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Agglomerative percolation on bipartite networks: Nonuniversal behavior due to spontaneous
symmetry breaking at the percolation threshold
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Ordinary bond percolation (OP) can be viewed as a process where clusters grow by joining them pairwise,
adding links chosen randomly one by one from a set of predefined virtual links. In contrast, in agglomerative
percolation (AP) clusters grow by choosing randomly a target cluster and joining it with all its neighbors, as
defined by the same set of virtual links. Previous studies showed that AP is in different universality classes
from OP for several types of (virtual) networks (linear chains, trees, Erdös-Rényi networks), but most surprising
were the results for two-dimensional (2D) lattices: While AP on the triangular lattice was found to be in the OP
universality class, it behaved completely differently on the square lattice. In the present paper we explain this
striking violation of universality by invoking bipartivity. While the square lattice is a bipartite graph, the triangular
lattice is not. In conformity with this we show that AP on the honeycomb and simple cubic (3D) lattices—both
of which are bipartite—are also not in the OP universality classes. More precisely, we claim that this violation of
universality is basically due to a Z2 symmetry that is spontaneously broken at the percolation threshold. We also
discuss AP on bipartite random networks and suitable generalizations of AP on k-partite graphs.
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I. INTRODUCTION

Percolation was until recently considered a mature subject
that held few surprises, but this has changed dramatically
during the last few years. Recent discoveries that widened
enormously the scope of different behaviors at the perco-
lation threshold include infinite-order transitions in growing
networks [1], supposedly first-order transitions in Achlioptas
processes [2] (which are actually continuous [3,4] but show
very unusual finite-size behavior [5]), and real first-order tran-
sitions in interdependent networks [6–9]. Another class of non-
classical percolation models, inspired by attempts to formulate
a renormalization group for networks [10,11], was introduced
in [12–16] and is called agglomerative percolation (AP).

The prototype model in the ordinary percolation (OP)
universality class is bond percolation [17]. There one starts
with a set of N nodes and a set of virtual links between them
(i.e., links that can be placed but that are not yet put down). One
then performs a process where one repeatedly picks at random
one of the virtual bonds and realizes it (i.e., actually links
the two nodes). A giant cluster appears with probability one
in the limit N → ∞, when the density p = M/N of links
(M is here the number of realized links) exceeds a threshold
pc whose value depends on the topology of the network. The
behavior at p ≈ pc is governed by universal scaling laws
(i.e., by scaling laws with exponents that depend only on few
gross properties of the network). A typical example is that
the universality class of OP on regular d-dimensional lattices
depends on d but not on the lattice type. For example, OP on
triangular and square lattices (both have d = 2) are in the same
universality class.

AP differs from OP in that clusters do not grow by
establishing links one by one. Rather, one picks a target cluster
at random (irrespective of its mass; we are dealing here with
model (a) in the classification of Ref. [13]) and joins it with
all its neighbors, where neighborhoods are defined by the
virtual links. The new combined cluster is then linked to all

neighbors of its constituents. AP can be solved rigorously
on one-dimensional (1D) linear chains [14,15], where it is
found to be in a different universality class from OP. Although
a similarly complete mathematical analysis is not possible
on random graphs, both numerics and nonrigorous analytical
arguments show that the same is true for critical trees [12] and
Erdös-Rényi graphs [16].

In contrast to these cases that establish AP as a novel
phenomenon but do not present big surprises, the behavior on
2D regular lattices [13] is extremely surprising: While AP on
the triangular lattice is clearly in the OP universality class (with
only some minor caveats), it behaves completely differently on
the square lattice. There the average cluster size at criticality
diverges as the system size L increases (it stays finite for all
realizations of OP on any regular lattice), the fractal dimension
of the incipient giant cluster is Df = 2 (Df = 91/48 ≈ 1.90
for OP), and the cluster mass distribution obeys a power law
with power τ = 2 (τ = 187/91 ≈ 2.055 for OP). This blatant
violation of universality – one of the most cherished results of
renormalization group theory – is extremely surprising.

As we said above, gross topological features of the
network (such as dimensionality in case of regular lattices, the
correlations between links induced by growing networks [1],
and finite ramification in hierarchical graphs [18]) are one set
of properties that determine universality classes. The other
features that determine universality classes in general are
symmetries of the order parameter: The Ising and Heisenberg
models are in different universality classes, e.g., because the
order parameter is a scalar in the first and a 3D vector in the
second. Could it be that the nonuniversality of AP results from
a similar symmetry? At first sight this seems unlikely, because
the order parameter (the density of the giant cluster) is a scalar
in any percolation model. Moreover, in order for a symmetry to
affect the universality class it has to be broken spontaneously
at the phase transition.

In the following we show that it is indeed the latter scenario
that leads to the nonuniversality of AP on square and triangular
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lattices, and the symmetry that is spontaneously broken at the
AP threshold on the square lattice is a Z2 symmetry resulting
from bipartivity. A graph is bipartite if the set N of nodes
can be split into two disjoint subsets, N = N1 � N2, such that
all links are connecting a node in N1 with a node in N2, and
there are no links within N1 or within N2. A square lattice
is bipartite (as illustrated by the black and white colors of a
checkerboard), but a triangular lattice is not. Following this
example, we will in the following speak of the different colors
of the sets N1 and N2. The initial state of the AP process on a
square lattice (where each site is a cluster) is color symmetric.
If the AP cluster-joining process is such that we can attribute
a definite color to any cluster (even when it is not a single
site), then the state remains color symmetric until we reach a
state with a giant cluster. In this state the color symmetry is
obviously broken.

In Sec. II we briefly review the evidence for nonuniversality
given in Ref. [13], In Sec. III we present results, which show
that AP on square lattices behaves even more strangely than
found before. There we also present numerical results for
the honeycomb and simple cubic lattices, both of which are
bipartite and show similar anomalies as the square lattice. The
detailed explanation why bipartivity leads to these results is
given in Sec. IV. Random bipartite networks are briefly treated
in Sec. V. Possible generalizations to k-partite graphs with
k > 2 are discussed in Sec. VI. We conclude in Sec. VII.

II. AGGLOMERATIVE PERCOLATION: DEFINITION,
IMPLEMENTATION, AND REVIEW OF

PREVIOUS RESULTS

We start with a graph with N nodes and M links. Clusters
are defined trivially in this initial state (i.e., each node is its
own cluster). AP is then defined by repeating the following
steps until one single cluster is left.

(i) Pick randomly one of the clusters with uniform proba-
bility;

(ii) Join this target cluster with all its neighboring clusters,
where two clusters C1 and C2 are neighbors if there exist a
pair of nodes i ∈ C1 and j ∈ C2 that are joined by a link.

As described in Ref. [13], this is implemented most
efficiently with the Newman-Ziff algorithm [19] that uses
pointers to point to the “roots” of clusters, augmented by a
breadth-first search to find all neighbors of the target.

In ordinary bond percolation one usually takes as control
parameter p the number of established (i.e., nonvirtual) links,
divided by the number of all possible links (including virtual
ones). This is not practical for AP. Rather, we use as in
Refs. [13,20] the number n of clusters per node. It was checked
carefully in these papers that using n instead of p as a control
parameter in ordinary bond percolation is perfectly legitimate,
since one is a smooth monotonic (decreasing) function of the
other.

In Ref. [13], AP was studied on two different 2D lattices.
Helical boundary conditions were used for both [i.e., sites are
labeled by a single index i with i ≡ (i mod L2, where L

is the lattice size)]. For the square lattice the four neighbors
of site i are i ± 1 and i ± L, while there are two additional
neighbors i ± (L + 1) for the triangular lattice. This seemingly
minor difference has dramatic consequences. While AP on
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FIG. 1. (Color online) Effective critical cluster densities for AP
on finite 2D lattices versus L−3/4, where L is the lattice size. For
ordinary percolation, where nc(L) − nc ∼ L−1/ν with ν = 4/3, this
should give straight lines. For each lattice type (triangular: upper pair
of curves; square: lower pair of curves) we show results obtained with
two different operational definitions for the critical point: (i) Maximal
range of the power law Pn(m) ∼ m−τ , and (ii) the probability to have
a cluster that wraps around a lattice with helical boundary conditions
is equal to 1/2. The corresponding values of nc(L) are called nc,τ (L)
and nc,wrap(L) (from Ref. [13]).

the triangular lattice is (within statistical errors, and with one
minor caveat that was easily understood) in the universality
class of OP, this is obviously not the case for the square lattice.
Among other results, the following results were found.

(i) The effective percolation threshold, measured either by
the probability that a cluster wraps around the lattice, or via
the best scaling law

P (m) ∼ m−τ (1)

for the probability distribution of cluster masses m, depends
strongly on L. For OP this dependence is governed by the
correlation length exponent ν via

pc − pc(L) ∝ nc(L) − nc ∝ L−1/ν (2)

with ν = 4/3 and nc > 0. The latter means, in particular, that
the average cluster size is finite at criticality. For AP on the
square lattice a parametrization like this would give ν = 0.
More precisely, nc(L) seems to decrease logarithmically to a
value nc = 0 [i.e., the average cluster at criticality (and in the
limit L → ∞)] is zero. This is summarized in Fig. 1.

(ii) The exponent τ in Eq. (1), which is 187/91 =
2.0549 . . . for OP, seems to be <2 at first sight. But it slowly
increases with L, and it was argued that the exact value is
τ = 2.

(iii) Similarly, the fractal dimension of the largest cluster
was measured as ≈1.95, while it is Df = 91/48 = 1.9858 . . .

for OP. It also increases slowly with L, and it was conjectured
that also Df = 2.

(iv) Let pwrap(n,L) be the probability that there exists a
cluster that wraps along the vertical direction on a lattice of size
L, when there are nL2 clusters. The distribution dpwrap(n)/dn

is universal for OP. For AP on triangular lattices it develops
a weak tail for small n (this is the easily explained caveat
mentioned above), but for AP on the square lattice it has a
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very fat tail for small n. Thus there is a high probability that
even at very late stages in the agglomeration process, when
only few clusters remain, none of them has yet wrapped.

III. ADDITIONAL NUMERICAL RESULTS

A. Square lattice

1. Periodic boundary conditions

Helical B.C.s were used in Ref. [13] simply for convenience
(they are more easy to code than periodic ones), and it was
assumed that the small difference with strictly periodic B.C.s
should be without any consequences. This is not true. Not only
is there a large difference between helical and strictly periodic
B.C.s (even for the largest values of L that we could check),
but for the latter there is an even stronger difference between
even and odd L.

In Fig. 2 we show dpwrap(n)/dn for four different cases.
(i) Triangular lattices. The shape of this curve is practically

indistinguishable from ordinary percolation, and serves as a
reference for the latter.

(ii) Square lattices of size 128 × 128 with helical B.C.
Compared to the triangular lattice, there is a much fatter
left-hand tail of the distribution (i.e., there are many more
realizations where no cluster has yet wrapped) although the
number of clusters is very small.

(iii) Square lattices of the same size, but with periodic B.C.
Now the left-hand tail is even more fat. Indeed, for this lattice
size one finds realizations with �10 clusters, none of which
has yet wrapped.

(iv) Square lattices of sizes 127 × 127 with periodic B.C.
We see a huge difference, in spite of the small change in L,
making the results similar to those for helical B.C. Obviously,
this indicates a distinction between even and odd L.

The last conclusion is confirmed by Fig. 3. There we show
the values of n where half of the configurations have wrapping
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FIG. 2. (Color online) Wrapping probability density dpwrap/dn

for 2D square lattices with different boundary condition (B.C.), and
with sizes differing by just one unit, compared to similar results for
triangular lattices. All curves for square lattices have peaks at smaller
values than for triangular lattices and have more heavy left hand tails,
but this is most pronounced for strictly periodic B.C. with even L.
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FIG. 3. (Color online) Black triangles: Cluster densities n at
which pwrap(n) = 1/2, plotted against L, for square lattices with
periodic B.C. The upper curve is for odd sizes, and the lower curve
is for even sizes. Red dots: Analogous results for a slightly modified
model, where each neighboring cluster agglomerates with the target
cluster only with probability q < 1. In the present case q = 0.999.

clusters, pwrap(n) = 1/2 (black triangles; the red dots will be
discussed in Sec. III A2). These data confirm that the difference
between even and odd L persists even to our largest systems,
where the difference in L between the two is less than 0.025
percent.

2. Finite agglomeration probability

In AP, all neighbors of a chosen target are included in
each agglomeration step. In contrast, bond percolation can be
viewed as the limit q → 0 of a model where each neighbor is
included with probability q. One might then wonder where the
crossover from OP to AP happens. Is it for q → 0 (meaning
that the model is in the AP universality class for any q > 0),
for q → 1 (in which case we have OP for any q < 1), or for
some 0 < q < 1?

The numerical answer is clear and surprising in its radical-
ness: For any q < 1 we find OP, if we go to large enough L,
even if q = 0.999 (see Fig. 3). More precisely, we see that the
difference between even and odd L disappears rapidly when L

increases, and both curves seem to converge to a finite nc,wrap

for L → ∞. It seems that even the slightest mistake in the
agglomeration process completely destroys the phenomenon
and places the model in the OP universality class.

This is confirmed by looking at the order parameter

S = 〈mmax〉/N, (3)

where mmax is the size of the largest cluster. For infinite
systems, S = 0 for n > nc and S > 0 for n < nc. For OP,
one has S ∼ (nc − n)β for n slightly below nc, and the usual
finite-size scaling (FSS) behavior

S ∼ Lβ/νf [(nc − n)L1/ν] (4)

for finite systems. In Fig. 4 we show s versus n for various
cases, all with periodic B.C. In addition to two panels for other
lattices discussed in later subsections (“honey,” “cubic”) we
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FIG. 4. (Color online) The five panels of this figure correspond to
(a) square lattices with q = 1, (b) honeycomb lattices, (c) triangular
lattices, (d) square lattices with q = 0.999, and (e) cubic lattices. In
all cases, periodic B.C.s were used. In all cases except case (d), q = 1.

show results for the triangular lattice and for square lattices
with q = 1 (“square”) and with q = 0.999. We see that the
results for q < 1 are very similar to those for the triangular
lattice, while they are completely different from those for q =
1. A data collapse for verifying the FSS ansatz would of course
not be perfect, but it seems that the model with q < 1 is in the
OP universality class, for any q < 1.

B. Other regular lattices

In addition to the square and triangular lattices we now
study also the honeycomb lattice as a third lattice with d = 2,
and the simple cubic lattice as an example of a 3D lattice.

1. Honeycomb lattice

Although we measured also other observables (such as the
wrapping probabilities), we show here only the behavior of the
order parameter S. As seen in Fig. 4, the behavior here is very
similar to that for the square lattice. In particular, we see no
indication for the FSS ansatz with finite (nonzero) n.

2. Three-dimensional simple cubic lattice

The behavior on the simple cubic lattice is more subtle.
On the one hand, we clearly see in Fig. 4 an indication for
a nonzero value of nc, with nc ≈ 0.41. On the other hand,
as for the square and honeycomb lattices we see that the
slope dS/dn is not monotonic. In all three cases the growth of
the largest cluster slows down when S ≈ 1/4, and accelerates
again when S > 1/2. Alternatively, it seems as if two behaviors
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FIG. 5. (Color online) Plot of S/(nc − n)β against (nc − n)L1/ν ,
using the exponents of ordinary 3D percolation. Each curve is for
one value of L, with the highest curve corresponding to the smallest
lattices (L = 64) and the lowest curve to the largest. According to the
FSS ansatz, these curves should collapse and should be horizontal in
the limit where we first take L → ∞ and then n → nc. This seems
not to be the case.

are superimposed: For large n and S < 1/3 it seems as if the
curves would extrapolate to S = 1/2 for n → 0, but then (as
n decreases further) S rises again sharply, to reach S = 1.
Although this scenario is too simplistic, we will see in the next
section that it catches some of the relevant physics.

Using the critical exponents for 3D OP, β =
0.4170(3),Df = 2.5226(1), and ν = 0.8734(5) [21], one ob-
tains an acceptable data collapse when plotting mmax/L

Df

against (n − nc)L1/ν , with nc = 0.411. But the behavior for
large L is not given by S ∼ (n − nc)β with the value of β

given above (see Fig. 5). The latter plot is much improved, if
we use instead

β = 0.435, Df = 2.522, ν = 0.91, (5)

together with nc = 0.4110 (see Fig. 6). With these exponents
we also obtain a good collapse of mmax/L

Df against (n −
nc)L1/ν (see Fig. 7). The main deviation from a perfect collapse
in this plot is due to the smallest lattice, and is obviously a
finite-size correction to the FSS ansatz. We do not quote error
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FIG. 6. (Color online) Analogous to the previous plot, but using
β = 0.435,Df = 2.5220, and ν = 0.91.
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FIG. 7. (Color online) Plot of SLβ/ν = mmax/L
Df versus (n −

nc)L1/ν for AP on the simple cubic lattice, using nc = 0.411 and the
exponents given in Eq. (5).

bars for the values in Eq. (5), as they are not yet our final
estimates.

IV. BIPARTIVITY AND SPONTANEOUS
SYMMETRY BREAKING

A. Uniqueness of cluster colors

Our first observation is that infinite square, honeycomb,
and cubic lattices are bipartite, while the triangular lattice is
not. The next observation is that finite square lattices of size
L × L are still bipartite, if L is even and periodic boundary
conditions (B.C.s) are used, but global bipartivity is lost when
either L is odd or helical B.C.s are used. These observations
strongly suggest that it is indeed bipartivity that is responsible
for peculiarities of AP on these lattices.

In a bipartite graph, to each node can be assigned one of
two colors. We now show that this is extended from single
nodes to arbitrarily large clusters, if the rules of AP are strictly
followed. Before we do this, we need two definitions:

Definition: The surface of a cluster C is the set of all nodes
in C that have at least one link to a node not contained in C.

Definition: If all surface nodes in C have the same color,
then we say that C also has this color. Otherwise, the color of
C is not defined.

We can now prove the following theorem.
(i) If clusters are grown according to the AP rules on a

bipartite network, they always have a well-defined color.
(ii) All neighbors of a given cluster have the opposite color.
(iii) If a target of color c is chosen for agglomerating all its

neighbors, the new cluster has the opposite color c̄.
For an illustration see Fig. 8.
Proof. The proof follows by induction. First, the theorem

is obviously true for the starting configuration, where all
clusters are single nodes. Then, let us assume it is true for
all agglomeration steps up to (and including) step t . Let us call
c the color of the target cluster at step t + 1, and c̄ the opposite
color. Then all neighbors of the target have color c̄, so that after
joining them the new cluster also has color c̄, proving thereby
(i) and (ii). On the other hand, all neighbors of the neighbors
had color c, and these form the neighbors of the new cluster,
which proves (iii). �

FIG. 8. (Color online) Part of a square lattice with cluster
boundaries indicated by black lines. Plaquettes correspond to nodes
of the graph. Nine clusters are labeled with letters A–I. Six of them
(A, B, D–F) are single nodes, one (C) has five nodes, and two (H,
I) are very large. Three of them (D, H, I) are blue, the other six are
white. If cluster D is chosen as target, it merges with C, E, F, and G
and the new cluster is white. If, however, F is chosen as target, the
new blue cluster would consist of D, H, and I.

Notice that it was crucial for the proof that all neighbors
of the target were joined, so that none of the neighbors of
the target is a neighbor of the new cluster. This shows why
imperfect agglomeration as considered in Sec. III A2 leads to
situations where the theorem does not hold.

FIG. 9. (Color online) A configuration with three large clusters
at n ≈ 0.03 and L = 128. For clusters of mass > 1 the two colors are
red and blue, with the larger clusters more bright and the smaller ones
more dark. Blue singletons are colored white for better visibility and
in order to distinguish them from red singletons which actually are
indicated by black squares. Notice that no two clusters of the same
color ever touch in this figure. Wherever they seem to touch, there is
indeed a small cluster of the opposite color intervening. In spite of
the size of the largest clusters, none of them has yet wrapped in the
vertical direction.
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B. Coexistence of large clusters

A typical configuration on a 128 × 128 lattice with three
large clusters, none of which has yet wrapped vertically, is
shown in Fig. 9. Such a configuration would have an astro-
nomically small probability in OP, since in OP the chance is
very small to have more than one large cluster. If there were two
large clusters at any time, they would immediately merge with
very high probability. Obviously, in AP there exists a mecha-
nism that prevents clusters of opposite color to merge quickly,
leading to the coexistence of large clusters of opposite colors.

This looks at first paradoxical. Take the two largest clusters
in Fig. 9. If either of them were chosen as target, they would
merge immediately. Why should this not happen? The crucial
point is that each cluster is chosen as target with the same
probability, and there are many more small clusters than large
ones. The chances are thus overwhelming that neither of the
large clusters is chosen as target, but a small cluster is picked
instead. But in that case the two largest clusters cannot merge,
because they have opposite color and all neighbors to be
merged must have the same color. Thus it is most likely that a
random agglomeration step merges one small cluster of color
c with several (small and large) clusters of color c̄.

In two dimensions this means also that the two large clusters
of opposite color prevent each other from wrapping. In three
dimensions this is not the case. Thus AP is in three dimensions
more similar to OP, although it still should show several large
clusters in the critical and supercritical regimes. To test this
prediction we show two figures. Figure 10 shows that mass
distributions in the supercritical phase have two peaks (in
contrast to OP), corresponding to the fact that AP on bipartite
graphs has two giant clusters of opposite colors. The same
conclusion is drawn from Fig. 11, where we show the average
normalized size mmax,2 of the second largest cluster as a
function of n. We see that mmax,2 starts to increase at nc and
continues to grow as one goes deeper into the supercritical
phase, while it would peak at nc in OP.
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FIG. 10. (Color online) Cluster mass distributions for simple
cubic lattices with L = 32. The curve for n = 0.4323 is subcritical,
while the other curves are supercritical. In contrast to the case of OP,
where the mass distribution develops a single peak in the supercritical
phase, now (i.e., for AP) we see two peaks. They correspond to clus-
ters of opposite colors. The right-hand peak is strongest for the small-
est value of n (0.1419) and is absent for the the largest n. Notice that
the curves are ranked for m < 100 so that they rise with increasing n.
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FIG. 11. (Color online) Average size of the second-largest cluster
on simple cubic lattices with even size. In contrast to OP, where mmax,2

peaks near the percolation transition and decreases fast when one goes
into the supercritical phase, here the second-largest cluster continues
to grow far beyond the percolation transition nc ≈ 0.411.

C. Surface color statistics

While these two figures show that there is indeed more
than one giant cluster in AP on bipartite lattices, they do not
yet prove that these clusters have opposite colors. To verify
also this prediction we denote the two colors as + and −, and
define cijk... (i,j,k . . . ∈ {+,−}) as the probabilities that the
largest cluster has color i, the second largest j , etc. These
probabilities are normalized such that

∑
ijk... cijk... = 1. Due

to the symmetry under exchange of colors, cijk... = cīj̄ k̄.... In
Fig. 12 we plot the four probabilities c−jk for square lattices
with L = 512 against n. While they are all equal to ≈1/8 for
large n, this degeneracy is lifted as the agglomeration process
proceeds. The most likely color pattern is (− + +), followed

0.00 0.05 0.10 0.15 0.20
n
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0.1

0.2

0.3

0.4

0.5

c s
(n

)

c−++

c−+−

c−−+

c−−−

FIG. 12. (Color online) Probabilities cs(n) of color patterns
s = (− + +), (− + −), (− − +), and (− − −) for the largest three
clusters, plotted against n. The first index (here always –) gives the
color of the largest cluster, while the other two are for the second and
third largest. The data are for square lattices of size L = 512.

011118-6



AGGLOMERATIVE PERCOLATION ON BIPARTITE . . . PHYSICAL REVIEW E 86, 011118 (2012)

0.00 0.05 0.10 0.15 0.20 0.25
n

0.00

0.05

0.10

0.15

0.20

0.25

0.30

c −
−
(n

)

L = 64

L = 256

L = 1024

L = 4096

0.0 0.1 0.2 0.3 0.4 0.5 0.6
n

0.00

0.05

0.10

0.15

0.20

0.25

0.30

c −
−
(n

)

L = 16
L = 32
L = 64
L = 128
L = 256

0.410 0.414 0.418
0.00

0.01

0.02

0.03

−1 0 1 2
0.00

0.05

0.10

0.15

(a)

(b)

FIG. 13. (Color online) Probabilities that the two largest clusters
have the same color. According to our theory, these probabilities
should vanish in the supercritical phase, if L → ∞. Panel (a) is for
the square lattice, panel (b) for the cubic. The upper inset in panel (b)
shows the region close to the critical point. The lower inset shows a
data collapse plot, c−−(n) against (n − nc)L1/ν with nc = 0.4109 and
ν = 1.01.

by (− + −). Both have opposite colors for the two largest
clusters. The least likely pattern has all colors the same.

In Fig. 13 we show how the n dependence of the probability
c−− that the two largest clusters have the same color changes
with system size L, both for two and three dimensions. There
is a dramatic difference: While the data support our conclusion
that there is no transition at any finite n in case of the square
lattice (the effective transition point moves to zero as L

increases), there is a clear indication for nc = 0.411 in case of
the cubic lattice.

More precisely, the lower inset in Fig. 13 shows a nearly per-
fect data collapse when plotting c−−(n) against (n − nc)L1/ν ,
with nc = 0.4109 and ν = 1.01. The latter values are very
close to the values obtained in Sec. III B2 from the data
collapse for the ordinary order parameter, but sufficiently far
from them to call for further, so far unnoticed, corrections
to scaling. Combining both sets of parameters, accounting for
such corrections by increasing the error estimates, and noticing

that the system sizes in Fig. 13 are much smaller than those in
Figs. 5–7, we get our final result

β = 0.437(6), Df = 2.523(3), ν = 0.918(13), (6)

and nc = 0.4110(1).
Since the differences between these exponents and those of

OP are about three to four error bars, we conjecture that the two
models are not in the same universality class. But more studies
are needed to settle this question beyond reasonable doubts. In
any case, Fig. 13 should leave no doubt that 1/4 − c−−(n) is
as good an order parameter for the symmetry-breaking aspects
of the transition, as S is for the percolation aspects.

D. Lattices with local bipartite structure

Let us finally discuss the case where we have locally a
bipartite lattice, but where global bipartivity is broken by
the boundary conditions. In that case the boundary conditions
become relevant only when a cluster wraps around the lattice.
In particular, we expect that such a system is not in the OP
universality class, if the globally bipartite system is not either.
But we expect that clusters of size <L are unaffected by the
boundary conditions. Whether critical exponents like the order
parameter exponent β are affected, which are defined through
the behavior of the supercritical phase, is an open question.

V. RANDOM BIPARTITE GRAPHS

One minor problem in simulations of random bipartite
networks is that we want connected graphs, but the most
straightforward way of generating them leads to graphs that
are not connected. We thus start with N∗ nodes, divide them
into two equally large groups, and add zN∗/2 edges, which
have the two ends in different groups. Here z is the average
degree of the entire graph, which is chosen as z = 2 in the
following.

For this value of z, the largest connected component of
the network constructed this way has ≈0.7968N∗ nodes.
If we want to have a connected graph with N nodes, we
take N∗ = N/0.7968 and discard all those graphs for which
the size of the largest connected component is outside the
range N ± 0.01%, and for which any of the two components
has size outside the range N/2 ± 0.01%.

The n dependence of the size of the largest cluster is shown
in Fig. 14. We assume again a FSS ansatz analogous to Eq. (4),
with L replaced by N (now D can of course not be interpreted
as dimension, and ν no longer is a correlation length exponent).
The critical point and the critical exponents are found as (see
Fig. 15): nc = 0.695, ν = 4.88, D = 0.567.

The probabilities c−−(n) for both largest cluster to have the
same color are shown in Fig. 16. As in the 3D case [Fig. 13(b)]
we see that the curves for different system sizes cross exactly
at the critical point, suggesting again that c−−(n) = 0 in the
supercritical phase in the large system limit.1 We also obtain a

1For very small and very large N , c−−(n) is ill defined because in
these limits there can be more than one largest (or second-largest)
cluster, but this affects only regions infinitesimally close to n = 0
and n = 1 in the limit N → ∞.
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FIG. 14. (Color online) Fraction of nodes in the largest cluster
〈mmax〉/N for random bipartite networks.

perfect data collapse if we plot c−−(n) against (n − nc)N1/ν ,
with slightly different parameters nc = 0.696, ν = 4.60 (data
not shown). Our best estimates for the critical parameters are
the compromise

nc = 0.695(2), ν = 4.7(2), D = 0.567(6) . (7)

The values for ν and D are very close to those for Erdös-Renyi
networks (ν = 4.44, D = 0.60), although they differ by more
than one standard deviation. As in the 3D case, more work
would be needed to determine whether these differences are
significant.

VI. GENERALIZATIONS TO K -PARTITE GRAPHS

A graph is k-partite for any k � 2, if the set of nodes can
be divided into k nonempty disjoint subsets Nm, m = 1, . . . ,k

such that there are no links within any of the Nm. As we saw in
Sec. IV, the appearance of novel structures in AP on bipartite
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FIG. 15. (Color online) Scaling collapse for 〈mmax〉 in the critical
region for random bipartite networks.
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FIG. 16. (Color online) Probabilities c−−(n) for the largest two
clusters in a random bipartite network to have the same color, for
different system sizes. As also seen from the inset, these curves cross
near the estimated critical point nc ≈ 0.696.

graphs depended on the fact that AP does not “mix” colors:
After each agglomeration step, one can still associate a unique
color to the new cluster. This is no longer true on k-partite
graphs with k > 2. Assume a node i has neighbors with two
different colors, c1 and c2 say. Then, if i is chosen as a target,
the new cluster will display both colors on its surface.

In order to arrive at nontrivial structures we have to
generalize the AP rule. Assume we have a k-partite graph with
colors c1, . . . ,ck . In Fig. 17 we show the triangular lattice as an
example of a tripartite graph with colors red (R), green (G), and
blue (B). We define then a cycle C in the set of colors as a closed
nonintersecting directed path ci1 → ci2 → · · · cik → ci1 . For
tripartite graphs as in Fig. 17 there are two possible cycles,
R → G → B → R and R → B → G → R (up to circular

FIG. 17. (Color online) Part of a triangular lattice where sites
(hexagons) are colored red, green, and blue. The colors are arranged
such that no two sites with the same color are adjacent (i.e., if
neighbors are connected by bonds the lattice is tripartite). A modified
AP process is defined such that a target with color R can join only
with neighbors of color G, G can join only with B, and B can join
only with R. This is indicated by the arrows and is denoted by
R → G → B → R. When node A is chosen as target, it agglomerates
with all G neighbors and becomes itself G, so that the new cluster is
all G on its surface.
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FIG. 18. (Color online) Each circle represents a color (i.e., an
element of a partition of a k-partite network. An arrow from
partition A to partition B means that a target with color A joins
with all nodes of color B. Solid arrows indicate cycles that are
followed at each agglomeration step, while dotted arrows indicate
random AP rules where different colors are chosen at different time
steps.

shifts). For each cycle C we define a modified AP rule APC
such that a target with color c joins with all neighbors having
the color that follows c in C, and only those. After that, the
target is recolored to c, so that the new cluster has a unique
color.

Alternatively, we can define a randomized rule APrandom

such that each target node i chooses at random a color c

(different from its own) and joins with all neighbors of color
c. Obviously even more possibilities exist when k > 3. For
instance we can choose the joined neighbors by following
some subset of cycles. Different possibilities are illustrated in
Fig. 18.

We have not made any simulations, but we expect a rich
variety of different behaviors resulting from different rules. It
is not clear that in each case AP differs from OP in critical
behavior. It is also not clear what happens if one of the
partitions of the network is finite. Naively one should expect
that such finite components should not have any influence on
critical behavior (which deals only with infinite clusters). But
the example of finite q in Sec. III A2 might suggest otherwise:
It could be that even a small number of nodes that do not follow
the coloring and AP rules of the majority perturb the evolution
sufficiently to change the universality class.

VII. DISCUSSION

The main purpose of this paper was to explain in detail the
reasons for the dramatic breakdown of universality in agglom-
erative percolation on 2D lattices. In finding this reason—and
demonstrating numerous other unexpected features of AP in
these cases—we indeed uncovered a new class of models with
nontrivial symmetries. In the present paper only the simplest
of these, having a Z2 symmetry due to bipartivity, is treated
in detail, while more complex situations leading to higher
symmetries are only sketched.

Agglomerative percolation is a very natural extension of
the standard percolation model, and we expect a number
of applications (some of which were already mentioned in
Ref. [13]). The main effect of bipartivity in AP is that the
merging of large clusters is delayed, as compared to OP.
It shares this feature with explosive percolation [2], but in
contrast to the latter this delay is not imposed artificially,
but is a natural consequence of the structure of the model.
Also, the merging of large clusters is not delayed in all
circumstances, but only subject to the symmetry structure
imposed by bipartivity. The latter implies that clusters can
have colors (with k colors in case of a k-partite network), and
only the merging of clusters with different colors is delayed.

The effect of bipartivity is dramatic in case of 2D lattices—
shifting, in particular, the percolation threshold on infinite
systems to the limit where the average cluster size diverges
and the number of clusters per site is zero. It is much less
dramatic for 3D lattices (where we studied only the simple
cubic lattice) and for random networks. In these cases we see a
clear effect, and the simulations indicate that universality with
OP is broken, but the percolation threshold is at finite values
and the critical exponents are close to those of OP.

Future work is needed to settle these questions of uni-
versality. In particular, it would be of interest to study
high-dimensional (3 < d � 6) simple hypercubic lattices, in
order to see how the lattice models cross over to the random
graph model. Another interesting subject for future work is
a modified AP model (discussed briefly in Sec. VI) on the
triangular lattice, where the relevant group is Z3 instead of Z2.
Finally, there should exist a rich mathematical structure for
modified AP models on k-partite networks with k > 3, all of
which is not yet understood.
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