rn,N 〉 grows universally as ∼αN

√
n

for large n, but with a very different behavior of the amplitude αN for N > 1 in the two cases. We find that for
large N , αN ≈ 2

√
ln N independently of σ 2 in case I. In contrast, in case II, the amplitude approaches to an

N -independent constant for large N , αN ≈ 4/
√

π , independently of 0 < μ < 2. For finite σ 2 we argue—and this
is confirmed by our numerical simulations—that the full distribution of (Rn,N/

√
n − 2

√
ln N )

√
ln N converges

to a Gumbel law as n → ∞ and N → ∞. In case II, our numerical simulations indicate that the distribution
of Rn,N/

√
n converges, for n → ∞ and N → ∞, to a universal nontrivial distribution independently of μ. We

discuss the applications of our results to the study of the record statistics of 366 daily stock prices from the
Standard & Poor’s 500 index.
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I. INTRODUCTION

A record is an entry in a series of events that exceeds
all previous entries. In recent years there has been a surge
of interest in the statistics of record-breaking events, both
from the theoretical point of view as well as in multiple
applications. The occurrence of record-breaking events has
been studied, for instance, in sports [1,2], in evolution models
in biology [3,4], in the theory of spin glasses [5,6], and in
models of growing networks [7]. Recently there has been some
progress in understanding the phenomenon of global warming
via studying the occurrence of record-breaking temperatures
[8–11].

More precisely, let us consider a sequence or a discrete-time
series of random variables {x(0),x(1),x(2), . . . ,x(n)} with n +
1 entries. This sequence may represent, for example, the daily
maximum temperature in a city or the daily maximum price of
a stock. A record is said to happen at step m if the mth member
of the sequence is bigger than all previous members, that is, if
x(m) > x(i) for all i = 0,1,2, . . . ,(m − 1). Let Rn denote the
number of records in this sequence of n + 1 entries. Clearly,
Rn is a random variable whose statistics depends on the joint
distribution of P (x(0),x(1), . . . ,x(n)) of the members of the
sequence. When the members of the sequence are independent
and identically distributed (i.i.d.) random variables, each
drawn from a distribution p(x), that is, the joint distribution
factorizes, P (x(0),x(1), . . . ,x(n)) =∏n

i=0 p(x(i)), the record
statistics is well understood from classical theories [12–14]. In
particular, when p(x) is a continuous distribution, it is known
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that the distribution of record number P (Rn,n) is universal for
all n, that is, independent of the parent distribution p(x). The
average number of records up to step n, 〈Rn〉 =∑n+1

m=1 1/m

for all n and the universal distribution, for large n, converges to
a Gaussian distribution with mean ≈ln(n) and variance ≈ln n.

While the statistical properties of records for i.i.d. random
variables (RVs) are thus well understood for many years,
numerous questions remain open for more realistic systems
with time-dependent or correlated RVs. In principle, there are
many different ways to generalize the simple i.i.d. RV scenario
described above. For instance, one can consider time series of
RVs that are independent, but not identically distributed. One
example for this case is the so called linear drift model with
RV’s from probability distributions with identical shape, but
with a mean value that increases in time. This model was
first proposed in the 1980s [15] and was recently thoroughly
analyzed in Refs. [16–18]. In 2007 Krug also considered the
case of uncorrelated RV’s from distributions with increasing
variance [4].

Another possible generalization is the one where RVs are
correlated. Perhaps the simplest and the most natural model
of correlated RVs is an n-step one dimensional discrete-
time random walk with entries {x(0) = 0,x(1),x(2), . . . ,x(n)}
where the position x(m) of the walker at discrete time m

evolves via the Markov jump process,

x(m) = x(m − 1) + η(m), (1)

with x(0) = 0 and η(m) represents the random jump at step m.
The noise variables η(m)’s are assumed to be i.i.d. variables,
each drawn from a symmetric distribution f (η). For instance,
it may include Lévy flights where f (η) ∼ |η|−1−μ for large η

with the Lévy index 0 < μ < 2, which has a divergent second
moment. Even though this model represents a very simple
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Markov chain, statistical properties of certain observables
associated with such a walk may be quite nontrivial to
compute, depending on which observable one is studying
[19–21]. For instance, in recent years there has been a lot of
interest in the extremal properties of such random walks. These
include the statistics of the maximal displacement of the walk
up to n steps with several applications [21–25] and the order
statistics, that is, the statistics of the ordered maxima [26,27],
as well as the universal distribution of gaps between successive
ordered maxima of a random walk [27].

The statistics of the number of record-breaking events in
the discrete-time random walk process in Eq. (1) has also been
studied in a number of recent works with several interesting
results [28–32]. In 2008, Majumdar and Ziff computed exactly
the full distribution P (Rn,n) of the record number up to n steps
and found that when the jump distribution f (η) is continuous
and symmetric, the record number distribution P (Rn,n) is
completely universal for all n, that is, independent of the
details of the jump distribution [28]. In particular, for instance,
the Lévy flight with index 0 < μ < 2 [thus with a divergent
second moment of the jump distribution f (η)] has the same
record number distribution as for a Gaussian walk [with a finite
second moment of f (η)]. This is a rather amazing result and
the deep reason for this universality is rooted [28] in the so
called Sparre Andersen theorem [33]. In particular, for large
n, P (Rn,n) ∼ n−1/2G(Rn/

√
n), where the scaling function

G(x) = e−x2/4/
√

π is universal [28]. The mean number of
records 〈Rn〉 ≈ √

4n/π for large n [28]. In contrast, this
universal result does not hold for symmetric but discontinuous
f (η). For example, if f (η) = 1

2δ(η − 1) + 1
2δ(η + 1), then xm

represents the position of a random walker at step m on a one
dimensional (1D) lattice with lattice spacing 1. In this case,
the mean number of records still grows as

√
n for large n but

with a smaller prefactor, 〈Rn〉 ≈ √
2n/π [28].

These results were later generalized to several interesting
cases, for instance, to the record statistics of 1D random walk
in presence of an external drift [29,30] and 1D continuous-
time random walk with a waiting-time distribution between
successive jumps [31]. The record statistics of the distance
traveled by a random walker in higher dimensions with and
without drift has been studied numerically in the context of
contamination spread in porous medium [32]. In [30], it was
also found that the record statistics of stock markets is very
similar to the ones of biased random walks.

While in Refs. [28–32] the record statistics of a single
discrete-time random walker was studied, the purpose of this
article is to generalize these results to the case where one
has N independent 1D discrete-time random walks. In this
N -walker process, a record happens at an instant when the
maximum position of all the walkers at that instant exceeds
all its previous values. We will see that despite the fact that
the walkers are independent, the record statistics is rather
rich, universal, and nontrivial even in this relatively simple
model.

Let us first summarize our main results. We derive asymp-
totic results for the mean record number 〈Rn,N 〉 up to time n

and also discuss its full distribution. It turns out that for N > 1,
while the full universality with respect to the jump distribution
found for N = 1 case is no longer valid, there still remains a
vestige of universality of a different sort. In our analysis, it is

important to distinguish two cases: case (I), where the jump
distribution f (η) has a finite variance σ 2 = ∫∞

−∞ η2 f (η) dη;
and case (II), where σ 2 is divergent as in the case of Lévy
flights with Lévy index 0 < μ < 2. In both cases, we find that
the mean record number 〈Rn,N 〉 grows universally as ∼αN

√
n

for large n. However, the N dependence of the prefactor αN ,
in particular for large N , turns out to be rather different in the
two cases

αN −−−→
N→∞

⎧⎪⎨
⎪⎩

2
√

ln N in case I (independent of σ 2),

4/
√

π in case II (independent of μ).

(2)

In addition, we also study the distribution of the record number
Rn,N . For finite σ 2 we argue and confirm numerically that the
distribution of the RV (Rn,N/

√
n − 2

√
ln N )

√
ln N converges

to the Gumbel law asymptotically for large n and N (see
Sec. II for details). In contrast, in case II, we find numerically
that the distribution of Rn,N/

√
n converges, for large n and

N , to a nontrivial distribution independent of the value of
0 < μ < 2 (see Sec. II for details). We were, however, unable
to compute this asymptotic distribution analytically and it
remains a challenging open problem. Finally, we discuss the
applications of our results to the study of the record statistics
of 366 daily stock prices from the Standard & Poor’s 500
index [34]. We analyze the evolution of the record number in
subsets of N stocks that were randomly chosen from this index
and compare the results to our analytical findings. While the
strong correlations between the individual stocks seem to play
an important effect in the record statistics, the dependence of
the record number on N still seems to be the same as in the
case of N independent random walkers.

The rest of the paper is organized as follows. In Sec. II,
we define the N -walker model precisely and summarize the
main results obtained in the paper. In Sec. III, we present
the analytical calculation of the mean number of records for
multiple random walkers, in both cases where σ 2 is finite
(case I) and σ 2 is infinite (case II). Section IV is devoted to
an analytic study of the distribution of the record number in
the case where σ 2 is finite. In Sec. V we present a thorough
numerical study of the record statistics of multiple random
walks, and in Sec. VI we discuss the application of our results
to the record statistics of stock prices. Finally, we conclude
in Sec. VII and present the technical details of some of the
analytical computations concerning the computation of the
mean number of records and the distribution of the record
number for lattice random walks in the three Appendixes A,
B, and C.

II. RECORD STATISTICS FOR MULTIPLE RANDOM
WALKS: THE MODEL AND THE MAIN RESULTS

Here we consider the statistics of records of N independent
random walkers all starting at the origin 0. The position xi(m)
of the ith walker at discrete time step m evolves via the Markov
evolution rule

xi(m) = xi(m − 1) + ηi(m), (3)

where xi(0) = 0 for all i = 1,2, . . . ,N and the noise ηi(m)’s
are i.i.d. variables (independent from step to step and from
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FIG. 1. (Color online) Schematic trajectories of N = 3 random
walkers. Each walker starts at the origin and evolves via the Markov
jump process in Eq. (3). A record happens at step m if the maximum
position at step m exceeds its previous values, i.e., xmax(m) > xmax(k)
for all k = 0,1,2, . . . ,(m − 1). The record values are shown by solid
circles.

walker to walker), each drawn from a symmetric distribution
f (η). We are interested in the record statistics of the composite
process. More precisely, consider at each step m, the maximum
position of all N random walkers

xmax(m) = max [x1(m),x2(m), . . . ,xN (m)] . (4)

A record is said to happen at step m if this maximum position at
step m is bigger than all previous maximum positions, that is,
if xmax(m) > xmax(k) for all k = 0,1, . . . ,(m − 1) (see Fig. 1).
In other words, we are interested in the record statistics of the
stochastic discrete-time series {xmax(m)}, with the convention
that the initial position xmax(0) = 0 is counted as a record. Note
that even though the position of each walker evolves via the
simple independent Markovian rule in Eq. (3), the evolution
of the maximum process {xmax(m)} is highly non-Markovian
and hence is nontrivial.

Let Rn,N denote the number of records up to step n for
this composite N -walker process. Clearly, Rn,N is a RV and
we are interested in its statistics. For a single walker N = 1,
we have already mentioned that the probability distribution
of the record number Rn,1 is completely universal, that is,
independent of the jump distribution f (η) as long as f (η) is
symmetric and continuous [28]. In particular, for example, the
record number distribution is the same for simple Gaussian
walkers as well for Lévy flights with index 0 < μ < 2. Here
we are interested in the opposite limit when N → ∞.

We find that while the complete universality of the record
statistics is no longer true for N > 1, a different type of
universal behavior emerges in the N → ∞ limit. In this
large N limit, there are two universal asymptotic behaviors
of the record statistics depending on whether the second
moment σ 2 = ∫∞

−∞ η2 f (η) dη of the jump distribution is
finite or divergent. For example, for Gaussian, exponential,
uniform jump distributions σ 2 is finite. In contrast, for Lévy
flights where f (η) ∼ |η|−μ−1 for large η with the Lévy index
0 < μ < 2, the second moment σ 2 is divergent. In these two
cases, we find the following behaviors for the record statistics.

Case I (σ 2 finite). In this case, we consider jump distri-
butions f (η) that are symmetric with a finite second moment
σ 2 = ∫∞

−∞ η2 f (η) dη. In this case, the Fourier transform of the

jump distribution f̂ (k) = ∫∞
−∞ f (η) eikη dη behaves, for small

k, as

f̂ (k) ≈ 1 − σ 2

2
k2 + · · · . (5)

Examples include the Gaussian jump distribution,
f (η) = √

a/π e−a η2
, exponential jump distribution

f (η) = (b/2) exp[−b|η|], uniform jump distribution
over [−l,l], etc. For such jump distributions, we find that
for large number of walkers N , the mean number of records
grows asymptotically for large n as

〈Rn,N 〉 n→∞−−−→
N→∞

2
√

ln N
√

n. (6)

Note that this asymptotic behavior is universal in the sense that
it does not depend explicitly on σ as long as σ is finite.

Moreover, we argue that for large N and large n, the scaled
RV Rn,N/

√
n converges, in distribution, to the Gumbel form,

that is,

Prob

[
Rn,N√

n
� x

]
n→∞−−−→
N→∞

F1[(x − 2
√

ln N )
√

ln N ],

(7)
where F1(z) = exp[− exp[−z]].

Indeed, for large N and large n, the scaled variable Rn,N/
√

n

converges, in distribution, to the maximum of N independent
RVs,

Rn,N√
n

n→∞−−−→
N→∞

MN, where MN = max(y1,y2, . . . ,yN ),

(8)

where yi � 0’s are i.i.d. non-negative RVs, each drawn from
distribution p(y) = 1√

π
e−y2/4 for y � 0 and p(y) = 0 for

y < 0.
Case II (σ 2 divergent). In this case we consider jump

distributions f (η) such that the second moment σ 2 is divergent.
In this case, the Fourier transform f̂ (k) of the noise distribution
behaves, for all k, as

f̂ (k) = 1 − |a k|μ + · · · , (9)

where 0 < μ < 2. Examples include Lévy flights where
f (η) ∼ |η|−μ−1 with the Lévy index 0 < μ < 2. For the noise
distribution in Eq. (9), we find, quite amazingly, that in the
large N and large n limit, the record statistics is (i) completely
universal, that is, independent of μ and a; and (ii) more
surprisingly, and unlike in Case I, the record statistics also
becomes independent of N as N → ∞. For example, we
prove that for large N , the mean number of records grows
asymptotically with n as

〈Rn,N 〉 n→∞−−−→
N→∞

4√
π

√
n, (10)

which is exactly twice that of one walker; that is, 〈Rn,N→∞〉 =
2 〈Rn,1〉 for large n. Similarly, we find that the scaled variable
Rn,N/

√
n, for large n and large N , converges to a universal

distribution

Prob

[
Rn,N√

n
� x

]
n→∞−−−→
N→∞

F2(x), (11)

which is independent of the Lévy index μ as well as of the
scale a in Eq. (9). While we have computed this universal

011119-3



WERGEN, MAJUMDAR, AND SCHEHR PHYSICAL REVIEW E 86, 011119 (2012)

distribution F2(x) numerically rather accurately, we were not
able to compute its analytical form.

III. MEAN NUMBER OF RECORDS FOR MULTIPLE
WALKERS

Let Rn,N be the number of records up to step n for N random
walkers, that is, for the maximum process xmax(n). Let us write

Rm,N = Rm−1,N + ξm,N , (12)

where ξm,N is a binary RV taking values 0 or 1. The variable
ξm,N = 1 if a record happens at step m and ξm,N = 0 otherwise.
Clearly, the total number of records up to step n is

Rn,N =
n∑

m=1

ξm,N . (13)

So, the mean number of records up to step n is

〈Rn,N 〉 =
n∑

m=1

〈ξm,N 〉 =
n∑

m=1

rm,N , (14)

where rm,N = 〈ξm,N 〉 is just the record rate, that is, the
probability that a record happens at step m. To compute the
mean number of records, we first evaluate the record rate rm,N

and then sum over m.
To compute rm,N at step m, we need to sum the probabilities

of all trajectories that lead to a record event at step m. Suppose
that a record happens at step m with the record value x (see
Fig. 2). This corresponds to the event that one of the N walkers
(say the dashed trajectory in Fig. 2), starting at the origin at
step 0, has reached the level x for the first time at step m, while
the rest of the N − 1 walkers, starting at the origin at step 0,
have all stayed below the level x until the step m. Also, the
walker that actually reaches x at step m can be any of the N

walkers. Finally, this event can take place at any level x > 0
and one needs to integrate over the record value x. Using the
independence of N walkers and taking into account the event
detailed above, one can then write

rm,N = N

∫ ∞

0
pm(x) [qm(x)]N−1 dx, (15)

0
nm

x

FIG. 2. (Color online) A record happens at step m with record
value x for N = 3 walkers, all starting at the origin. This event
corresponds to one walker (the dashed line) reaching the level x

for the first time at step m while the other walkers stay below the
level x up to step m.

where qm(x) denotes the probability that a single walker,
starting at the origin, stays below the level x up to step m and
pm(x) is the probability density that a single walker reaches the
level x for the first time at step m, starting at the origin at step
0. Note that qm(x) can also be interpreted as the cumulative
distribution of the maximum of a single walker’s (say the ith
walker) positions (starting at 0) up to step m

qm(x) = Prob[ max
0�k�m

{xi(k)} � x]. (16)

The two quantities pm(x) and qm(x) can be reinterpreted
in terms of slightly more familiar objects via the following
observation. Note that by shifting the origin to the level x and
using the time-reversal property of the trajectory of a single
random walker, it is easy to see that pm(x) is just the probability
density that a single walker, starting at the origin at step 0,
reaches x at step m while staying positive at all intermediate
steps. By a similar shift of the origin to level x and using the
reflection symmetry of the trajectories around the origin, it
is clear that qm(x) can be interpreted as the probability that
a single walker, starting at an initial position x > 0 at step 0,
stays positive (i.e., does not cross the origin) up to step m. This
is then the familiar persistence or the survival probability of
a single random walker [21]. In fact, both of these quantities
pm(x) and qm(x) can be regarded as special cases of the more
general restricted Green’s function in the following sense.
Consider a single random walker starting at position x at step
0 and evolving its position via successive uncorrelated jumps
as in Eq. (1). Let G+(y,x,m) denote the probability density
that the walker reaches y > 0 at step m, starting at x > 0 at
step 0, while staying positive at all intermediate steps. The
subscript + denotes that it is indeed the restricted Green’s
function counting only the trajectories that reaches y at step
m without crossing the origin in between. It is then clear from
our discussion above that

pm(x) = G+(x,0,m), (17)

qm(x) =
∫ ∞

0
G+(y,x,m) dy. (18)

In the second line, the survival probability qm(x) is obtained
from the restricted Green’s function by integrating over all
possible final positions of the walker. Note also, from Eqs. (17)
and (18), that the survival probability starting exactly at the
origin is

qm(0) =
∫ ∞

0
pm(x) dx. (19)

Hence, if we know the restricted Green’s function
G+(y,x,m), we can, in principle, compute the two required
quantities pm(x) and qm(x). Using the Markov evolution rule
in Eq. (1), it is easy to see that the restricted Green’s function
G+(y,x,m) satisfies an integral equation in the semi-infinite
domain [21],

G+(y,x,m) =
∫ ∞

0
G+(y ′,x,m − 1) f (y − y ′) dy ′, (20)

starting from the initial condition, G+(y,x,0) = δ(y − x).
Such integral equations over the semi-infinite domain are
called Wiener-Hopf equations and are notoriously difficult
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to solve for arbitrary kernel f (z). Fortunately, for the case
when f (z) represents a continuous and symmetric probability
density as in our case, one can obtain a closed form solution
for the following generating function (rather its Laplace
transform) [35]:∫ ∞

0
dy e−λ y

∫ ∞

0
dx e−λ0 x

[ ∞∑
m=0

G+(y,x,m) sm

]

= G̃(λ,λ0,s) = φ(s,λ) φ(s,λ0)

λ + λ0
, (21)

where

φ(s,λ) = exp

[
− λ

π

∫ ∞

0

ln[1 − sf̂ (k)]

λ2 + k2
dk

]
(22)

and f̂ (k) =
∫ ∞

−∞
f (x) ei k x dx.

While the formula in Eq. (21) is explicit, it is rather
cumbersome and one needs further work to extract the
asymptotic behavior of pm(x) and qm(x) from this general
expression. To make progress, one can first make a change of
variable on the left hand side (lhs) λ0x = z and then take the
λ0 → ∞ limit. Using φ(s,λ0 → ∞) = 1 and the definition
G+(y,0,m) = pm(y), and replacing y with x, we then obtain
the following relation:

∞∑
m=0

sm

∫ ∞

0
pm(x) e−λx dx = φ(s,λ), (23)

where φ(s,λ) is given in Eq. (22). Similarly, by taking the
λ → 0 limit on the lhs of Eq. (21), using the asymptotic
behavior in Eq. (A2) together with the definition qm(x) =∫∞

0 G+(y,x,m) dy and replacing λ0 with λ, one obtains

∞∑
m=0

sm

∫ ∞

0
qm(x) e−λx dx = 1

λ
√

1 − s
φ(s,λ). (24)

The formula in Eq. (24) is known in the literature as the
celebrated Pollaczek-Spitzer formula [36,37] and has been
used in a number of works to derive exact results on the
maximum of a random jump process [23,38–40]. Interestingly,
this formula has also been useful to compute the asymptotic
behavior of the flux of particles to a spherical trap in 3D
[24,41,42].

Let us also remark that by making a change of variable
λx = y on the lhs of Eq. (24) and taking λ → ∞, one obtains
the rather amazing universal result for all m,

∞∑
m=0

qm(0) sm = 1√
1 − s

=⇒ qm(0) =
(

2m

m

)
1

22m
, (25)

which is known as the Sparre Andersen theorem [33]. In
particular, for large m, qm(0) ≈ 1/

√
πm. Note that for the

case of a single walker N = 1, it follows from Eq. (15) that
the record rate at step m is simply given by

rm,1 =
∫ ∞

0
pm(x) dx = qm(0) =

(
2m

m

)
1

22m

m→∞−−−→ 1√
πm

,

(26)

where we have used Eq. (19) and the Sparre Andersen
theorem (25). Thus, one obtains the rather surprising universal
result for the N = 1 case: For all continuous and symmetric
jump distributions, the mean number of records up to step
n, 〈R1,N 〉 =∑n

m=1 rm,1, is universal for all n and grows as√
4n/π for large n [28]. The universality in this case can thus

be traced back to Sparre Andersen theorem.
In contrast, for N > 1, we need the full functions pm(x) and

qm(x) to compute the record rate in Eq. (15). This is hard to
compute explicitly for all m. However, one can make progress
in computing the asymptotic behavior of the record rate rm,N

for large m and large N , as we show below. It turns out that for
large m, the integral in Eq. (15) is dominated by the asymptotic
scaling behavior of the two functions pm(x) and qm(x) for large
m and large x. To extract the scaling behavior of pm(x) and
qm(x), our starting point would be the two equations (23) and
(24). The next step is to use these asymptotic expressions in
the main formula in Eq. (15) to determine the record rate
rm,N at step m for large m and large N . The procedure to
extract the asymptotics is somewhat subtle and algebraically
cumbersome. To facilitate an easy reading of the paper, we
relegate this algebraic procedure in the appendixes. Here we
just use the main results from these appendixes and proceed
to derive the results announced in Eqs. (6) and (10). The
asymptotic behavior of pm(x) and qm(x) depend on whether
σ 2 = ∫∞

−∞ η2 f (η) dη is finite or divergent. This gives rise to
the two cases mentioned in Sec. II.

Case I (σ 2 finite). In this case, we show in Appendix A that
in the scaling limit x → ∞, m → ∞ but keeping the ratio
x/

√
m fixed, pm(x) and qm(x) approach the following scaling

behavior:

pm(x) → 1√
2σ 2 m

g1

(
x√

2 σ 2 m

)
,

(27)

where g1(z) = 2√
π

z e−z2
,

qm(x) → h1

(
x√

2 σ 2 m

)
,

(28)
where h1(z) = erf(z),

where erf(z) = 2√
π

∫ z

0 e−u2
du. Note that dh1(z)/dz =

g1(z)/z.
Case II (σ 2 divergent). For the case when the Fourier

transform of the jump distribution f̂ (k) has the small k

behavior as in Eq. (9), we show in Appendix A that in the
scaling limit when x → ∞, m → ∞, but keeping the ratio
x/m1/μ fixed,

pm(x) → 1

m1/2+1/μ
g2

( x

m1/μ

)
, (29)

qm(x) → h2

( x

m1/μ

)
. (30)

While it is hard to obtain explicitly the full scaling functions
g2(z) and h2(z) for all z, one can compute the large z asymptotic
behavior and obtain

g2(z) ∼
z→∞

Aμ

z1+μ
, (31)

h2(z) ∼
z→∞ 1 − Bμ

zμ
, (32)
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where the two amplitudes are

Aμ = 2μ√
π

βμ, (33)

Bμ = βμ, (34)

with the constant βμ having different expressions for 0 < μ <

1 and 1 � μ < 2,

βμ = aμ

π�(1 − μ)

∫ ∞

0

uμ

1 + u2
du for 0 < μ < 1, (35)

βμ = 2aμ

π�(2 − μ)

∫ ∞

0

uμ

(1 + u2)2
du for 1 � μ < 2. (36)

The expressions above [Eqs. (35) and (36)] can be written in
a unified way for any 0 < μ < 2 as

βμ = aμ

2�(1 − μ) cos(μπ

2 )
= aμ�(μ) sin (μπ

2 )

π
, (37)

where, in the last equality, we have used �(1 − μ)�(μ) =
π

sin μπ
. We recall that here we are considering discrete-

time random walks (1). In the continuous-time random walk
framework, with an exponential waiting time between jumps,
the quantity g2(z) was studied in Ref. [43]. By performing
an asymptotic analysis similar to the one presented in
Appendix B, the authors showed that g2(z) behaves, for large z,
like in Eq. (31) with the same exponent, albeit with a different
amplitude. On the other hand, the exact asymptotic result (31),
together with Eq. (37), can also be used to study the normalized
probability distribution function (pdf) p̃m(x) of the position
after m steps, with the condition that the walker stays positive at
all intermediate steps, which was recently studied in Ref. [40].
It reads

p̃m(x) = pm(x)∫∞
0 pm(x)dx

→ 1

m1/μ
g̃2

( x

m1μ

)
,

(38)
g̃2(z) = √

πg2(z),

where we have used the Sparre Andersen theorem∫∞
0 pm(x) dx = qm(0) ∼ 1/

√
πm for large m. From Eq. (31),

one obtains the large z behavior of g̃2(z) as

g̃2(z) ∼
z→∞

Ãμ

z1+μ
, Ãμ = 2aμ sin

(
μπ

2

)
�(μ + 1)

π
, (39)

where we have used μ�(μ) = �(μ + 1). On the other hand,
if one considers the probability density function Pm(x) of the
position of a free Lévy random walk after m steps, with a jump
distribution as in Eq. (9) after m steps, it assumes the scaling
form, valid for large m, Pm(x) ∼ m−1/μp(x/m1/μ), where the
asymptotic behavior is given by

p(z) ∼
z→∞

Cμ

z1+μ
, Cμ = aμ sin

(
μπ

2

)
�(μ + 1)

π
. (40)

Therefore, the above result (39) establishes that Ãμ = 2Cμ:
This result was recently obtained analytically in perturbation
theory for μ close to 2, 2 − μ � 1, and conjectured to hold
for any μ, on the basis of thorough numerical simulations [40].
Here this result is established exactly for any μ ∈ (0,2). While
the large z behavior of g2(z) is the most relevant one for our
study, we mention, for completeness, that its small z behavior
was also studied in Refs. [43,44], yielding g2(z) ∼ zμ/2.

Finally, we remark that the asymptotic behavior of h2(z) for
large z has been computed in great detail recently in Ref. [39];
only the first two leading terms are presented in Eq. (32) here.

We are now ready to use these asymptotic behaviors of
pm(x) and qm(x) in Eq. (15) to deduce the large m behavior
of the record rate. Noting that for large m, the integral is
dominated by the scaling regime, we substitute in Eq. (15) the
scaling forms of pm(x) and qm(x) found in Eqs. (27), (28),
(29), and (30). We then get, for large m,

rm,N ≈ N√
m

∫ ∞

0
g(z) [h(z)]N−1 dz, (41)

where g(z) = g1,2(z) and h(z) = h1,2(z) depending on the two
cases. So we notice that in all cases the record rate decreases as
m−1/2 for large m, albeit with different N -dependent prefactors
in the two cases. Hence, the mean number of records 〈Rn,N 〉
up to step n grows, for large n, as

〈Rn,N 〉 ≈ αN

√
n, where αN = 2N

∫ ∞

0
g(z) [h(z)]N−1 dz.

(42)

Next we estimate the constant αN for large N . We first note
that αN in Eq. (42) can be expressed as

αN = 2
∫ ∞

0

g(z)

h′(z)

d

dz
{[h(z)]N } dz, (43)

where h′(z) = dh/dz. Noticing that h(z) is an increasing func-
tion of z approaching 1 as z → ∞, the dominant contribution
to the integral for large N comes from the large z regime.
Hence, we need to estimate how the ratio g(z)/h′(z) behaves
for large z. Let us consider the two cases separately.

Case I (σ 2 finite). In this case, we have explicit expressions
for g1(z) and h1(z), respectively, in Eqs. (27) and (28). Hence,
we get

αN = 2
∫ ∞

0
dz z

d

dz
[erf(z)]N (44)

=
∫ ∞

0
dy y

d

dy
[erf(y/2)]N . (45)

The rhs of Eq. (45) has a nice interpretation. Consider N i.i.d.
positive RVs {y1,y2, . . . ,yN }, each drawn from the distribution
p(y) = 1√

π
e−y2/4 for y � 0 and p(y) = 0 for y < 0. Let

MN denote their maximum. Then the cumulative distribution
function (cdf) of the maximum is given by

Prob[MN � y] =
[∫ y

0
p(y ′) dy ′

]N

= [erf(y/2)]N. (46)

The probability density of the maximum is then given by
d
dy

[erf(y/2)]N . Hence, the rhs of Eq. (45) is just the average
value 〈MN 〉 of the maximum. This gives us an identity for all
N ,

αN = 〈MN 〉. (47)

From the standard extreme value analysis of i.i.d. variables
[45], it is easy to show that to leading order for large N ,
〈MN 〉 ≈ 2

√
ln N , which then gives, via Eq. (42), the leading
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asymptotic behavior of the mean record number,

〈Rn,N 〉 n→∞−−−→
N→∞

2
√

ln N
√

n. (48)

Case II (σ 2 divergent). To evaluate αN in Eq. (43), we note
that when σ 2 is divergent, unlike in Case I, we do not have
the full explicit form of the scaling functions g2(z) and h2(z).
Hence, evaluation of αN for all N is difficult. However, we
can make progress for large N . As mentioned before, for large
N , the dominant contribution to the integral in Eq. (43) comes
from large z. For large z, using the asymptotic expressions in
Eqs. (31) and (32), we get

g2(z)

h′
2(z)

z→∞−−−→ Aμ

μBμ

= 2√
π

, (49)

where we have used Eqs. (33) and (34) for the expressions of
Aμ and Bμ. We next substitute this asymptotic constant for
the ratio g2(z)/h′

2(z) in the integral on the rhs of Eq. (43).
The integral can then be performed trivially and we get, for
large N ,

αN
N→∞−−−→ 4√

π
. (50)

From Eq. (42) we then get for the mean record number

〈Rn,N 〉 n→∞−−−→
N→∞

4√
π

√
n. (51)

In contrast to case I in Eq. (48), here the mean record number
becomes independent of N for large N .

IV. THE DISTRIBUTION OF THE NUMBER OF RECORDS
FOR FINITE σ 2

In the previous section, we performed a very precise study
of the mean number of records 〈Rn,N 〉 up to step n, in both
cases where σ 2 is finite and divergent. In the present section,
we investigate the full pdf of the record number Rn,N . However,
we have been able to make analytical progress for the record
number distribution only in case I, where σ 2 is finite, to which
we restrict ourselves below.

The clue that leads to an analytical computation of the
record number distribution in case I (finite σ 2) is actually
already contained in the exact expression of the mean record
number in Eqs. (42) and (45) which reads for large n, 〈Rn,N 〉 ≈
αN

√
n. The quantity αN

√
n has a precise physical meaning.

To uncover this, let us first define a new RV,

Yn,N = max
0�m�n

xmax(m) = max
0�m�n

max
1�i�N

[xi(m)], (52)

which denotes the maximum of all the walkers up to step
n. Let us first compute its average value. Let mi(n) =
max0�m�n{xi(m)} denote the maximum of the ith walker up
to step n. Its cumulative distribution is given in Eq. (16),
Prob [mi(n) � x] = qn(x). Taking average in Eq. (52) and
exchanging the two maximums, it follows that

〈Yn,N 〉 = 〈 max
1�i�N

[mi(n)]〉. (53)
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FIG. 3. Rescaled mean record number 〈Rn,N 〉/√n for a fixed
n = 1000 plotted against the number of random walkers N . We
performed simulations with jump distributions of the type f (η) ∼
|η|−μ−1 and different μ = 1, 1.5, 1.8, and 1.95 and for the Gaussian
jump distribution with zero mean and σ 2 = 1. The Gaussian case is
compared to our analytical finding for the finite σ 2 case [Eq. (48)],
which is given by the dashed line. The horizontal dotted black line
gives the analytical result for the infinite σ 2 regime [Eq. (51)]. With
increasing N all 〈Rn,N 〉/√n with μ < 2 approach this line of value
4/

√
π .

Using the independence of the walkers and the fact that mi(n)’s
are identically distributed via the cdf qn(x), one gets

〈Yn,N 〉 = N

∫ ∞

0
x q ′

n(x) [qn(x)]N−1 dx. (54)

Finally, substituting the asymptotic large n behavior of qn(x)
from Eq. (28) on the rhs of Eq. (54) and comparing it to the
expression of αN in Eq. (45), we get

〈Yn,N 〉 ≈ σ√
2

αN

√
n. (55)

Given the fact that 〈Rn,N 〉 ≈ αN

√
n for large n then leads to

the relation

lim
n→∞

〈Rn,N 〉√
n

= lim
n→∞

√
2

σ

〈Yn,N 〉√
n

. (56)

Thus the mean record number is asymptotically identical to
the mean global maximum of the N -walker process, up to the
rescaling factor σ/

√
2. In this section, we would like to argue

that actually the asymptotic proportionality between Rn,N and
Yn,N is true at the level of the full distribution, not just the
average. In other words,

lim
n→∞

Rn,N√
n

≡ lim
n→∞

√
2

σ

Yn,N√
n

, (57)

where ≡ indicates that the RVs on both sides of Eq. (57)
have the same probability distribution. While this identity can
be rigorously proved for N = 1 as shown below, we have
not been able to prove it rigorously for N > 1. However,
our numerical simulations strongly favor this conjecture as
demonstrated later in Sec. V A (see Fig. 4). If one accepts this
relation, then one can compute the large n distribution of Rn,N

since it is easy to compute the distribution of Yn,N for large n.
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FIG. 4. (Color online) Scaled pdf
√

nP (Rn,N ,n) as a function of
Rn,N/

√
n for N = 2 and N = 4 independent of random walks of

length n = 104. For each value of N , we show the result for the case
where the jumps are distributed exponentially (“exp”) and uniformly
between −1/2 and 1/2 (“uni”). The dotted lines correspond to the
result in Eq. (62) which we conjectured to be the exact one. There are
no fitting parameters.

This is the strategy that we adopt in this section to compute
the distribution of Rn,N for large n.

Before computing the distribution of Yn,N , let us just make
one useful detour which also provides a hint to the guess in
Eq. (57). It turns out that a proportionality relation similar to
Eq. (57) can actually be rigorously proved for lattice random
walks. Let us first demonstrate this below before we come
back to the continuous jump density case.

Equivalence between Rn,N and Yn,N for lattice random
walks. Consider the simple lattice random walk model where a
walker steps one step to the right or left with equal probability,
starting at the origin. Consider N independent walkers, all
starting at the origin at the same time. The position of the
the ith walker again evolves by the Markov rule in Eq. (3),
but the noise ηi(m)’s are now i.i.d. RVs with a distribution
f (η) = 1

2δ(η − 1) + 1
2δ(η + 1). Note that since f (η) is not

continuous, the results and theorems stated for continuous
jump densities in the previous section are no longer valid here.
Consider now the time evolution of the two random processes:
the record process Rn,N and the global maximum Yn,N defined
in Eq. (52). At the next time step (n + 1), if a new site on the
positive axis is visited by any of the walkers for the first time,
the process Yn,N increases by 1; otherwise its value remains
unchanged. Whenever this event happens, that is, a new site
on the positive side is visited for the first time, one also has
a record event, that is, the process Rn,N also increases by
1. Otherwise Rn,N remains unchanged. Thus, the two random
processes Yn,N and Rn,N are completely locked with each other
at all steps: Whenever one of them increases by unity at a given
step the other does the same simultaneously and when one of
them does not change, the other also remains unchanged. In
other words, for every realization, we have, Yn+1,N − Yn,N =
Rn+1,N − Rn,N . Now, initially all walkers start at the origin
indicating Y0,N = 0 while R0,N = 1 since the initial point is
counted as a record by convention. This allows us to write the

following identity for all n and N

Rn,N = Yn,N + 1 = max
0�m�n

max
1�i�N

[xi(m)] + 1. (58)

Thus, in this case one proves rigorously the identity Rn,N ≡
Yn,N for large n and the proportionality constant is just 1. Note
that this cannot be considered as a special case of the proposed
identity in Eq. (57) valid for continuous jump densities. The
difference is in the proportionality constant. For example,
using σ = 1 for lattice random walks, it is clear that there
is an additional factor of

√
2 in Eq. (57), whereas the constant

is actually 1. For this lattice walk model, one can compute the
full distribution of Yn,N and hence that of Rn,N exactly for all
n as demonstrated in Appendix C.

Similarly, one can consider other lattice models, for
example, with a jump density of the form f (η) = [6δ(η) +
δ(η + 2) + δ(η − 2)]/8, which is normalized and has σ = 1.
In this case, following similar arguments as in the previous
case, it is easy to see that the relationship between Rn,N and
Yn,N is now given by Rn,N = Yn,N/2 + 1. Thus, for large n,
Rn,N ≈ Yn,N/2. Thus, this case also cannot be considered as
a special case of Eq. (57), as the proportionality constant does
not match.

Back to the continuous jump densities. These two lattice
examples discussed above are actually quite instructive. While
we cannot use these results for the case of continuous jump
densities, they serve as a useful pointer to the guess that for
large n, Rn,N simply becomes proportional to Yn,N even for
continuous jump densities: Rn,N ≡ cYn,N . The proportionality
constant c can then be fixed from the exact relation between
their averages in Eq. (56): c = √

2/σ and this then leads to the
conjecture in Eq. (57).

Let us now see the consequence of this relation by first
computing the distribution of Yn,N for large n. This can be done
very simply using the independence of the walkers. According
to Eq. (52),

Yn,N = max
1�i�N

[mi(n)], (59)

where we recall that mi(n) is the maximum of the ith walker
up to step n and is distributed via the cdf Prob [mi(n) � x] =
qn(x). Thus,

Prob[Yn,N � y] =
N∏

i=1

Prob[mi(n) � y] = [qn(y)]N. (60)

Substituting the asymptotic large n scaling behavior of qn(y)
from Eq. (28) and setting y = (σ

√
n/2) x gives

Prob

[√
2

σ

Yn,N√
n

� x

]
−−−→
n→∞ erf

(x

2

)
. (61)

Exploiting the relationship in Eq. (57) then provides an exact
asymptotic result for the record number distribution

Prob

(
Rn,N√

n
� x

)
−−−→
n→∞

[
erf
(x

2

)]N
. (62)

Let us point out that for N = 1, this result was already proved
in Ref. [28]. But we believe, supported by our numerical
simulations presented in Fig. 4 that the result in Eq. (62) is
actually valid for all N � 1.
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In Sec. V B we demonstrate that this conjecture is well
supported by our numerical simulations. From Eq. (60), one
can then use standard results for the extreme statistics of
independent RVs [45] to obtain that for large N and large n, the
scaled RV Rn,N/

√
n (properly shifted and scaled) converges,

in distribution, to the Gumbel distribution as announced in
Eq. (7).

In the case of divergent σ 2, the two RVs Rn,N and Yn,N

do not seem to be related in any simple way. This is already
evident from the result for the mean record number 〈Rn,N 〉
in Eq. (51) for 0 � μ < 2. As n → ∞, 〈Rn,N 〉 ≈ 4/

√
π

√
n

where the prefactor does not depend on N for large N . In
contrast, using standard extreme value statistics [45], it is easy
to show that the mean value 〈Yn,N 〉 ∼ (N n)1/μ for large n and
N with 0 < μ < 2. This rather different asymptotic behavior
of the mean thus already rules out any relationship between
Rn,N and Yn,N for case II. So, for this case, our result for the
distribution of Rn,N is only restricted to numerical simulations
that are presented in the next section.

V. NUMERICAL SIMULATIONS

In this section we present the results of our numerical
simulations of N independent random walks both with a finite
σ 2 (case I) and with a divergent σ 2 (case II) and compare
them with our analytical results. In Sec. V A we study the
statistics of the record numbers (both its mean value and its
full distribution). Since, at least in case I, the mean record
number is strongly related to the expected maximum of the
process we then analyze the evolution of the largest of the
N random walkers. This is done in Sec. V B. We find that
the statistics of the maximum significantly differs between the
cases I and II. Finally, in Sec. V C we consider the correlations
between individual record events in the two different cases
and show that, at least asymptotically, these correlations are
not different from the case of only one single random walker.

A. Statistics of the record numbers

Case I (σ 2 finite). In Fig. 3, we show our numerical results
for 〈Rn,N 〉 for σ 2 finite, which were obtained by a direct
simulation of the jump process in Eq. (1) with n = 104 steps,
with a Gaussian distribution of the jump variables ηi(m)’s
(mean 0 and σ 2 = 1). These results have been obtained by
averaging over 103 different realizations of the random walks.
These data, on Fig. 3 are indexed by the label “Gaussian.” Our
numerical data show a very nice agreement with our analytical
result obtained in Eq. (42), yielding 〈Rn,N 〉/√n = αN . The
large N behavior of αN can be easily obtained by a saddle-point
analysis, yielding

〈Rn,N 〉√
n

= 2
√

ln N − ln(ln N )

2
√

ln N
+ O[(ln N )−1/2] . (63)

It turns out that for N ∼ 1000, the subleading corrections (63)
are still sizable.

We have also computed numerically the distribution of the
(scaled) record numbers Rn,N/

√
n and compared it to our

conjecture in Eq. (62). The results of this comparison, for
different values of N = 2,4 are shown in Fig. 4, where the
data were obtained by averaging over 5 × 104 realizations

of independent random walks of n = 104 steps. The data,
for two different continuous jump distributions (exponential
and uniform) show a very nice agreement with our analytical
prediction in Eq. (62). As mentioned above, one expects that
this distribution will converge, for N → ∞ to a Gumbel
distribution (7), albeit with strong finite N effects.

Case II (σ 2 divergent). In Fig. 3, we show our numerical
results for 〈Rn,N 〉 for σ 2 divergent, obtained by a direct
simulation of the random walk (1) where the distribution of
ηi(m)’s has a power law tail f (η) ∼ |η|−1−μ with μ < 2,
and different values of μ. The data presented there were
also obtained by averaging over 103 different realizations of
random walks, with 104 steps. These data show that, in this
case, 〈Rn,N 〉/√n approaches a constant value for fixed (and
large) n and N → ∞, which is fully consistent with the value
of 4/

√
π obtained analytically in Eq. (51). The simulations

also show how the speed of this convergence is modified
when μ < 2 is varied. While for small μ � 2, 〈Rn,N 〉/√n

approaches the universal limit value of 4/
√

π very quickly,
we find a slower convergence for 2 − μ � 1.

The numerical computation of the distribution of the
(scaled) record number Rn,N/

√
n is of special interest because

an analytical study of it, beyond the first moment, is still
lacking. The two plots on Fig. 5 show our numerical results
for this distribution, which were obtained by averaging over
104 independent random walks of length n = 104.

The left panel in Fig. 5 shows the rescaled distribution of
Rn,N/

√
n at a fixed time step n = 103 and μ = 1. Apparently

all curves for N = 10, 102, 103, and 104 collapse on one line.
In the inset of the left panel we kept n = 103 and N = 103

fixed and varied μ: one can see that all the cdfs collapse.
These results suggest that

Prob

[
Rn,N√

n
� x

]
n→∞−−−→
N→∞

F2(x), (64)

where the limiting distribution function F2 (x) is independent
of μ < 2. We tried to guess the analytic form of F2 (x) by
comparing with several known continuous distributions that
are defined for positive real numbers. We are certain that F2 (x)
is not a Gaussian distribution. By far the best results were
obtained by fitting with a Weibull distribution

F2 (x) = 1 − exp (−(λx)k), (65)

with two free real parameters λ > 0, k > 0. Fitting with the
least-squares method gives values of λ ≈ 0.8944 ± 0.0003 and
k = 2.558 ± 0.003. The right panel in Fig. 5 compares this fit
with the distribution obtained from a simulation of N = 104

random walks of length n = 104. While the agreement, both
for the cdf and the pdf is quite good, there are still some
deviations between the two, particularly for small values close
to zero. We are not sure if this difference is a finite N effect or if
the real limit distribution of Rn,N/

√
n for N → ∞ effectively

differs from a Weibull distribution.

B. Temporal evolution of two stochastic processes: The record
number Rn,N and the global maximum Yn,N up to step n

In the case of jump distributions with a finite second
moment σ 2 (case I), we have shown that the mean 〈Yn,N 〉
of the maximum of all walkers up to step n and the mean
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FIG. 5. (Color online) (a) Cumulative distribution function of the scaled variable Rn,N/
√

n for the Lévy index μ = 1, which approaches
the universal distribution F2 (x). The figure gives results for a fixed n = 103 and different N , for each N we performed 105 simulations. The
inset gives simulations of the cdf for fixed N = 103 while Lévy index is varied. (b) The cdf for μ = 1 and N = 104. We have fitted the data
with a Weibull distribution as in Eq. (65), where the fitting parameters were λ ≈ 0.8944 ± 0.0003 and k = 2.558 ± 0.003. The inset gives the
corresponding curves for the pdfs.

record number 〈Rn,N 〉 are proportional to each other in the
limit n → ∞; both grow with

√
n ln N . In contrast, for

Lévy walks with index μ < 2 (case II) the relation between
these two observables does not hold any more and the mean
record number grows much slower than the maximum (see
the discussion at the end of Sec. IV). To illustrate the
similarities and differences in the growth rate of Rn,N and
Yn,N in the two cases (I and II), we compare their respective
time evolution for four different samples in Fig. 6. On the
left panel, we consider the Gaussian jump distribution with
zero mean and σ 2 = 1 and we see that the process Rn,N

and (
√

2/σ ) Yn,N become identical very quickly. Moreover,
the two processes evolve almost in a deterministic fashion
with growing n and hardly fluctuate from one sample to
another. In contrast, on the right panel where we plot the
two processes for μ = 1, their behavior change drastically.

First of all, the two processes Rn,N and Yn,N do not seem
to have relation to each other. While Rn,N again evolves
almost deterministically and in a self-averaging way, the
trajectories of the process Yn,N differ strongly from one sample
to another and Yn,N is clearly non-self-averaging. In particular,
the process Yn,N can, like in a single Lévy flight, perform very
large jumps exceeding its previous value by several orders of
magnitude.

C. Correlations between record events

An important feature of the record statistics of a single
random walk (N = 1) is its renewal property, which leads to
the fact that each time after a record event, the record statistics
is, in some sense, reset. After a record event the process evolves
as a new process with the record value as its new origin.
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FIG. 6. (Color online) (a) Time evolution of the record number Rn,N and the rescaled maximum value (
√

2/σ ) Yn,N reached up to the nth
step for four different realizations of N = 1000 random walks (labeled A, B, C, D) with Gaussian jump distribution (zero mean and σ = 1)
(case I). Here, the results look rather deterministic and for n → ∞, we find (

√
2/σ ) Yn,N ≈ Rn,N for every realization. (b) Rn,N and Yn,N for

four different realizations of N = 1000 Lévy flights (labeled A, B, C, D) with μ = 1. The behavior of Yn,N for the Lévy flight is completely
different from Rn,N : While Rn,N is self-averaging, Yn,N fluctuates widely from one sample to another and is not self-averaging.
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Therefore, it is very simple to give the pairwise correlations
between record events. In fact, from the above argument,
we have

Prob[rec. at n − k and n]

= Prob[rec. at n − k]Prob[rec. at k] = rn−k,1rk,1. (66)

Using the results from [28] this gives the following (exact)
result for Prob [rec. at n − k and n]:

Prob[rec. at n − k and n] =
(

2(n − k)
n − k

)(
2k

k

)
2−2n. (67)

In the special case of k = 1 we find
Prob [rec. at n − 1 and n] = 1

2 rn−1. With this we find
that the conditional probability of a second record directly
following a record that just occurred is always given by

Prob[rec. at n|rec. at n − 1] = 1
2 . (68)

In our efforts to understand and compute the distribution of the
record number Rn,N for Lévy flights (case II), we considered
the correlations between successive record events also for
N � 1 random walks. If the correlations between successive
record events in the large N limit would vanish, one could
assume that the asymptotic distribution of Rn,N approaches
a Gaussian. However, we found that this is not the case.
Figure 7 gives the behavior of Prob [rec. at n − k and n] for
the N = 1 case, as well as for N = 103 for random walks
of the two cases I and II with Lévy indices μ = 2 and
μ = 1. In all three cases Prob [rec. at n − 1 and n] approaches
1
2 Prob [rec. at n − 1] = 1

2 rn,N for large n, proving that for
n → ∞ the probability for a second record after an occurred
one is just 1/2. The inset of Fig. 7 also shows this behavior.
Here, while for N = 1 the conditional probability for a second
record is always 1/2, this value is only approached for larger n
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FIG. 7. (Color online) Probability for two successive records at
times n − 1 and n for a single random walker as well as N random
walks with jump distributions of tail exponents μ = 2 (case 1) and
μ = 1 (case 2). In all three cases this probability asymptotically
approaches a value of 1/2 times the probability for a record in the
nth step. Therefore, for large n, the correlations between the record
events in the N � 1 regime are the same as in the N = 1 case. This is
also shown in the inset, where we plotted the probability for a record
in the nth step conditioned on a record in the previous one, which
approaches 1/2 in all three cases.

in the case of N � 1. For small n the conditional probability
is larger.

VI. COMPARISON TO STOCK PRICES

The oldest application of the random walk model to analyze
stock prices in markets goes back to Louis Bachelier (1900)
who proposed a simple model based on arithmetic Brownian
motion [46]. Later, Osborne (1959) proposed the geometric
Brownian motion as a more accurate model for stock price
evolutions [47]. This model was revisited and reanalyzed with
modern stock data in Refs. [48,49]. In this model the stock
prices perform a so-called geometric random walk and trends
in the stocks are modeled by a linear drift in the logarithms of
the stock prices. In [30] the record statistics of stocks in the
Standard and Poor’s 500 [34] (S&P 500) index were compared
to the records in a random walk with a drift. The authors
could show that on average the statistics of upper records
in individually detrended stocks are in good agreement with
the same statistics of a random walk with a symmetric jump
distribution. In our notation they found that for a single stock
from the S&P 500:

〈Rn,1〉 ≈ 〈Rn,1〉(GaussianRW) ≈ 2√
π

√
n. (69)

The lower records, however, showed a significant deviation
from this model. These results were also found for daily data
from other stock markets and seem to be relatively independent
of the length of the time series n [50,51].

Here, we want to extend this analysis to the record statistics
of N stocks. The question is to what degree the record statistics
of N normalized and randomly chosen stocks from the S&P
500 can be compared to the record statistics of N independent
random walks. As in [30], the observational data we used
consisted of 366 stocks that remained in the S&P 500 index
for the entire time-span from January 1990 to March 2009.
Overall, we had data for 5000 consecutive trading days for
each stock at our disposal. In [30] we found that it is useful
to analyze these data over smaller intervals, on which one can
then detrend the measurements. We decided to split up the
5000 trading days into 20 consecutive intervals of each 250
trading days, which is roughly one calendar year. In each of
these intervals we considered the logarithms Xi = ln Si/S0 of
the stock prices Si , where S0 is the first trading day. The random
walk model then suggests that these logarithms Xi perform a
biased random walk that starts at the origin (X0 = 0). Since
our analytical theory presented in this paper only works for
symmetric random walks we had to detrend the stocks. We
subtracted an index-averaged linear trend obtained by linear
regression from the Xi’s in order to obtain symmetric random
walkers. Finally, in order to make the stocks comparable to our
model of N random walkers of the same jump distribution, we
had to normalize the Xi’s by dividing through the standard
deviations of the respective individual jump distributions.
After this detrending and normalization we can assume that
the jump distributions in the individual time series have at least
the same mean and the same variance, which should then be
given by 0 and 1.

For a fixed N , we randomly selected subsets of size N

from the 366 detrended and normalized stocks for each of the
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FIG. 8. (Color online) The averaged upper and lower record
number after n = 250 trading days in the S&P 500 stock data. The
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days and then linearly detrended in these intervals using the average
linear trend of the index. Then we chose N stocks randomly out of the
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the results were averaged to obtain the figure. The dashed lines give
our analytical prediction for N Gaussian random walks multiplied by
fitted prefactors. The inset gives the behavior of the 〈Rn,N 〉/√ln N

for different N plotted against the interval length n, confirming the
proportionality 〈Rn,N 〉 ∝ √

ln N .

20 intervals of length n = 250 and computed the evolution
of the record number Rn,N in these subsets. To get reliable
statistics we average Rn,N over 104 different subsets with a
fixed N and also averaged over the 20 consecutive intervals.
The resulting 〈Rn,N 〉’s for the upper and the lower record
number and N between 1 and 100 are given in Fig. 8. We find
that both the curve for the upper and the curve for the lower
mean record number are not in agreement with our theoretical
prediction for the case of N Gaussian random walks given by
〈Rn,N 〉 = 2

√
n ln N . However, Fig. 8 shows, that the 〈Rn,N 〉

for the stocks increase with N . We also considered subsets
of size N > 100 and found that for N closer to the maximal
value of 366, 〈Rn,N 〉 gets almost constant in N . While the
increase of 〈Rn,N 〉 for smaller N indicates that the statistics
behave like N independent Gaussian random walks, the fact
that it saturates for large N could indicate that they behave
like a Lévy flight with Lévy index μ < 2. We know, however,
that the tail exponent of the daily returns ln Si/Si−1 in the
stock data is much larger than μ = 2 and that they definitely
do not perform a Lévy flight [50,52,53]. Much more likely
is that the correlations [48,49,54,55] between the individual
stocks play an important role. In addition, we observed that
at least for N < 100, 〈Rn,N 〉 grows proportional to 2

√
n ln N .

One way to interpret this finding is the following: Since we
know that the statistics of upper records of an individual stock
is well described by a single Gaussian random walk and the
jump distribution in the stock data has a finite variance, the
origin of the inconsistency between the N stocks and our
model of N independent random walks can only be in the
interstock correlations in the market. When we assume that
in N stocks only a smaller number of Nγ (with γ ∈ R+ and
γ < 1) is effectively independent and that only these Nγ stocks

contribute to the record statistics, the mean record number
should be given by

〈Rn,N〉 = 〈Rn,N
γ 〉(Gaussian) = 2

√
γ n ln N, (70)

and saturates if the value of N
γ
max is achieved, where Nmax is

the total number of stocks. In Fig. 8 we fitted curves of the
form

√
γ± 2

√
n ln N with

√
γ+ ≈ 0.655 and

√
γ− ≈ 0.605 to

the development of the upper and lower 〈Rn,N 〉. The good
agreement with the fitted curves and the data confirms our
assumption. Apparently, the record statistics of N detrended
and normalized stocks is the same as the one of Nγ indepen-
dent Gaussian random walks. This finding is also confirmed
by the inset in Fig. 8. There we plotted 〈Rn,N 〉/√ln N for
different interval length n and some different subset sizes N .
The fact that all the lines collapse tells us that 〈Rn,N 〉/√ln N

is independent of N and therefore

〈Rn,N 〉 ∝
√

n ln N. (71)

It is important to note that this finding is primarily an
observation and the proposed “effective number of stocks”
is just a possible interpretation. Unfortunately, up until now,
we were not aware of a method to compute the record statistics
of N correlated random walks directly. Even though it is well
established that the prices of individual stocks are correlated
[48,49,54,55], an effective number of stocks as introduced
above was not computed before. Our model can therefore be
seen as a method to compute such a number.

VII. CONCLUSION

In conclusion, we have presented a thorough analysis of
the record statistics of N independent random walkers with
continuous and symmetric jump distributions. For N > 1, we
have found two distinct cases: the case where the variance of
the jump distribution σ 2 is finite and the case where σ 2 does
not exist (case II), as in the case of Lévy random walkers
with index 0 < μ < 2. In the first case we have found that the
mean record number behaves like 〈Rn,N 〉 ≈ 2

√
ln N

√
n for

n,N � 1 while in case II, 〈Rn,N 〉 ≈ √
4/π

√
n for n,N � 1.

We have then argued that, in the first case, the full
distribution of the scaled number of records Rn,N/

√
n is

given by the distribution of the maximum of N independent
Brownian motions with diffusion coefficient D = 1. This
statement was suggested by an exact result for lattice random
walks and it was corroborated (i) by our exact calculation
of the first moment 〈Rn,N 〉/√n valid for any value of N

and (ii) by our numerical simulations. Of course it would be
very interesting to obtain a proof of this result. From this
connection with extreme value statistics, one thus expects
that the distribution of Rn,N/

√
n converges, for N → ∞, to

a Gumbel form (7). This connection between record statistics
and extreme value statistics could also be useful to compute the
record statistics in other models discussed in the Introduction,
for instance, in the linear drift model [10,16,30]. In the case
of Lévy random walkers, we have shown numerically that
the full distribution of 〈Rn,N 〉/√n converges, when N → ∞,
to a limiting distribution F2(x) which is independent of μ.
The exact computation of this universal distribution remains a
challenging problem. Other interesting questions concern the
extension of these results to include a linear drift [29] or to
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the case of constrained Lévy walks, like Lévy bridges which
were recently studied in the context of real space condensation
phenomena [56]. Finally, the applications of our results to the
record statistics of stock prices from the S&P 500 index suggest
that, among a set of N stocks, only a smaller number, which
scales like Nγ , with 0 < γ < 1, are effectively independent.
The record statistics of these Nγ stocks is then very similar
to the statistics of Nγ independent random walkers. This idea
might be useful for future investigations of the fluctuations of
such ensemble of stock prices.
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APPENDIX A: SCALING BEHAVIOR OF pm(x) AND qm(x)
FOR FINITE σ 2

We start from Eqs. (23) and (24). When σ 2 is finite, by
central limit theorem, the typical position of a walker after m

steps scales as m1/2 for large m. Hence, the natural scaling
variable is z = x/m1/2. Consider first Eq. (23) satisfied by
pm(x). To extract the leading scaling function in the scaling
limit x → ∞, m → ∞ but keeping z = x/m1/2 fixed, we need
to investigate φ(s,λ), given explicitly in Eq. (22), in the limit
when λ → 0, s → 1 but keeping the ratio λ/

√
1 − s fixed.

To extract the behavior of φ(s,λ) in this scaling limit, it is
advantageous to work with an alternative expression of φ(s,λ)
derived in Ref. [24] for finite σ 2

φ(s,λ) = 1

[
√

1 − s + σλ
√

s/2]

× exp

{
− λ

π

∫ ∞

0

dk

λ2 + k2
ln

[
1 − sf̂ (k)

1 − s + sσ 2k2/2

]}
.

(A1)

This expression is more suitable for extracting the scaling
limit. In the limit λ → 0 and s → 1, the expression inside the
exponential in Eq. (A1) tends to 0 and hence, to leading order,
we have

φ(s,λ) ≈ 1

[
√

1 − s + σλ
√

s/2]
. (A2)

Inverting the Laplace transform with respect to λ [it has a
simple pole at λ = −√

2(1 − s)/σ ], one gets from Eq. (23)

∞∑
m=0

smpm(x) ≈
√

2

σ
e−√

2(1−s) x/σ . (A3)

Setting s = 1 − p with p → 0 in the scaling limit, the sum on
the lhs of Eq. (A3) can be approximated, to leading order, by
a continuous integral:

∑∞
m=0 smpm(x) ≈ ∫∞

0 pm(x) e−pmdm

and we have∫ ∞

0
pm(x) e−p m dm ≈

√
2

σ
e−√

2p x/σ . (A4)

Next we need to invert the Laplace transform with respect
to p. We use the explicit inversion formula, L−1

p→m[e−b
√

p] =
b

2
√

π m3/2 exp[−b2/4m]. Applying this to Eq. (A4) gives, to
leading order, in the scaling limit

pm(x) ≈ x

σ 2
√

π m3/2
exp

[
− x2

2σ 2m

]
, (A5)

which can be reorganized in the scaling form

pm(x) → 1√
2σ 2 m

g1

(
x√

2 σ 2 n

)
,

where g1(z) = 2√
π

z e−z2
. (A6)

Next we consider qm(x) given in Eq. (24). Following exactly
the same procedure as in the case of pm(x) we find, in the
scaling limit,∫ ∞

0
qm(x) e−pm dm ≈ 1

p
[1 − e−√

2p x/σ ]. (A7)

Inverting the Laplace transform with respect to p upon
using the explicit inversion formula, L−1

p→m[e−b
√

p/p] =
erfc(b/

√
4m), we get, to leading order in the scaling limit

qm(x) ≈ 1 − erfc

(
x√

2σ 2 m

)
= erf

(
x√

2σ 2 m

)
, (A8)

which proves the result in Eq. (28).

APPENDIX B: SCALING BEHAVIOR OF pm(x) AND qm(x)
FOR DIVERGENT σ 2

We consider jump distribution f (η) such that its Fourier
transform behaves, for small k, as f̂ (k) ≈ 1 − |ak|μ, with 0 <

μ < 2. In this case, the position of the walker after m steps,
grows as m1/μ for large m [23]. Hence, the natural scaling limit
is x → ∞, m → ∞ with the ratio x/m1/μ fixed. For pm(x),
we expect a scaling form pm(x) ≈ m−1/2−1/μg2(x/m1/μ). The
power of m outside the scaling function is chosen to ensure
that

∫∞
0 pm(x)dx ∼ m−1/2. This is needed since we know from

Eq. (19) and the Sparre Andersen theorem in Eq. (25) that∫∞
0 pm(x)dx = qm(0) ∼ 1/

√
πm for large m. Similarly, for

qm(x), we expect a scaling form qm(x) ≈ h2(x/m1/μ) in the
scaling limit.

To extract the leading scaling functions g2(z) and h2(z),
respectively, from Eqs. (23) and (24), we need to investigate
the function φ(s,λ) in Eq. (22) in the corresponding scaling
limit λ → 0, s → 0 but keeping the ratio λ/(1 − s)1/μ fixed.
Fortunately, this was already done in Ref. [23] in a different
context. Setting s = 1 − p with p → 0, the leading behavior
of φ(s,λ) in the scaling limit is given by (see Eqs. (43)–(47)
of Ref. [23])

φ(s,λ) ≈ 1√
p

exp

{
− 1

π

∫ ∞

0

du

1 + u2
ln

[
1 + 1

p
(a λ u)μ

]}
.

(B1)
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Let us first consider the function pm(x) in Eq. (23).
We substitute the anticipated scaling form pm(x) =
m−1/2−1/μg2(x/m1/μ) on the lhs of Eq. (23). As before, setting
p = 1 − s, we can replace, in the scaling limit, the sum over
m by a continuous integral over m

∞∑
m=0

sm

∫ ∞

0
pm(x) e−λx dx

≈
∫ ∞

0

∫ ∞

0
dx dme−λx−p mm−1/2−1/μ g2(xm−1/μ). (B2)

We then make a change of variable x m−1/μ = z and p m = y

to get
∞∑

m=0

sm

∫ ∞

0
pm(x) e−λx dx

≈ 1√
p

∫ ∞

0

∫ ∞

0
dz dy g2(z) y−1/2 e−(λ p−1/μ) y1/μ z−y. (B3)

We next substitute Eq. (B3) on the lhs of Eq. (23) and Eq. (B1)
on the rhs of Eq. (23). Writing the scaled variable as λ p−1/μ =
w and comparing lhs with the rhs, we see that the 1/

√
p cancels

from both sides leaving us with∫ ∞

0
dz g2(z)

∫ ∞

0
dy y−1/2 e−y e−w y1/μ z

= exp

{
− 1

π

∫ ∞

0

du

1 + u2
ln[1 + aμwμuμ]

}
≡ Jμ(w) .

(B4)

Similarly, by substituting the anticipated scaling form qm(x) =
h2(x/m1/μ) on the lhs of Eq. (24) and doing exactly the same
series of manipulations, we get∫ ∞

0
dz h2(z)

∫ ∞

0
dy y1/μ e−y e−w y1/μ z = 1

w
Jμ(w), (B5)

where Jμ(w) is defined in Eq. (B4).
For later purposes, it is further convenient to define a pair

of Laplace transforms

g̃2(ρ) =
∫ ∞

0
g2(z) e−ρ z dz, (B6)

h̃2(ρ) =
∫ ∞

0
h2(z) e−ρ z dz, (B7)

in terms of which Eqs. (B4) and (B5) read∫ ∞

0
dy y−1/2 e−y g̃2(w y1/μ) = Jμ(w), (B8)∫ ∞

0
dy y1/μ e−y h̃2(w y1/μ) = 1

w
Jμ(w). (B9)

Equations (B4) and (B5) determine, in principle, the two
scalings functions g2(z) and h2(z) for all z. In practice, it is hard
to invert these two equations to obtain g2(z) and h2(z) for all
z. However, it is possible to extract the large z asymptotics of
these two functions by analyzing the leading singular behavior
of Jμ(w) in Eq. (B4) as w → 0. Clearly, it follows from
the definition of Jμ(w) in Eq. (B4) that Jμ(0) = 1. We are,
however, interested in the leading singular correction term in
Jμ(w) as w → 0 which, as it turns out, depends on whether
0 < μ < 1, 1 < μ < 2, or μ = 1. Below, we consider the three
cases separately.

1. The case 0 < μ < 1

We consider Jμ(w) in Eq. (B4) and compute the derivative
J ′

μ(w) as w → 0. Simple computation shows that

J ′
μ(w)

w→0−−→ −μbμwμ−1, where bμ = aμ

π

∫ ∞

0

uμ du

1 + u2
.

(B10)

Note that the integral defining bμ is convergent as u → ∞ for
0 < μ < 1. Integrating over w and using Jμ(0) = 1 we get the
leading correction term as w → 0,

Jμ(w) ≈ 1 − bμwμ + · · · , (B11)

where bμ is given in Eq. (B10).
Substituting this small w behavior of Jμ(w) on the rhs of

Eq. (B8), it follows that to match the powers of w on both
sides, the Laplace transform g̃2(ρ) must have the following
small ρ behavior

g̃2(ρ) ∼
ρ→0

1√
π

− 2√
π

bμ ρμ. (B12)

Using the classical Tauberian theorem (for a simple derivation
see the Appendix A.2 of Ref. [57]), one immediately gets the
following large z behavior of g2(z):

g2(z) ∼
z→∞

Aμ

z1+μ
, (B13)

with the amplitude

Aμ = 2μ√
π

bμ

�(1 − μ)
= 2μ√

π
βμ, where

βμ = bμ

�(1 − μ)
= aμ

π�(1 − μ)

∫ ∞

0

uμ

1 + u2
du. (B14)

Similarly, substituting the small w behavior of Jμ(w) on
the rhs of Eq. (B9) and matching powers of w on both sides,
we get

h̃2(ρ) ∼
ρ→0

1

ρ
− bμ ρμ−1. (B15)

Once again, using the Tauberian theorem of inversion, we get

h2(z) ∼
z→∞ 1 − Bμ

zμ
, (B16)

with the amplitude

Bμ = bμ

�(1 − μ)
= βμ, (B17)

where βμ is given in Eq. (B14).
Finally, note that the ratio

Aμ

μBμ

= 2√
π

(B18)

is universal in the sense that it is independent of μ ∈ (0,1) as
well as on the scale factor a.
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2. The case 1 < μ < 2

Unlike in the previous case, one finds that the first derivative
of Jμ(w) at w = 0 is finite when μ ∈ [0,2] and is given by

αμ = J ′
μ(0) = −a μ

π

∫ ∞

0

zμ−2 dz

1 + zμ
. (B19)

Note that for 1 < μ < 2, the integral in Eq. (B19) is convergent
as z → 0. Thus, as w → 0, Jμ(w) → 1 − αμ w. To obtain the
leading nonanalytic singular term, we need to compute the next
term. By taking two derivatives with respect to w near w = 0
and then reintegrating back, we find the following leading
singular behavior of Jμ(w) near w = 0:

Jμ(w) ≈ 1 − αμ w + cμ wμ + · · · ,
(B20)

where cμ = 2aμ

π (μ − 1)

∫ ∞

0

uμ du

(1 + u2)2
.

Substituting this small w behavior of Jμ(w) on the rhs of
Eq. (B8) and matching powers of w on both sides we get

g̃2(ρ) ∼
ρ→0

1√
π

− αμ

�(1/2 + 1/μ)
ρ + 2√

π
cμ ρμ, (B21)

where αμ and cμ are given, respectively, in Eqs. (B19)
and (B20). Again, inverting via the Tauberian theorem (see
Ref. [57]), we get

g2(z) ∼
z→∞

Aμ

z1+μ
, (B22)

with the amplitude

Aμ = 2√
π

μ(μ − 1)cμ

�(2 − μ)
= 2μ√

π
βμ,

(B23)

where βμ = 2aμ

π�(2 − μ)

∫ ∞

0

uμ

(1 + u2)2
du .

Exactly in a similar way, we substitute the small w behavior
of Jμ(w) on the rhs of Eq. (B9), match powers of w on both
sides and find that

h̃2(ρ) ∼
ρ→0

1

ρ
− αμ

�(1 + 2/μ)
+ cμ ρμ−1, (B24)

where αμ and cμ are defined in Eqs. (B19) and (B20). Inverting
via the Tauberian theorem gives the desired result

h2(z) ∼
z→∞ 1 − Bμ

zμ
, (B25)

with the amplitude

Bμ = (μ − 1)cμ

�(2 − μ)
= βμ, (B26)

where βμ is given in Eq. (B23).
In this case, also we note that the ratio

Aμ

μBμ

= 2√
π

(B27)

is universal and does not depend explicitly on 1 < μ < 2
and a.

3. The case μ = 1

In this case, from Eq. (B4),

J1(w) = exp[−I1(w)],
(B28)

where I1(w) = 1

π

∫ ∞

0

du

1 + u2
ln(1 + a w u).

Let us first derive the leading singular behavior of I1(w) as
w → 0. Making a change of variable x = a w u in the integral
we get

I1(w) = aw

π

∫ ∞

0

dx

x2 + a2w2
ln(1 + x). (B29)

Next, we divide the integration range [0,∞) into two parts [0,1]
and [1,∞) and write I1(w) = Z1(w) + Z2(w). The second part
Z2(w), that is, the integral over [1,∞] is a completely analytic
function as w → 0. Thus, the leading singular behavior of
I1(w) as w → 0 is contained only in the first part,

Z1(w) = aw

π

∫ 1

0

dx

x2 + a2w2
ln(1 + x). (B30)

In this integral, we can now safely expand ln(1 + x) = x −
x2/2 + x3/3 + · · · and perform the integral term by term. The
leading singularity comes from the first term of this expansion,

Z1(w) ≈ aw

π

∫ 1

0

x

x2 + a2w2
dx

= aw

π
ln

[√
1 + a2w2

aw

]
∼

w→0
− a

π
w ln w, (B31)

which indicates, from Eq. (B28), that

J1(w) ∼
w→0

1 + a

π
w ln w. (B32)

Substituting this small w behavior of J1(w) on the rhs of
Eq. (B8) and matching the leading behavior of w on both sides
indicates that

g̃2(ρ) ∼
ρ→0

1√
π

+ 2√
π

a

π
ρ ln ρ. (B33)

This indicates, using Tauberian inversion theorem (see
Ref. [57]),

g2(z) ∼
z→∞

A1

z2
, where A1 = 2√

π

a

π
. (B34)

Similarly, substituting the small w behavior of Jμ(w) on
the rhs of Eq. (B9) and matching leading behavior of w on
both sides we get

h̃2(ρ) ∼
ρ→0

1

ρ
+ a

π
ln ρ, (B35)

which, when inverted, provides the following large z behavior:

h2(z) ∼
z→∞ 1 − B1

z
, where B1 = a

π
. (B36)

Finally, we notice that even for this marginal μ = 1 case, the
ratio A1/B1 = 2/

√
π has the same value as in the other two

cases, namely for 0 < μ < 1 and 1 < μ < 2.
Let us remark that if one puts μ = 1 in the expression of βμ

in Eq. (36), we get β1 = a/π . Correspondingly A1 = 2a/π3/2

011119-15



WERGEN, MAJUMDAR, AND SCHEHR PHYSICAL REVIEW E 86, 011119 (2012)

from Eq. (33) and B1 = a/π from Eq. (34), we find that they
are consistent respectively with A1 in (B34) and B1 in (B36).
In other words, the final asymptotic results for g2(z) and h2(z)
in the marginal case μ = 1 are included in the range μ ∈ [1,2],
even though the details for μ = 1 are quite different, as it has
logarithmic singularities.

APPENDIX C: DISTRIBUTION OF THE MAXIMUM AND
THE NUMBER OF RECORDS OF A LATTICE

RANDOM WALK

In this appendix we show how to compute the distribution
of Yn,N , the global maximum of N independent lattice random
walks, all starting simultaneously at the origin. Once this is
obtained, we can then easily compute the distribution of the
record number Rn,N by exploiting the exact relation (58).

More precisely, we consider N lattice random walks (RWs)
starting at xi(0) = 0, for i = 1,2, . . . ,N and evolving as

xi(m) = xi(m − 1) + ηi(m), (C1)

where the noise ηi(m)’s are i.i.d. RVs with a distribution
f (η) = 1

2δ(η − 1) + 1
2δ(η + 1).

We first consider a single random walk, N = 1, and denote
by W (j,n) the number of lattice RW starting at x1(0) = 0 and
ending at j after n steps. One has

W (j,n) =
{(

n

k

)
, 2k = n + j, n + j even,

0, n + j odd.
(C2)

To compute the cdf of the maximal displacement of N walkers
we need to compute the number of walks, for a single walker
N = 1, which stay strictly below a given value M . We thus
denote, for N = 1, by WM (j,n) the number of walks which
stay strictly below an integer M and end up in j after n steps.
To do this we use the reflection principle, for example, the
method of images: WM (j,n) can be obtained by subtracting
from W (j,n) the number of free walks that start at x(0) = 2M

and end at j after n steps. This yields

WM (j,n) =
{(

n

k

)− ( n

k − m

)
, 2k = n + j , n + j even,

0 , n + j odd.
(C3)

The total number of walks WM (n) which start at x1(0) = 0 and
stay strictly below M after n steps are obtained by summing

W (j,n) in Eq. (C3) over the end point j < M . This yields

WM (n) =
� n+M

2 �∑
k=0

[(
n

k

)− ( n

k − m

)]
, (C4)

where �x� is the largest integer not greater than x. Therefore,
one has

Prob [m1(n) = max
0�m�n

x1(m) < M]

= WM (n)

2n
= 1

2n

� n+M
2 �∑

k=0

[(
n

k

)− ( n

k − m

)]
. (C5)

Knowing the distribution of the maximum of one walker,
one can then use the independence of the walkers to compute
the cumulative distribution of Yn,N = max1�i�N [mi(n)] as in
Eq. (59). We get

Prob [Yn,N < M] =
(

WM (n)

2n

)N

=
⎧⎨
⎩ 1

2n

� n+M
2 �∑

k=0

[(
n

k

)−
(

n

k − M

)]⎫⎬
⎭

N

, (C6)

from which one gets

Prob[Yn,N = M] = 1

2nN
{[WM+1(n)]N − [WM (n)]N }. (C7)

Finally, using the identity (58), one obtains the record number
distribution

P (Rn,N = M,n)

= 1

2n N

⎧⎨
⎩

� n+M
2 �∑

k=0

[(
n

k

)−
(

n

k − M

)]⎫⎬
⎭

N

− 1

2n N

⎧⎨
⎩

� n+M−1
2 �∑

k=0

[(
n

k

)− ( n

k − m + 1

)]⎫⎬⎭
N

, (C8)

TABLE I. First values of 〈Rn,N 〉 obtained from Eq. (C8).

n = 0 n = 1 n = 2 n = 3 n = 4

N = 1 1
3

2
= 1.5

7

4
= 1.75 2

35

16
= 2.187...

N = 2 1
7

4
= 1.75

35

16
= 2.187...

81

32
= 2.531...

723

256
= 2.824...

N = 3 1
15

8
= 1.875

157

64
= 2.453...

731

256
= 2.855...

13145

4096
= 3.209...

N = 4 1
31

16
= 1.937...

671

256
= 2.621...

6303

2048
= 3.077...

227343

65536
= 3.468...
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where �x� is the largest integer not greater than x. For instance,
for N = 1 one gets from Eq. (C8)

P (Rn,1 = M,n) = 1

2n

(
n(� n+M−1
2 �)

)
, (C9)

where �x� is the smallest integer not less than x. We have
checked that this formula for N = 1 (C9) yields back the
result for the first moment 〈Rn,1〉 as obtained in Ref. [28].
From the above formula (C8) one can also compute 〈Rn,N 〉,
for instance with MATHEMATICA, although obtaining a simple
closed form formula for it for N > 1 seems rather difficult.
In Table I we have reported the first few values of 〈Rn,N 〉 for
N = 1 to N = 4.

Using the identity (58), one can also obtain the large
n behavior of Rn,N . Indeed, in this limit, each rescaled
ordinary random walk xi(τn)/

√
n converges, when n → ∞,

to a Brownian motion BD= 1
2 ,i(τ ) with a diffusion coefficient

D = 1/2, on the unit time interval, τ ∈ [0,1]. Therefore, from
the above identity (58) one gets, in the limit n → ∞

Rn,N√
n

→ M̃N = max
1�i�N

max
0�τ�1

[BD= 1
2 ,i(τ )]. (C10)

Now, the distribution of max0�τ�1 BD= 1
2 ,i(τ ), that is, the

maximum of a single Brownian motion (with diffusion

constant D = 1/2) over a unit interval, is well known (see,
e.g., in [21]),

Prob [M̃1 � m] =
√

2

π

∫ m

0
exp

(
−x2

2

)
dx = erf

(
m√

2

)
.

(C11)

Eq. (C10) demonstrates that in this case, Rn,N/
√

n is dis-
tributed like the maximum of a collection of N i.i.d. positive
RVs {z1,z2, . . . ,zN }, each drawn from the distribution: p(z) =√

2
π

e−z2/2 for z � 0 and p(z) = 0 for z < 0. From Eq. (C11)

one obtains also that 〈R1,n〉 ≈ √
2n/π , for n � 1, as obtained

in Ref. [28], using a different method. More generally for any
N one has

lim
n→∞ Prob

[
Rn,N√

n
� m

]
= (Prob [M̃1 � m])N

=
[

erf

(
m√

2

)]N

. (C12)

In the limit N → ∞, the distribution of Rn,N/
√

n (C12),
properly shifted and scaled, will thus converge to the Gumbel
distribution [58].
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